Natural Logarithms

An Important inequality:

Theorem: For $\QTR{Large}{0<x}$, MATH with equality if and only if MATH

Proof:



For MATH :

MATH

For MATH :

MATH

so

MATH

and

MATH

For MATH :

MATH

so

MATH

and

MATH

Corollary: MATH, with equality if and only if MATH

Proof:

Since we will use the notation MATHfor MATH , we will just use that convention although obviously the Corollary is more general.

MATH

so $\ \hspace{1.5in}$

MATH

and

MATH

___________________________________________________________________________

An Alternative Definition of Natural Logarithms:

Theorem:

MATH

Proof:$\bigskip $

MATH

MATH

MATH

MATH

MATH

_________________________________________________________________

An Alternative Definition:

MATH

$\vspace{1pt}$

__________________________________________________________

$\vspace{1pt}$Theorem:

MATH

$\vspace{1pt}$

$\vspace{1pt}$Proof:

MATH

MATH

$\vspace{1pt}$

MATH

$\vspace{1pt}$

MATH

Corollarys:

  1. MATH

  2. MATH

  3. MATH

  4. MATH

$\vspace{1pt}$____________________________________________

Theorem:

MATH

$\vspace{1pt}$

$\vspace{1pt}$Proof:

MATH

$\vspace{1pt}$

MATH


Figure
1/2+1/3+1/4+.......

______________________________________________

Definition:

MATH is defined implicitly by the equationMATH

And so: MATH