A Framework for Information Theory

Sigma Algebras

DEFINITION:

Given a set $\QTR{Large}{S}$, a set of subsets $\ \QTR{Large}{A}\ $is called a Sigma Algebra on $\QTR{Large}{S}$ if:

  1. The empty set, MATH MATH

  2. If MATH then MATH (The complement of $\QTR{Large}{E}$)

  3. If MATH is a countable set of subsets in $\QTR{Large}{A}$ then the union MATH is in $\QTR{Large}{A}$.


Some Comments, Terms, and an Example:

Two Properties of Sigma Algebras:

Generating Sigma Algebras:

  1. For any set $\QTR{Large}{S}$ the power set of $\QTR{Large}{S,}$ P$(\QTR{Large}{S)}$ , that is the set of all subsets of $\QTR{Large}{S}$ is a Sigma Algebra.

    Almost by definition.

  2. Let MATH P$(\QTR{Large}{S)}$ be any collection of subsets of $\QTR{Large}{S}$ , let MATH be the set of all Sigma Algebras with MATH MATH P$(\QTR{Large}{S)}$

    then MATHis a Sigma Algebra called the Sigma Algebra generated by $\QTR{Large}{G.}$Clearly, MATH MATH since MATH MATH for all MATH

  3. Given a Sigma Algebra MATH for a set $\QTR{Large}{S}$ ,a set $\QTR{Large}{T}$ , and a function MATH , then the collection of subsets MATH is a Sigma Algebra of $\QTR{Large}{T.}$

_________________________________________________________________________________________________________

Probability

DEFINITION: Suppose we are given a set $\QTR{Large}{S}$ and MATH a Sigma Algebra, a Probability Measure on $\QTR{Large}{A}$ is a function MATH such that

  1. MATH

  2. If MATH is a countable (again could be finite) subset such that MATH for MATH then $\QTR{Large}{P(}$ MATH

In the context of Probability, we will call $\QTR{Large}{S}$ the Sample Space.


The Usual Example:

Let $\QTR{Large}{S}$ be a finite set and $\QTR{Large}{A}$ a Sigma Algebra on $\QTR{Large}{S}$. For any MATH let $\QTR{Large}{n(B)}$ be the number of members in $\QTR{Large}{B}$, then MATH for all MATH is a Probability Measure on $\QTR{Large}{A}$.


Properties of Probability Measures:

_____________________________________________________________________

Random Variables and Expected Value:

DEFINITION:

  1. Given a set $\QTR{Large}{S}$, a Sigma Algebra $\QTR{Large}{A}$ on $\QTR{Large}{S}$, and a countable discrete set $\QTR{Large}{D}$, a Discrete Random Variable is a function $\QTR{Large}{X}$ $\QTR{Large}{:}$ MATH such that if $\QTR{Large}{x}$ is in the image of $\QTR{Large}{X}$ then MATH is in $\QTR{Large}{A}$.


    If $\QTR{Large}{D}$, is finite then we will call $\QTR{Large}{X}$ a Finite Random Variable.

    We write MATHfor MATH

  2. In the setting of 1. , if $\QTR{Large}{X}$ is a Finite Random Variable then MATH MATH

_________________________________________________________________________________________________________

The Framework:

Given a Finite Random Variable $\QTR{Large}{X}$ $\QTR{Large}{:}$ MATH for a Sigma Algebra $\QTR{Large}{A}$ on $\QTR{Large}{S,}$where MATH . And given a Probability Measure $\QTR{Large}{P}$ on $\QTR{Large}{A}$ . We will be interested in




MATH

The Example :

$\QTR{Large}{S=}$ {A,B,C,D,E,F,G} , $\QTR{Large}{A}$ is just the Sigma Algebra of Singletons and, for example MATH

Singletons $\QTR{Large}{P}$ $\QTR{Large}{D}$
A MATH 1
B MATH 2
C MATH 3
D MATH 4
E MATH 5
F MATH 6
G MATH 7

MATH

$\QTR{Large}{=}$ MATH

MATH