Complexities

Time Complexity(informal):

Given a Turing Machine$\ \QTR{Large}{M}$ that halts on all inputs, the time complexity of $\QTR{Large}{M\ }$is the function MATH

where:

MATHnumber of steps such that $\QTR{Large}{M}$ halts on an input of length MATH

Since Turing Machine alphabets are finite, hence there is only a finite number of strings of any length.MATH is well defined:

Two Examples:

1.

Thinking of the following polynomials as two Turing Machine implementations of the same function:

MATH

$\hspace{1.5in}$8 multiplications and 3 additions.

also

MATH

$\hspace{1.5in}$3 multiplications and 3 additions. (Horner's Method)

But

MATH

However, In discussing the complexity of the underlying function we are interested Horner's Method, in particular MATH:$\smallskip $

2.

Towers of Hanoi Revisited- 5 Disk Output:

1AB2AC1BC3AB1CA2CB1AB4AC1BC2BA1CA3BC1AB2AC1BC5AB1CA2CB1AB3CA1BC2BA1CA4CB1AB2AC1BC3AB1CA2CB1AB

The Pegs:

A-B A-C B-C A-B C-A C-B A-B A-C B-C B-A C-A B-C A-B A-C B-C A-B C-A C-B A-B C-A B-C B-A C-A C-B A-B A-C B-C A-B C-A C-B A-B

The Disks:

1213121412131215121312141213121

__________________________________________________________________

Space Complexity(informal):

Given a Turing Machine$\ \QTR{Large}{M}$ that halts on all inputs, the space complexity of $\QTR{Large}{M\ }$is the function MATH

where:

MATHnumber of cells scanned such that $\QTR{Large}{M}$ halts on an input of length MATH

__________________________________________________________________

Descriptive or Kolmogorov Complexity(informal):

Given a Universal Turing Machine$\ \QTR{Large}{U\ }$there will be different Turing Machines implementation strings MATHthat produce.a given output.MATH

Provisional Definition: For a given output string MATH let $\QTR{Large}{<M>\ }$be an input string for $\QTR{Large}{U}$, such that $\QTR{Large}{U\ }$halts with $\QTR{Large}{x\ }$on the tape

Descriptive or Kolmogorov Complexity

MATHall $\QTR{Large}{<M>}$ that halt with $\QTR{Large}{x}$ on the tape. MATH

Notes: