

IBM CONFIDENTIAL

This report has been submitted for publication elsewhere and
has been issued as a Research Paper for early dissemination

of its contents. It is issued as IBM Confidential as a courtesy

to the intended publisher and may be considered declassified

upon the date of such outside publication,

Printed in U,S. A,

SOME THEOREMS ABOUT YAMADA'S
RESTRICTED CLASS OF RECURSIVE FUNCTIONS

by

Jerrold Siegel

International Business Machines Corporation
Thomas J, Watson Research Center
Yorktown Heights, New York

ABSTRACT: In this paper I discuss a modified Turing machine, This
machine has an output symbol augmented to each quadrupole, Two of
these symbols are 0 and 1. The machine is set computing on a tape of
such nature that the computation does not stop. We consider the sequence
of output symbols that arises in this calculation, This sequence is called
the sequence of a Yamada pair if the distance between occurrences of
either 0 or 1 is bounded, We now consider the subsequence of 0's and 1's.
‘We say that f(a) = b if b - 1 ones or zeros occur before the a th one. It

is seen that these functions are all monotonic increasing,

It is shown in this paper that these functions neither include nor are
included in the primitive recursive functions that are monotonic increasing,
but it is also shown that these functions can all be represented in the

form py(R(x,y). :

Research Paper
RC-510
August 10, 1961

INTRODUCTION

In "Counting by a Class of Growing Automata" {3] Yamada,
motivated by a desire to define the notion of ""Real Time Computability",
displays a class of modified Turing machines which he calls counters.

A counter is an n-tape Turing machine inside a black box. On
top of the box are two lightbulbs, a l-lightbulb and a 0-lightbulb. The
Turing machine and tape configurations are such that if the machine
were left to itself it would never halt. A button is pressed and depend-
ing on the internal state of the machine and the symbols under the tape
heads, one of the bulbs light, the machine then computes for a number
of steps (instantaneous descriptions) not greater than a fixed constant
and stops. The procedure is repeated. The result is an infinite se-
quence of 1's and 0's. From this sequence a function { is defined. If
P(n) is the sequence, then f(a) = b iff [P(b)= 1\ [:Z);lp(x) =al.

Yamada [3]shows this class of functions include the polynomial
functions of one variable, the exponential functions of one variable,
and many others. He also shows this class closed under many basic
operations such as composition. His paper does not show where in the
scheme of recursive function theory the '"Yamada functions' fall, how-
ever. An attempt is made here to fill this gap.

The attempt is a negative one in the sense that it is shown:

(1) Not every Yamada function is primitive recursive, and

(2) Not every monotonic increasing primitive recursive func-

tion is a Yamada function.

I do prove as a corollary to the first theorem of the paper, a
representation theorem, namely all Yamada's functions can be repre-
sented as py(R(x, y) where R(x, y) is primitive recursive. This repre-
sentation is strictly inclusive by (2), however I hope to follow up this
result in a later paper by a more complete representation.

The reader of this paper would do well to avoid the proof of
lemma 2 on a first reading. The proof is long and does not aid in the

understanding of Sections 2 and 3.

SECTION 1.

In this first section the notions that Yamada considered are
formalized. This formalization it is felt, captures the ideas of Yamada,
although, other possible conotations can be given to certain sections of
his paper.

l-tape Turing machines will only be considered. This is for
notational convenience, for although the question of whether or not
n-tape Yamada machines can be replaced by l-tape machines is not
answered, the theorems are proved independent of this restriction as
can be seen by an examination of the proofs themselves.

Throughout this paper the notation of the theory of Turing ma-
chines as presented in Davis [1] is used.

(1) Let q; denote a state symbol from the set Q of state symbols.

(2) Let S; be a tape symbol from the set S of tape symbols.

(3) Let R and L be the directions.

We will need another set, (0,l.a) = 6, of output symbols. The
final addition to the notation is the use of "(qi, S¢ ql) "' asg the general
Turing machine quadruple. (In a particular quadruple, the blank is

replaced by R or L or S.)

Definition 1

(2) A 5-tuple is said to augment a Turing machine quadruple if
the first four entries of the 5-tuple are the entries, in order, of the
quadruple, and the 5th is in the set O.

(b) A set of 5-tuples '"'g'" is called a candidate for a Yamada

Turing machine (written CY) if there exists a Turing machine 't" such

that each 5-tuple augments one and only one of the quadruples of t and
each quadruple of t is augmented by some 5-tuple. We say that the

CY augments the Turing machine t. Note that a natural map is de-
fined from the Turing machine quadruples (in particular the first two
entries) into the set O call this map g, (considered defined on first two

entries).

Definition 2

(a) A tape configuration (TC) is a Turing machine tape with a

distinguished starting tape position and a distinguished state as in

Davis [1].

(b) Let g be a CY, the set T_ of all TC "t" such that the Turing

g

machine g augments does not halt on t, is called the set of tapes for g.

(c) The set S C T, such that if S; is the symbol in the distin-

g g

guished position and q is the distinguished state wg(q, 5;) =0orlis

called the set of Starting Tapes for g.

Definition 3

—

(a) For each CY g and each t¢€ Tg a function_u_gi)is defined
from the non-negative integers into the set O as follows: -f-gt(n) =
wg(qi Sj). q; is the state of the Turing machine g augments and Sj the
symbol under the reading head. after n steps of computation (where a
step is a single instantaneous description).

(b) ACY gandate€eS_are called a Yamada Pair (YP) if there

g

exists a number K called a Y-number such that for no number n,

.{gt(n)=?gt(n+1)="“=?gt(n+K)=a,

(c) ACY gis called a Yamada Machine if there exists a num-

ber K such that for all t € Sg(g, t) are a Yamada Pair and Kis a Y-

number for the pair where Sg # ¢

Definition 4

(2) Let £(n) be a function into O then the Reduced Output

Function f of £ is the function f(n) = -f-(r) where @ appears exactly r-n

times in the sequence ?(0) Rl) . -?(r-l) and Rr) =0orl.

(b) Call the reduced output function fgl(n) of ?gt(n) (as in

Definition 3) the Reduced Output Function of the Pair (g, t).

The following lemma is immediate from the definition.
Lemma 1

If (g,t) are a YP then fgt(n) is a total function.

The class of functions discussed by Yamada [3] are generated
by the reduced output functions of Yamada Pairs. He points out that
the reduced output functions can be generated by Yamada Pairs where
the second entries are blank tapes.

I would now like to prove a slightly more general lemma to the
effect that:

Lemma 2

If {c,t) are a Yamada Pair then there exists a Yamada machine

g,with a blank tape configuration b € Sg such that f(c, t)(n) = f(g, b)(n)

for all n.

Proof

Let t be of the form: Sy - " 31‘1151+1' ** Sk where everything to
the right (left) of and including 5{5;) is blank.

The machine g we construct begins by looking at the tape square
it is reading; if it is blank it records S;;; and moves to the right. If
it is not blank it switches to a state q4; (to be handled later). The

5-tuples of the early part of the machine g are:

(2) (ql, _B, 4 1) where the blank ranges over the set of sym-

bols S1 to Sk and symbols in 5-tuples of c.

(3) (qz Si+1' R, q3u a)

We continue the construction of the machine by duplicating the
above procedure for each Si+m the only change being a is the only
output symbol of any 5-tuple in the continued construction we have:

1 (a, ., B S

1 itm’ 92m’ ¥)

(2) (a, o, B,)
(3) (qzmn Si+m’ R, q2m+1:])

When we reach 5, we check for a blank one square further, if
there is one, we record a special symbol B in'the square, B not in c
oron t , ifthe next square is not blank we again switch to q,-

The first part of the machine is completed by repeating the
process to the left after returning to the starting position. To the '"far"
left we place the special symbol v . Then the machine then returns to
the starting position. Note that in each 5-tuple of the machine so far,
after the initial pair the symbol @ appears in the last position. This
first part of the computation takes at most 3(k+2) steps.

Suppose q 5 is the highest state we have used so far in the con-

struction then for each 5-tuple in c beginning with q; we include one in

the set we are constructing beginning with g replacing the other state
q4 appearing in the 5-tuple by q ¢, 5. and changing each output to a .
To complete this next part of the construction we add a set of 5-tuples
"isomorphic' to c with q 5+2+i replacing q; for each state symbol.

We now only have to handle the two symbols B, y and the
state dq -

The role of B(Y) is to note the amount of tape we are sure is
blank. If we need more tape we check one square beyond B(vy) and if
it is blank we move B(¥) to that square and proceed with the calculation
using the square f;‘om which B(y) was erased. We have for each state

in the isomorphic copy of ¢ in the machine we are constructing the two

sets of 5~tuple: (g, B (1M, R(L), 9250)

(9542K» B> Bly) Q4210 @)

(qi+2k’—-' B, 9y) Where the __ is all symbols in

c, t not blank.
(qi+2kl B('Y)» L(R)l qi+2k+lva)

(242410 B(Y) B, g4 @’) Where k is larger than any state
number used.

To complete the machine we just add the set of quadruples
(a4 __+ R, g4, 1) where the blank is over all symbol used so far in this

construction.

A careful examination of the above construction shows a Y-

machine that gives the reduced output function of (c, t) if the tape is
effectively blank to ¢ and gives some finite sequence of 1's and 0's
followed by an infinite sequence of 1's otherwise (such a sequence is
always the reduced output function of some Yamada machine by a
simple argument). A bound for this machine is seen to be 3(k+2) + 4d

where d is any bound of (c, t).

SECTION 2.

In this section I prove the first two theorems of this paper. I
show the existance of a strictly monotonic increasing primitive recur-
sive function that is not a Yamada function and I prove the representa-
tion theorem discussed in the introduction. These theorems depend
upon a lemma that is central to their proofs. It is this lemma that
appears to be the main tool in dealing with Yamada Imachines that this
paper contains.

Definition 5
Let f(c, t)(n) be a reduced output function of a Yamada pair.
- n

Let (c,t)(n) = i:=0 f(c, t) (i) then the function:

) (m) = pn [k (n-1) =m };n,m>0

h(c, t (c, t)

is called the Yamada Function of the pair (c, t).

I will not discuss the properties of this function except to note

that it is strictly monotonic increasing. A complete description of

many constructions of common functions as Yamada Functions can be

found in [3].

Lemma 3
There is a recursive enumeration of G8del Numbers (GN) of
CY that do not halt on blank tape, such that each Yamada Function is

represented by at least one of the CY.

Proof:

The proof of this theorem is simple and I only give a sketch.
The theory of Godel Numbering of Turing machines is presented in
Davis [1] is seen to carry over to the Godel Numbering of CY. In
order to be assured that a CY '"g'" does not halt on a blank we need only
check that all symbol state pairs of Qg X Sg (where Qg(Sg) are all the
states (tape symbols) in the 5-tuples of g) appear as leading pairs in
other 5-tuples. This is seen to be a recursive procedure, so we may
enumerate such machines, but this enumeration is the desired one
since if a machine has pairs in Qg X Sg that are not 1-2 entries and
the machine does not halt, then we know these pairs are not used and
a simple addition of 5-tuples will give a complete machine with respect
to Qg X Sg which acts no differently on blank tape. This and lemma
2 gives the proof since the reduced output functions determine the

Yamada Functions.

10.

Lemma 4

There is a primitive recursive function OUT(Z, X) such that if
Z is the GN of a CY U, and X is the GN of a tape configuration V, then
ouUT(Z,X) = wu(qi. Sj) where q; is the distinguished state of V and Sj

is the symbol in the distinguished position.

Proof:

Again the proof is a typical argument from the theory of Turing

machines and will be left undone as will be the following.

Lemma 5
There is a primitive recursive function Y(X) =y such that if

X is the GN of a CY, y is the GN of the Turing machine it augments.

Lemma 6

Let MOVE(Z, X, n) be the function such that if Z is the GN of a
Turing machine (called Z with its GN) and X is the GN of a tape con--
figuration, then MOVE(Z, X, n) is the GN of the tape configuration
resulting from n steps of computation of Z 6n X if such é computation
exists, otherwise MOVE(Z,X,n) = 0. Then MOVE(Z, X, n) is primitive

recursive.

Proof:

Consider the modified form of the Davis T-predicate TYZ,X, y)

which is: y is a sequence of steps in the computation of the Turing

11.

machine Z on the tape configuration X. This is primitive recursive [1}.

Let X be the GN of the tape configuration Sy**-*8§; qj Si+1" " "Sk
call the "length'" of X equal to ktl. Now after n steps of computation
the greatest possible length of the resulting tape configuration is

ktntl (i.e., a series of steps of the form 5;° - Sk+1 quk =

Si**"SkqB D " § ' 'Sk BB-'B--- B, q, B).

n-1
The number N = Z « X is greater than the GN of any symbol

NN,

N
or state in X or in Z so [Z,X,k] = 2 : Pr(k+1) is greater than X

and Z,X, ktn) = I;1::-11(P1.(i))IZ,X, ktn] is greater than the Godel
Numbér of any possible n step computation. It is easy to see that
&2,X, ktn) is primitive recursive.

We now consider the primitive recursive function:

MOVE(Z, X, n) = py (TXZ, X, y)A (P(y) = P(X) + n)) V(y=0)]
y =9(Zz,X, P(X) + n)

where P(X) = length of X. Again this is seen to be primitive recursive.

Now MOVE gives the GN of the only possible n step computa-
tion. To finish we consider the function U (y) = exponent of the highest
prime in the construction of y. This is primitive recursive [1] and
thus:

MOVE(Z, X, n) = B3(MOVE({Z, X, n))

is primitive recursive and is our function.

12.

Main Lemma 1

There exists a primitive recursive function k(x,y, m, n) such

that if xgand yj are the GN of CY's and mgis any integer, then

k (n) = k(x(r Yor Mg n) is the reduced output function of some
*00™o

Yamada Pair and if Xq is the GN of a Yamada Machine and mo is a

bound for X0 then k (n) is the reduced output function of)
*0*0 ™o

acting on blank tape.

Proof:

The proof of this theorem will involve the actual construction
of the function k. The function, in brief, takes the machine y and uses
it as a '"clock'. The clock tells, if this time is bounded by m, how
long y computes between 1-0 outputs. If the clock really has m as a
bound then it is the clock of a Yamada Machine. The function we
construct computes using x as long as it matches in time of compu-
tation the clock of y. If it ever stops matching the clock it puts out
an infinite sequence of 1's from-then on. In this case we have an
infinite sequence of 1's preceeded by a finite sequence of 1's and 0's.
(A Yamada Machine reduced output by a simple argument.)

I now construct the function in a series of subconstructs:

Let b be the GN of a blank tape configuration with distinguished

symbol q; . The first function in the construct is:

13.

pn [OUT(z, MOVE(Y(z), x, m) =1or 0]
COM(mo z, x) = 1 =m= mo

m Otherwise
This function gives the number of steps between the start of
computation and the next appearance of 1 or 0 if this number is =< my,
btherwise it gives m .

(n=0)=x

MOVEYm, z, x, n) ={(n> 0) = MOVE [Y(z), MOVEl(m, z, x, n-1),
COM(m, z, MOVEl(m, z, x, n-1)]

This function gives the tape configuration resulting from n-1
movements past occurrences of 1 or 0 to the tape configuration as it

appears at the nth occurrence of 1 or 0 (assuming initial output 1 or 0).

(n=0)=0
COMI(m, z, =
(m, 2, , n) £n>0) = COM(m, Y(2), MOVEl(m, z, x, n-1))
This function gives the number of steps between the n-1 th
occurrence of 1 or 0 and the nth (if this is =m, otherwise m) with

the starting output called the Oth.

n
SUM(m, z, x, n) =iZE(()30M1(m, z, X, 1)

This function has obvious meaning.
We now define a predicate ONZE(z, x, n) ; this predicate is true
if OUT(z, MOVE(z,x,n)) =1 or 0, false.otherwise.

The function (k) is now expressed as follows:

14.

k(x, Yy, m, n) =

(t § 0 ONZE(x, b, SUM(m, y, b, i))] A~[£/0NZE(x, b, k}J]» [OUT(x), MOVE(m, x, b, n))]
k = SUM(m, y, b, n)

k # SUM(m, vy, b,i), i=n
1 otherwise

Where b is the GN of the blank tape configuration: -B--B 9 B--*B---
That this function fits the description can be seen by examination.
With the aid of the lemma, that has just been proved, it will be

possible to prove two theorems.

Theorem 1
If Z is the GN of a Yamada Machine and m is a bound for it,
then the question '""Does f(a) = c?'" is decidable by a primitive recursive

predicate (f is the Yamada Function of the pair (z, b)).

Proof:

Consider the primitive recursive function K(z, z, m, n) =
-1
=0

o

k(z, z, m, i) from the definition of the function k and of a Yamada

[

Function we see that f(a) = c is equivalent to [[K(z, z, m, c) = a]
Ak(z, z, m, c-1) = 1]} which is primitive recursive being the conjunction

of two primitive recursive predicates. So theorem 1l is proved.

Corollarz

Every Yamada Function f can be written in the form Ry(R(x,y))

where R is a primitive recursive predicate.

15.

Proof:

Let R(x, y) be the primitive recursive predicate [f(x) =y].

Theorem 2
There exists a strictly monotonic increasing primitive recur-

sive function that is not a Yamada function.

Proof:

Let f(n) be the enumeration of lemma 3. Let K(n), L(n) be the
p. r. functions that give a 1-1 map of integers into pairs of integers 1] .
Let Tc-(z, z, m, n) be as in the proof of theorem 1. Consider the primi-
tive recursive predicate:
Q(n, a, c) = [[k(£(K(n)), £K(n)), L(n), c) = a JAK(£{K(n), {K(n)), L(n), c-1) =111
This predicate gives an "'enumeration' of the predicates [f (a)=c]
where f ranges over the entire set of Yamada Functions.
Let C(n, a, c) be the primitive recursive charteristic function
of this predicate.
Let a(n) be the primitive recursive function =1 when n = 0 and
0 otherwise.
Now consider the primitive recursive function:

£(1) =1+ C(1,1,1)
f(n) ={(n-1) + 1 + o (C(n, n, f(n-1) + 1))

This function is obviously monotonic increasing. To see that

it is different than any Yamada Function fno that we choose, we

16.

let C(no, a, c) be its characteristic function, such an ng exists by

the enumeration property of C(n, a, c} now f(no) = f(no-l) +1+

ar(C(n(r 1, f(no-l) +1)) now if fno(no) = f(ng-1) + 1 then C(ng g, f(ng-1)+1)= 0
and @ of that =1 so f(ng) = f(ny-1) +2 #f(ny-1) t1= fno(no) if fno(no) *

f(no-l) + 1 then f(no) = f(no-l) +1 so we are done.

SECTION 3.

I now prove a lemma leading to the third theorem. This will
show that the Yamada Functions are not included in the primitive re-

cursive functions.

Main Lemma 2

For any recursive function g there exists a Yamada Function

fg such that g(x) = fg(x) for all x.

Proof: (Outline)
The proof proceeds by a series of modifications on the Turing

machine Z_ that computes g(x).

g

(1) Let Z'_ be the Turing machine that duplicates the input

g
string to the right of itself and then computes on the string to the right,

i.e.: z'g

1 1
SII11111111S = SL111111111S1111111111S =) S1111111111S1111111111S
D — —y— [RRR Jl W S

x x x x g(x)

17.

(2) Let Z"g be the Turing machine that results from tacking on

to each "halt" of Z'g a set of quadruples that erase everything to the
right of the second S then moves back to the beginning of the string
adds a 1 to the length and transfers to the first state of Z'g.

The total action of the machine is:

1"
1 Zj 2
S1111111111S =» S1111111111S1111111111S = S1111111111S
x X g(x) (x +1)

We now construct the Yamada machine fg for g. For each

quadruple that begins with a pair that would have been a halt in Z!' g
We add a 1 in the fifth position, for every other we add a 0 in the fifth
position. This gives a Yamada machine with bound 0. To see that its
function fg is = g we note that the only time a 1 appears as output

symbol is when the tape is of the form:

S1111111111S1111111111S
e S N
x g(x)
Now by the construction we see that the total number of 1-0
outputs from ''SxSg (x)S'to"S(x+1)Sg(x+1)S" is the total number of steps
of computation between. So.we see g(xtl) -g(x) = steps of calculation

between SxSg(x)S and S(x+1)S(g(xtl))s = fg(x+1) < fg (x).

Theorem 3

There exists a Yamada Function that is not primitive recursive.

18.

Proof:

It is proved by Ackerman and stated in Kleene [2 Jthat there
exists a recursive function g such that for any primitive recursive
function h there exists an n such that g(n) > h(n). Consider fg(x) if this
was primitive recursive, there would be ng such that g(ng > fg(no) but

fg(no) = g(ng so fg(no) > fg(no) a contradiction.

SECTION 4.

In this section I state results, without proof, that are not
in the main line of this paper yet seem to yield important information
about the Yamada functions.

The study of Yamada machines may be extended in several
directions. The particular direction that I will discuss is the result
of changing the requirement that there be a fixed Y-number. If we
dropthis result completely we have:

Theorem 4
Let f(n) be any recursive function that is strictly monotonic

increasing, then there is a CY gand a TC t in TI

g

such that f(g,t) (n) =

f(n) where f&g,t) (n) is the Yamada function of the not necessarily

Yamada pair (g,t).

If on the other hand we restrict the bound such that the

19.

distance between 1-0 outputs is bounded for the nth output by f(n)

where f is primitive recursive then we have:

Theorem 5
Let g be a CY and let t be a Tg with a primitive recursive
time found, then the question does h(g t)(a) = b is decidable by a

primitive recursive predicate.

Theorem 6

The class of Yamada functions gotten by allowing, the bound
to be primitive recursive is exactly the class of monotonic increasing
functions that can be represented in the form p(y) (R(x,y)) where R

is primitive recursive.

BIBLIOGRAPHY

(1)

(2)

(3)

M. Davis:
S. Kleene:
H. Yamada:

Computability and Unsolvability

McGraw-Hill Book Company
New York, 1958

Introduction to Metamathematics
Van Nostrand
New York, 1952

Counting by a Class of Growing .
Automata A Ph.D Dissertation
University of Pennsylvania, 1960

ACKNOWLEDGEMENT

The author would like to thank Dr, J, D, Rutledge for his
stimulating commentary on various aspects of this paper's topic.
The author also would especially like to thank Dr., C. C, Elgot who
suggested the topic of this paper and who carefully read the prelim-
inary draft and found many serious omissions that would have left

the paper incomplete,

