
Lecture 17: OpenMP Basics

William Gropp
www.cs.illinois.edu/~wgropp

2

Model of Computation

• Fork/join model

• Note difference between abstract
model and implementation
♦ Fork/join model does not require that

threads are created each time

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

3

OpenMP Syntax

• Mostly directives
♦ #pragma omp construct [clause …]

• Some functions and types
♦ #include <omp.h>

• Most apply to a block of code
♦ Specifically, a “structured block”
♦ Enter at top, exit at bottom only*

• exit(), abort() permitted

4

Different OpenMP styles of
Parallelism

•  OpenMP supports several different ways to specify
thread parallelism
♦  General parallel regions

•  All threads execute the code, roughly as if you made a routine
of that region and created a thread to run that code

♦  Parallel loops
•  Special case for loops; simplifies data parallel code

♦  Task parallelism
•  New(ish) in OpenMP 3

•  Several ways to manage thread coordination, including
♦  Master regions
♦  Locks

•  Memory model for shared data
♦  “flush”

5

Parallel Region

• #pragma omp parallel
{
 … code executed by each thread
}

• Effectively a single thread runs
before:
♦ “fork” at the beginning
♦ “join” at the end

• Single thread runs after

6

Hello World in OpenMP: The
Serial Version

#include <stdio.h>

int main(int argc, char *argv[])
{

 {

 int id = 0;
 int np = 1;
 printf("Hello world %d of %d\n", id, np);

 }
return 0;
}

7

Hello World in OpenMP: The
Parallel Version

#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[])
{
 omp_set_num_threads(4);
#pragma omp parallel
 {

 int id = omp_get_thread_num();
 int np = omp_get_num_threads();
 printf("Hello world %d of %d\n", id, np);

 }
return 0;
}

8

Hello World in OpenMP: The
Parallel Version

#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[])
{
 omp_set_num_threads(4);
#pragma omp parallel
 {

 int id = omp_get_thread_num();
 int np = omp_get_num_threads();
 printf("Hello world %d of %d\n", id, np);

 }
return 0;
}

9

Hello World in OpenMP: The
Parallel Version

#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[])
{
 omp_set_num_threads(4);
#pragma omp parallel
 {

 int id = omp_get_thread_num();
 int np = omp_get_num_threads();
 printf("Hello world %d of %d\n", id, np);

 }
return 0;
}

10

Notes on Hello World

•  Variables declared outside of the
parallel region are shared by all threads
♦  If id declared outside of the #pragma omp

parallel, it would have been shared by the
threads, possibly causing erroneous output
• Why? What would go wrong? Why is it only

“possibly”?
•  Take a few minutes to see why – just use two

threads but remember that if “int id;” is outside
of the parallel region, id is in a single memory
location that both threads access.

11

Private Variables

•  Private clause can be used to make thread-
private versions of such variables:
#pragma omp parallel private(id)
{
 id = omp_get_thread_num();
 printf(“My thread num = %d\n”,id);
}

•  More details
♦  What is their value on entry? Exit?
♦  OpenMP provides ways to control that
♦  Can use default(none) to require the sharing of each

variable to be described (a sort of “implicit none” for
OpenMP)

12

Master Region

•  It is often useful to have only one
thread execute some of the code in
a parallel region. I/O statements
are a common example

13

Example of OMP Master

#pragma omp parallel
 {
#pragma omp master

 {
 int k = omp_get_num_threads();
 printf (

 "Number of Threads requested = %i\n",k);
 }
 }

14

Data Parallel Computation
and Loops

• OpenMP provides an easy way to
parallelize a loop:
#pragma omp parallel for
for (i=0; i<n; i++) c[i] = a[i];

• OpenMP handles index variable (no
need to declare in for loop or make
private)

• Which thread does which values?

15

Scheduling of Loop
Computation

• Let the OpenMP runtime decide
• The decision is about how the loop

iterates are scheduled
• OpenMP defines three choices of

loop scheduling:
♦ Static – Predefined at compile time.

Lowest overhead, predictable
♦ Dynamic – Selection made at runtime
♦ Guided – Special case of dynamic;

attempts to reduce overhead

16

Example of parallel for:
STREAM

• Using OpenMP in STREAM COPY
#pragma omp parallel for

 for (j=0; j<STREAM_ARRAY_SIZE; j++)
 c[j] = a[j];

•  Running STREAM

♦  export OMP_NUM_THREADS=4
./stream

17

STREAM Performance on
Blue Waters

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2 4 6 8 10 12 14 16 18

copy

scale

add

triad

18

Comparison With
Performance Model

• Good: Performance increases
linearly to 6 cores

• Bad: Odd dips from 8 to 12
• Unsurprising: Dip at 16

♦ Possible contention with OS
• Many open questions here

♦ What are some of them?
♦ Stop here and write some down, then

go on to see a few possibilities

19

Possible Issues

•  How are threads in STREAM assigned to
cores in the node?

•  There are two processor chips in the
node. The simple performance model
assumes a single memory pathway
♦ Each chip introduces a separate limit
♦ How are threads distributed across cores?

•  Are these measurements repeatable?
♦ STREAM code makes no effort to get

repeatable result

20

Questions

•  Find out how to use OpenMP on your
platform of choice. Recent versions of
gcc, for example, support OpenMP with
the option –fopenmp
♦ Clang compiler adding openmp support

now, so make sure your “gcc” is a real gcc
•  Test that your option works by writing

and running a program that prints the
number of threads available (and more
than 1!)

21

Loop Scheduling

•  static, dynamic, guided
♦ Plus auto (let compiler choose) and runtime

(set with environment variable)
•  Syntax is

#pragma omp parallel for \
 schedule(kind[,chunksize])

•  E.g.,
#pragma omp parallel for \
 schedule(guided,100)
for (i=0; i<n; i++) c[i]=a[i];

22

STREAM and Loop Schedule

• STREAM as distributed uses the
default (static) schedule
♦ Best when loop limits known, work

per iteration constant, cores only
used by the application

• Question: Are all of those
assumptions correct?

23

STREAM and Loop Schedule

• Question: Are all of those
assumptions correct?
♦ That last one (cores only used be

application) is the most suspect
♦ Try running STREAM with one thread

per available core and:
• Static
• Dynamic
• Guided

♦ How do they perform?

24

More on Loops: Reductions

•  What happens with code like this
#pragma omp parallel for

 For (i=0; i<n; i++)
 sum += a[i];

•  Like all variables, there is one “sum”
variable; all threads access it

•  But addition is not atomic:
ld sum, r1
ld a[i], r2
fadd r1, r2, r3
st r3, sum

25

Race Conditions

Thread 0 (core 0) Thread 1 (core 5)
Ld sum, r1

Ld sum, r1
Ld a[i], r2 Ld a[j], r2

Fadd r1, r2, r3 Fadd r1, r2, r3
St r3, sum

St r3, sum

•  In this order, the contribution from thread 0
(a[i]) is lost – thread 0 has lost a race with
thread 1 to read sum, add a[i] to it, and store
it back before thread 1 accesses sum

26

Reductions in OpenMP

• Reductions are both common and
important for performance

• OpenMP lets the programmer
indicate that a variable is used for
a reduction with a particular
operator
sum = 0;
#pragma omp parallel for reduction(+,sum)
for (i=0; i<n; i++) sum += a[i]*b[i];

27

More Reading

• Using OpenMP, B. Chapman, G.
Jost, A. van der Pas
http://mitpress.mit.edu/books/
using-openmp

• Many tutorials online
• OpenMP official site:

www.openmp.org

28

Questions

• What are the pros and cons of
block scheduling for parallelizing a
loop?

