RSA Arithmetic


Greatest Common Divisor of a and b:

gcd(a,b) {
  if(b==0){
    return a;
  }
  else{
    return gcd(b,a % b);
   }


The Time Calculation:

We are given integers m and n with m > n >0 . Then m = kn+r with n > r ≥0. In particular m ≥ n+r .

Performing the same calculation with n and r we have n = k'r+r' with r > r' ≥0. In particular n ≥ r+r'

So

       (m+n) ≥ (n+r+n)+r ≥ 2(r+r')+r ≥ 2(r+r')

Renaming m , n , r and r' as m0 , n0 , m1 , n1

       (m0+n0) ≥ 21(m1+n1)

Repeating :

       (m0+n0) ≥ 2k(mk+nk)

Finally if,
       2k ≥ (m0+n0)

We know we can find the gcd with 2k divisions.


An Example:

p=7 and q=13 so pq=91

p-1=6=2131 and q-1=12=2231

Choose e=5
 
We are looking for d such that de=1 mod((p-1)(q-1))=1 mod(72).

The Steps:

The Test:

35*29 = 3145
 
= 1522586358169246802159262479225089070726226750574991661790882326344643
 
=3 mod(91)