
4

>
j. MAS C. MATEU

AUTHOR: COORDINATOR:

WEB applications

Introduction to

DEVELOPMENT

���������������
���������������
�����������
�����������������������
������������

������������

��������������������� ���

��������� ������������

�����������������������������
�������������������������������
��������������������������
�����������������������������
�������������������������������
���������������������������������
�����������������������������������
���������������������������������
����������������������������������
����������������������������������
��������������������������������
����������������������������������
��������������������������������

����������������������������
�������������������������������
�����������������������������
���������������������������������
�����������������������������������
������������������������

����������������������������
��������������
�����������������������
�����������������������������
������������������������������������
��������������������
����������������������������

���
��
��
��������

Software has become a strategic societal resource in the last few decades.

e emergence of Free Software, which has entered in major sectors of

the ICT market, is drastically changing the economics of software

development and usage. Free Software – sometimes also referred to as

“Open Source” or “Libre Software” – can be used, studied, copied,

modified and distributed freely. It offers the freedom to learn and to

teach without engaging in dependencies on any single technology

provider. ese freedoms are considered a fundamental precondition for

sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software

and Open Standards), still a limited number of people have sufficient

knowledge and expertise in these fields. e FTA attempts to respond to

this demand.

Introduction to the FTA
e Free Technology Academy (FTA) is a joint initiative from several

educational institutes in various countries. It aims to contribute to a

society that permits all users to study, participate and build upon existing

knowledge without restrictions.

What does the FTA offer?
e Academy offers an online master level programme with course

modules about Free Technologies. Learners can choose to enrol in an

individual course or register for the whole programme. Tuition takes

place online in the FTA virtual campus and is performed by teaching

staff from the partner universities. Credits obtained in the FTA

programme are recognised by these universities.

Who is behind the FTA?
e FTA was initiated in 2008 supported by the Life Long Learning

Programme (LLP) of the European Commission, under the coordination

of the Free Knowledge Institute and in partnership with three european

universities: Open Universiteit Nederland (e Netherlands), Universitat

Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
e Free Technology Academy is specially oriented to IT professionals,

educators, students and decision makers.

What about the licensing?
All learning materials used in and developed by the FTA are Open

Educational Resources, published under copyleft free licenses that allow

them to be freely used, modified and redistributed. Similarly, the

software used in the FTA virtual campus is Free Software and is built

upon an Open Standards framework.

Preface

Evolution of this book
e FTA has reused existing course materials from the Universitat

Oberta de Catalunya and that had been developed together with

LibreSoft staff from the Universidad Rey Juan Carlos. In 2008 this book

was translated into English with the help of the SELF (Science,

Education and Learning in Freedom) Project, supported by the

European Commission's Sixth Framework Programme. In 2009, this

material has been improved by the Free Technology Academy.

Additionally the FTA has developed a study guide and learning activities

which are available for learners enrolled in the FTA Campus.

Participation
Users of FTA learning materials are encouraged to provide feedback and

make suggestions for improvement. A specific space for this feedback is

set up on the FTA website. ese inputs will be taken into account for

next versions. Moreover, the FTA welcomes anyone to use and distribute

this material as well as to make new versions and translations.

See for specific and updated information about the book, including

translations and other formats: http://ftacademy.org/materials/fsm/1. For

more information and enrolment in the FTA online course programme,

please visit the Academy's website: http://ftacademy.org/.

I sincerely hope this course book helps you in your personal learning

process and helps you to help others in theirs. I look forward to see you

in the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens
President of the Free Knowledge Institute

Director of the Free technology Academy

Acknowledgenments

e authors wish to thank the Fundació per a la

Universitat Oberta de Catalunya (http://www.uoc.edu)

for financing the first edition of this work under the

framework of the International Master's degree in Free

Software offered by this institution.

e current version of these materials in English has

been extended with the funding of the Free Technology

Academy (FTA) project. e FTA project has been

funded with support from the European Commission

(reference no. 142706- LLP-1-2008-1-NL-ERASMUS-

EVC of the Lifelong Learning Programme). is

publication reflects the views only of the authors, and the

Commission cannot be held responsible for any use

which may be made of the information contained

therein.

��������������������� � ���

��������

��������

��������������������������������

������������

�� ����������������������������

�� ������������������������������

�� ���������������������������

��������

�������������������

������������

�� �������������������������

�� �������������

�� �������������������������������

�� ����������������������������������

��������

���������������

������������

�� ����������

�� �������������

�� ������������

�� ����������

�� ��

��������

���������������������������

������������

�� �������������������

�� ���

�� ������������������������������

�� ���������������������

�� ��

������������������������������������

��������

���������������

��

�� ���

�� ���

�� ���������������������

�� �����������������������������

�� ���

��������������������� � ���

��������

���������������������

��

�� �������������������������

�� �������������������������

�� ���������������������

�� ���

�� ������������

�� ��������

�� ��������������������������

��������

������������

��

�� ����������������������������

�� �������

�� ����

�� �������������

�� ��������

��������

�������������������

��

�� ����������������������������

�� ��������������������������

�� ���������������������������������������

�� ��������������������

��������

�����������������������

��

�� ����������������������������

�� ����������������������������

�� ��������������������

�����

Introduction to
web applications

Carles Mateu

PID_00148404

GNUFDL • PID_00148404 Introduction to web applications

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148404 Introduction to web applications

Index

1. Introduction to the Internet.. 5

2. The WWW as an Internet service.. 7

2.1. A brief history of the WWW .. 7

2.2. Web basics ... 7

2.2.1. HTTP .. 8

2.2.2. HTML language ... 12

3. History of web applications... 14

Bibliography... 17

GNUFDL • PID_00148404 5 Introduction to web applications

1. Introduction to the Internet

Internet, the network of networks, came about in the mid-1970s under

the auspices of DARPA, the United States Defense Advanced Research

Projects Agency. DARPA launched a research programme into techniques

and technologies to connect several packet switching networks that would

allow the computers connected in these networks to communicate with

one another easily and transparently. These projects led to the birth of a

data communication protocol called IP, the Internet Protocol, which allowed

several computers to communicate through a network, the Internet, formed

by the interconnection of several networks.

In the mid-1980s, the United States National Science Foundation created

a network called NSFNET, which became the backbone of the Internet in

conjunction with similar networks created by NASA (NSINet) and the US DoE

or Department of Energy (ESNET). In Europe, most countries had national

backbones (NORDUNET, RedIRIS, SWITCH, etc.) and a series of pan-European

initiatives sprang up too (EARN and RARE). It was around this time that the

first private Internet providers emerged, offering paid access to the Internet.

From this point on, due in part to the wide availability of implementations of

the suite of TCP/IP protocols (consisting of all Internet protocols, rather than

just TCP and IP), some of which were open source, the Internet began what

would subsequently become one of its basic features, an exponential growth

that only began to decline slightly in mid-2002.

The mid-1990s saw the Internet boom and it was around this time that the

number of private Internet access providers rocketed, allowing millions to

connect to the Internet, which was coming to be known as the Net, overtaking

all existing communication networks (Compuserve, FidoNet/BBS etc). The

turning point came with the emergence of free TCP/IP implementations

(including those forming part of the operating system) and the popularisation

and falling price of increasingly faster means of access (faster modems, ISDN,

ADSL, cable, satellites). All of these changes led to a snowball effect whereby

the more users that connected, the more costs fell, the more providers that

emerged and the more attractive and economical the Internet became, which

meant that more and more users began connecting, etc.

Nowadays, having an e-mail address, web access etc. is considered normal

in many countries around the world and is not regarded as the latest thing.

Businesses, institutions, governments, etc. are quickly migrating all of their

services, applications, stores, etc. to a web environment that will allow

GNUFDL • PID_00148404 6 Introduction to web applications

their customers and users access to all this from the Internet. Despite the

slight slowdown in its growth rate, the Internet is set to become a universal

communications service that allows universal communication.

GNUFDL • PID_00148404 7 Introduction to web applications

2. The WWW as an Internet service

The WWW (World Wide Web) or Web as it is informally known, has, together

with e-mail, become the warhorse of the Internet. The Web has evolved from

an immense "library" of static pages into a service offering access to multiple

features and functions, an infinite number of services, programs, stores, etc.

2.1. A brief history of the WWW

In 1989, while working at CERN, the European Organization for Nuclear

Research, Tim Berners-Lee began to design a system for easy access to CERN's

information. This system used hypertext to structure a network of links

between documents. After obtaining approval to continue with the project,

the first web browser was born, christened WorldWideWeb (without spaces).

By 1992, the system had extended beyond the walls of CERN and there were

now considerably more "stable" servers: 26 Growth was now dramatic and

by 1993 the Web was being mentioned in the New York Times. This was the

year that Mosaic was launched, an X-Window/Unix browser that later became

known as Netscape, a key factor in the popularisation of the Web. In 1994,

the WWW Consortium was set up as the catalyst for the development of the

prevailing standards on the Web (http://www.w3c.org). Its growth was now

unstoppable and by the end of the 1990s, it had become the insignia service

of the Internet, giving rise to the continuous growth of the online services

that we know today.

2.2. Web basics

The amazing success of the Web is down to two basic features: HTTP

protocol and HTML language. The first allows straightforward and easy

implementation of a communications system so that any type of file can be

easily sent, simplifying the operation of the server, allowing low-power servers

to deal with thousands of requests and cutting deployment costs. The second

feature provides an easy and straightforward mechanism for composing linked

pages that is also highly efficient and very user-friendly.

GNUFDL • PID_00148404 8 Introduction to web applications

2.2.1. HTTP

HTTP (Hypertext Transfer Protocol) is the basic protocol of the WWW.

It is a straightforward, connection-oriented protocol without state. It is a

connection-oriented protocol because it requires a communications protocol

(TCP, Transmission Control Protocol) in connected mode, a protocol that

establishes an end-to-end communication channel (between client and server)

along which the bytes constituting the data to be transferred pass, in contrast

to datagram or non-connection-oriented protocols, which divide data into

small packages (datagrams) before sending them in different ways to the client

from the server. The protocol does not maintain state, i.e. each data transfer

is an independent connection separate from the previous one and there is no

relationship between them. This is true to the point that, when we want to

send a Web page, we need to send the HTML code of the text and the images

it contains, since the initial HTTP specification, 1.0, opened and used as many

connections as there were page components, transferring one component for

each connection (the text of the page or each image).

Supplementary content

HTTP uses port 80 (equivalent
in a way to the TCP service or
connection identifier) for all
default connections (we can
use other ports besides 80).

There is a HTTP variant called HTTPS (S for secure) that uses the SSL

(Secure Socket Layer) security protocol to encrypt and authenticate traffic

between the client and the server. This is frequently used by e-commerce Web

servers or for personal or confidential information.

The schematic operation of HTTP is as follows: the client sets up a TCP

connection to the server, to the HTTP port (or that indicated in the address of

the connection), it sends a HTTP resource request command (along with some

informative headers) and the server responds through the same connection

with the requested data and a series of informative headers.

The protocol also defines how to encrypt the passing of parameters

between pages, tunnelling connections (for firewall systems), the existence of

intermediate cache servers, etc.

Supplementary content

HTTPS uses port 443 by
default.

GNUFDL • PID_00148404 9 Introduction to web applications

The request for information directives defined by HTTP 1.1 (the version

deemed stable and in use) are:

GET Request for resource.

POST Request for resource by passing parameters.

HEAD Request for data on resource.

PUT Creation or sending of resource.

DELETE Deletion of resource.

TRACE Echoes back the request just as it was received on the receiver for

debugging.

OPTIONS Used to check server capacity.

CONNECT Reserved for use on intermediate servers that can operate as

tunnels.

We will now look at some of these commands in detail as they are essential

for the development of Web applications.

All resources to be served through HTTP must be referenced with a URL

(Universal Resource Locator).

HTTP�requests:�GET�and�POST

In HTTP, requests can be made using one of two methods. If sending

parameters with the request, GET will send them encrypted in the URL. The

POST method will send parameters as part of the body of the request if sending

them.

GET requests use the following format:

GET /index.html HTTP/1.1

Host: www.example.com

User-Agent: Mozilla/4.5 [en]

Accept: image/gif, image/jpeg, text/html

Accept-language: en

Accept-Charset: iso-8859-1

We can see that this is made up of:

1) Request�line: contains the requested resource.

2) Request�header: contains additional information about the client.

3) Request� body: in POST and PUT requests, among others, it contains

additional information.

Request�line

The request line contains the following elements:

GNUFDL • PID_00148404 10 Introduction to web applications

1) Method: name of HTTP method called (GET, POST, etc.).

2) Resource� identifier: URL (Uniform Resource Locator) of the requested

resource.

3) Protocol�version: protocol version requested for the response.

Request�header

Contains additional information to help the server (or intermediate servers,

proxies and caches) to process the request correctly. The information is

provided as:

Some of these identifiers, the most well-known and important being:

Host: name of requested server.

User-Agent: name of browser or program used to access the resource.

Accept: some text and image formats accepted by the client.

Accept-Language: languages supported (preferred) by the client, useful for

automatically personalising the response.

Request�parameters

A HTTP request can also contain parameters, for instance, as a response to

a registration form, the selection of a product in an online store, etc. These

parameters can be passed in two ways:

• As part of the request chain encrypted as part of the URL

• As extra request data

To encrypt parameters as part of the URL, they are added to the URL after

the name of the resource, separated from the latter by the character ?. The

different parameters are separated from one another by the character &. Spaces

are replaced by +. And special characters (those mentioned above &, +�¡�? and

non-printing characters, etc.) are represented by %xx where xx represents the

hexadecimal ASCII code of the character.

For example:

http://www.example.com/Index.jsp?name=Mr+Nobody&OK=l

In the HTTP request, this would end up as:

GET /index.jsp?name=Mr+Nobody&OK=l HTTP/1.0

Host: www.example.com

User-Agent: Mozilla/4.5 [en]

Accept: image/gif, image/jpeg, text/html

GNUFDL • PID_00148404 11 Introduction to web applications

Accept-language: en

Accept-Charset: iso-8859-1

To pass the parameters as extra request data, they are sent to the server as the

message body of the request. For example, the above request would look like

this:

POST /index.jsp HTTP/1.0

Host: www.example.com

User-Agent: Mozilla/4.5 [en]

Accept: image/gif, image/jpeg, text/html

Accept-language: en

Accept-Charset: iso-8859-1

name=Mr+Nobody&OK=l

Note that to pass the parameters as the body of the request, the POST method

rather than GET needs to be used, although POST requests can also carry

parameters in the request line. Parameters passed as the body of the request

are encrypted, as in the previous example, in the URL or they can use an

encryption deriving from MIME [Multipurpose Internet Mail Extensions)

format known as multipart encryption.

The previous request in multipart format would be:

POST /index.jsp HTTP/1.0

Host: www.example.com

User-Agent: Mozilla/4.5 [en]

Accept: image/gif, image/jpeg, text/html

Accept-language: en

Accept-Charset: iso-8859-1

Content-Type: multipart/form-data,

 delimiter="----RANDOM----"

----RANDOM----

Content-Disposition: form-data; name="name"

Mr Nobody

----RANDOM----

Content-Disposition: form-data; name="OK"

1

----RANDOM------

This encryption is exclusive to the POST method and used when sending files

to the server.

GNUFDL • PID_00148404 12 Introduction to web applications

HTTP�responses

Responses in HTTP are very similar to requests. A W3C recommendation

response to a request from a page would look something like this:

HTTP/1.1 200 OK

Date: Mon, 04 Aug 2003 15:19:10 GMT

Server: Apache/2.0.40 (Red Hat Linux)

Last-Modified: Tue, 25 Mar 2003 08:52:53 GMT

Accept-Ranges: bytes

Content-Length: 428

Connection: close <HTML>

...

Here, we see that the first line responds with the version of the protocol used

to send us the page followed by a return code and a return phrase. The return

code can take one of the following values:

• 1xx Request received, still in process.

• 2xx Correct. Request processed correctly.

• 3xx Redirection. The request must be repeated or redirected.

• 4xx Client error. The request cannot be processed because it is incorrect,

does not exist, etc.

• 5xx Server error. The server has failed trying to process the request, which

is theoretically correct.

The return phrase will depend on the implementation but is only used to

clarify the return code.

After the status, we find a series of control fields in the same format as the

headers of the request telling us the contents (creation date, length, server

version etc). The requested contents then follow.

2.2.2. HTML language

The other basic factor in the success of the WWW is HTML (Hypertext Markup

Language). This is a markup language (marks are inserted in the text) allowing

us to represent rich content and to reference other resources (images, etc.),

links to other documents (the most common feature of the WWW), display

forms for subsequent processing etc.

HTML is currently in version 4.01 and is starting to offer advanced features for

creating pages with richer contents. A specification compatible with HTML,

XHTML (Extensible Hypertext Markup Language) has also been created, which

GNUFDL • PID_00148404 13 Introduction to web applications

is usually defined as a validatable XML version of HTML, providing us with

an XML Schema that can be used to validate the document to check that it

is formed properly, etc.

GNUFDL • PID_00148404 14 Introduction to web applications

3. History of web applications

Originally, the Web was simply a collection of static pages, documents, etc.

that could be consulted and/or downloaded.

The next step in its evolution was the inclusion of a method to make dynamic

pages allowing the displayed contents to be dynamic (generated or calculated

from request data). This method was known as CGI (Common Gateway

Interface) and defined a mechanism by which information could be passed

between the HTTP server and external programs. CGIs are still widely used

because they are straightforward and most web servers support them. They

also give us complete freedom in choosing the programming language to

develop them.

The operating schema of CGIs had a weak point: every time we received

a request, the web server launched a process to run the CGI program. In

addition, because most CGIs were written in an interpreted language (PERL,

Python etc.) or a language that required run-time environment (VisualBasic,

Java, etc.), it represented a heavy load for the server machine, if the web had

several CGI accesses, this led to serious problems.

Hence, alternatives to CGIs began to be developed to solve this serious

performance issue. Two main solutions were devised. Firstly, systems were

designed for executing modules that were more integrated with the server so

as to prevent the latter from having to instantiate and execute a multitude

of programs. The other solution was to equip the server with a programming

language interpreter (RXML, PHP, VBScript, etc.) allowing us to include the

pages in the code so that the server could execute them, thus cutting down

response time.

It was then that the number of architectures and programming languages

allowing us to develop web applications skyrocketed. All used one of the

above two solutions but the most common and widespread were those that

combined the two, i.e. an integrated programming language allowing the

server to interpret commands that we "embed" in HTML pages and a system

for executing programs more closely linked with the server that does not have

the performance problems of CGIs.

During this course, we will look in more detail at perhaps the most successful

and powerful of these approaches, the one used by Sun Microsystems in its

Java system, integrated by two components: a language allowing us to embed

interpretable code in HTML pages, which the server translates to executable

GNUFDL • PID_00148404 15 Introduction to web applications

programs, JSP (Java Server Pages) and a programming mechanism closely

linked to the server with a performance far superior to conventional CGIs,

called Java Servlet.

Another of the more successful technologies widely used on the Internet is the

programming language interpreted by the PHP server. This language allows us

to embed HTML in programs, with syntax from C and PERL and which, with

its ease of learning, simplicity and power, is becoming a very widespread tool

in some developments.

Other Web application programming methods also have their market,

including moc_perl for Apache, RXML for Roxen, etc., but many are closely

related to a specific web server.

GNUFDL • PID_00148404 17 Introduction to web applications

Bibliography

Goodman, D. (1998). Dynamic HTML. The Definitive Reference. O'Reilly.

Musciano, C.; Kennedy, B. (2000). HTML & XHTML: The Definitive Guide. O'Reilly.

Raggett, D.; Lam, J.; Alexander, I.; Kmiec, M. (1998). Raggett on
HTML 4. Addison Wesley Longman Limited. Chapter 2 available online
at:http://www.w3.org/People/Raggett/book4/ch02.html.

Rosenfeld, L.; Morville, P. (1998). Information Architecture for the World Wide Web. O'Reilly.

World Wide Web (W3) Consortium (2003).http://www.w3.org/Consortium/. World Wide
Web Consortium.

Annex

PID_00148406

GNUFDL • PID_00148406 Annex

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148406 Annex

Index

Annex B. GNU Free Documentation License...................................... 5

GNUFDL • PID_00148406 5 Annex

1. Annex B. GNU Free Documentation License

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted

to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

B0.1.�Preamble

The purpose of this License is to make a manual, textbook, or other functional

and useful document free in the sense of freedom: to assure everyone the

effective freedom to copy and redistribute it, with or without modifying it,

either commercially or noncommercially. Secondarily, this License preserves

for the author and publisher a way to get credit for their work, while not being

considered responsible for modifications made by others.

This License is a kind of copyleft which means that derivative works of the

document must themselves be free in the same sense. It complements the

GNU General Public License, which is a copyleft license designed for free

software.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come

with manuals providing the same freedoms that the software does. But this

License is not limited to software manuals; it can be used for any textual work,

regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction

or reference.

B.2.�Applicability�and�definitions

This License applies to any manual or other work, in any medium, that

contains a notice placed by the copyright holder saying it can be distributed

under the terms of this License. Such a notice grants a worldwide, royaltyfree

license, unlimited in duration, to use that work under the conditions stated

herein. The Document below refers to any such manual or work. Any member

of the public is a licensee, and is addressed as you You accept the license if

you copy, modify or distribute the work in a way requiring permission under

copyright law.

A Modified Version of the Document means any work containing the Document

or aportion of it, either copied verbatim, or with modifications and/or

translated into another language.

GNUFDL • PID_00148406 6 Annex

A Secondary Section is a named appendix or a front-matter section of the

Document that deals exclusively with the relationship of the publishers or

authors of the Document to the Document's overall subject (or to related

matters) and contains nothing that could fall directly within that overall

subject. (Thus, if the Document is in part a textbook of mathematics, a

Secondary Section may not explain any mathematics.) The relationship could

be a matter of historical connection with the subject or with related matters,

or of legal, commercial, philosophical, ethical or political position regarding

them.

The Invariant Sections are certain Secondary Sections whose titles are

designated, as being those of Invariant Sections, in the notice that says that

the Document is released under this License. If a section does not fit the above

definition of Secondary then it is not allowed to be designated as Invariant.

The Document may contain zero Invariant Sections. If the Document does

not identify any Invariant Sections then there are none.

The Cover Texts are certain short passages of text that are listed, as Front-Cover

Texts or Back-Cover Texts, in the notice that says that the Document is

released under this License. A FrontCover Text may be at most 5 words, and

a BackCover Text may be at most 25 words.

A Transparent copy of the Document means a machine-readable copy,

represented in a format whose specification is available to the general public,

that is suitable for revising the document straightforwardly with generic text

editors or (for images composed of pixels) generic paint programs or (for

drawings) some widely available drawing editor, and that is suitable for input

to text formatters or for automatic translation to a variety of formats suitable

for input to text formatters. A copy made in an otherwise Transparent file

format whose markup, or absence of markup, has been arranged to thwart or

discourage subsequent modification by readers is not Transparent. An image

format is not Transparent if used for any substantial amount of text. A copy

that is not Transparent is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII

without markup, Texinfo input format, LaTeX input format, SGML or

XML using a publicly available DTD, and standardconforming simple

HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by proprietary

word processors, SGML or XML for which the DTD and/or processing tools

are not generally available, and the machinegenerated HTML, PostScript or

PDF produced by some word processors for output purposes only.

GNUFDL • PID_00148406 7 Annex

The Title Page means, for a printed book, the title page itself, plus such

following pages as are needed to hold, legibly, the material this License

requires to appear in the title page. For works in formats which do not have

any title page as such,Title Page means the text near the most prominent

appearance of the work's title, preceding the beginning of the body of the text.

A section Entitled XYZ means a named subunit of the Document whose title

either is precisely XYZ or contains XYZ in parentheses following text that

translates XYZ in another language. (Here XYZ stands for a specific section

name mentioned below, such as Acknowledgements, Dedications, Endorsements,

or History. To Preserve the Title of such a section when you modify the

Document means that it remains a section Entitled XYZ according to this

definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty Disclaimers

are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers

may have is void and has no effect on the meaning of this License.

B.3.�Verbatim�copying

You may copy and distribute the Document in any medium, either

commercially or noncommercially, provided that this License, the copyright

notices, and the license notice saying this License applies to the Document

are reproduced in all copies, and that you add no other conditions whatsoever

to those of this License. You may not use technical measures to obstruct

or control the reading or further copying of the copies you make or

distribute. However, you may accept compensation in exchange for copies.

If you distribute a large enough number of copies you must also follow the

conditions in section 3.

You may also lend copies, under the same conditions stated above, and you

may publicly display copies.

B.4.�Copying�in�quantity

If you publish printed copies (or copies in media that commonly have printed

covers) of the Document, numbering more than 100, and the Document's

license notice requires Cover Texts, you must enclose the copies in covers that

carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front

cover, and Back-Cover Texts on the back cover. Both covers must also clearly

and legibly identify you as the publisher of these copies. The front cover must

present the full title with all words of the title equally prominent and visible.

GNUFDL • PID_00148406 8 Annex

You may add other material on the covers in addition. Copying with changes

limited to the covers, as long as they preserve the title of the Document and

satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you

should put the first ones listed (as many as fit reasonably) on the actual cover,

and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering

more than 100, you must either include a machine-readable Transparent

copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using public

has access to download using public-standard network protocols a complete

Transparent copy of the Document, free of added material. If you use the latter

option, you must take reasonably prudent steps, when you begin distribution

of Opaque copies in quantity, to ensure that this Transparent copy will remain

thus accessible at the stated location until at least one year after the last time

you distribute an Opaque copy (directly or through your agents or retailers)

of that edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance

to provide you with an updated version of the Document.

B.5.�Modifications

You may copy and distribute a Modified Version of the Document under the

conditions of sections 2 and 3 above, provided that you release the Modified

Version under precisely this License, with the Modified Version filling the

role of the Document, thus licensing distribution and modification of the

Modified Version to whoever possesses a copy of it. In addition, you must do

these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that

of the Document, and from those of previous versions (which should, if there

were any, be listed in the History section of the Document). You may use the

same title as a previous version if the original publisher of that version gives

permission.

B. List on the Title Page, as authors, one or more persons or entities responsible

for authorship of the modifications in the Modified Version, together with at

least five of the principal authors of the Document (all of its principal authors,

if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,

as the publisher.

GNUFDL • PID_00148406 9 Annex

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,

in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and

required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled History. Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified

Version as given on the Title Page. If there is no section Entitled History in

the Document, create one stating the title, year, authors, and publisher of the

Document as given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public

access to a Transparent copy of the Document, and likewise the network

locations given in the Document for previous versions it was based on. These

may be placed in the History section. You may omit a network location for a

work that was published at least four years before the Document itself, or if

the original publisher of the version it refers to gives permission.

K. For any section Entitled Acknowledgements or Dedications Preserve the Title

of the section, and preserve in the section all the substance and tone of each

of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text

and in their titles. Section numbers or the equivalent are not considered part

of the section titles.

M. Delete any section Entitled Endorsements Such a section may not be

included in the Modified Version.

N. Do not retitle any existing section to be Entitled Endorsements or to conflict

in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices

that qualify as Secondary Sections and contain no material copied from the

Document, you may at your option designate some or all of these sections as

GNUFDL • PID_00148406 10 Annex

invariant. To do this, add their titles to the list of Invariant Sections in the

Modified Version's license notice. These titles must be distinct from any other

section titles.

You may add a section Entitled Endorsements, provided it contains nothing

but endorsements of your Modified Version by various parties--for example,

statements of peer review or that the text has been approved by an

organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts

in the Modified Version. Only one passage of Front-Cover Text and one of

Back-Cover Text may be added by (or through arrangements made by) any

one entity. If the Document already includes a cover text for the same cover,

previously added by you or by arrangement made by the same entity you are

acting on behalf of, you may not add another; but you may replace the old

one, on explicit permission from the previous publisher that added the old

one.

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or imply

endorsement of any Modified Version.

B.6.�Combining�documents

You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified versions,

provided that you include in the combination all of the Invariant Sections

of all of the original documents, unmodified, and list them all as Invariant

Sections of your combined work in its license notice, and that you preserve

all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple

identical Invariant Sections may be replaced with a single copy. If there are

multiple Invariant Sections with the same name but different contents, make

the title of each such section unique by adding at the end of it, in parentheses,

the name of the original author or publisher of that section if known, or else

a unique number. Make the same adjustment to the section titles in the list of

Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled History in the

various original documents, forming one section Entitled History; likewise

combine any sections Entitled Acknowledgements, and any sections Entitled

Dedications. You must delete all sections Entitled Endorsements.

B.7.�Collections�of�documents

GNUFDL • PID_00148406 11 Annex

You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License

in the various documents with a single copy that is included in the collection,

provided that you follow the rules of this License for verbatim copying of each

of the documents in all other respects.

You may extract a single document from such a collection, and distribute it

individually under this License, provided you insert a copy of this License into

the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

B.8.�Aggregation�with�independent�works

A compilation of the Document or its derivatives with other separate and

independent documents or works, in or on a volume of a storage or

distribution medium, is called an aggregate if the copyright resulting from the

compilation is not used to limit the legal rights of the compilation's users

beyond what the individual works permit. When the Document is included in

an aggregate, this License does not apply to the other works in the aggregate

which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of

the Document, then if the Document is less than one half of the entire

aggregate, the Document's Cover Texts may be placed on covers that bracket

the Document within the aggregate, or the electronic equivalent of covers if

the Document is in electronic form. Otherwise they must appear on printed

covers that bracket the whole aggregate.

B.9.�Translation

Translation is considered a kind of modification, so you may distribute

translations of the Document under the terms of section 4. Replacing

Invariant Sections with translations requires special permission from their

copyright holders, but you may include translations of some or all Invariant

Sections in addition to the original versions of these Invariant Sections. You

may include a translation of this License, and all the license notices in the

Document, and any Warranty Disclaimers, provided that you also include

the original English version of this License and the original versions of those

notices and disclaimers. In case of a disagreement between the translation

and the original version of this License or a notice or disclaimer, the original

version will prevail.

If a section in the Document is Entitled Acknowledgements, Dedications, or

History, the requirement (section 4) to Preserve its Title (section 1) will

typically require changing the actual title.

GNUFDL • PID_00148406 12 Annex

B.10.�Termination

You may not copy, modify, sublicense, or distribute the Document except

as expressly provided for under this License. Any other attempt to copy,

modify, sublicense or distribute the Document is void, and will automatically

terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

B.11.�Future�revisions�of�this�License

The Free Software Foundation may publish new, revised versions of the GNU

Free Documentation License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address new

problems or concerns. Seehttp://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the

Document specifies that a particular numbered version of this License or any

later version applies to it, you have the option of following the terms and

conditions either of that specified version or of any later version that has been

published (not as a draft) by the Free Software Foundation. If the Document

does not specify a version number of this License, you may choose any version

ever published (not as a draft) by the Free Software Foundation.

B.12.�Addendum:�How�to�use�this�License�for�your�documents

To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices

just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy,

distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version published by

the Free Software Foundation; with no Invariant Sections, no Front-Cover

Texts, and no Back-Cover Texts. A copy of the license is included in the

section entitled GNU Free Documentation License

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the with...Texts. line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

FrontCover Texts being LIST, and with the BackCover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other

combination of the three, merge those two alternatives to suit the situation.

GNUFDL • PID_00148406 13 Annex

If your document contains nontrivial examples of program code, we

recommend releasing these examples in parallel under your choice of free

software license, such as the GNU General Public License, to permit their use

in free software.

Server installation

Carles Mateu

PID_00148400

GNUFDL • PID_00148400 Server installation

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148400 Server installation

Index

1. Basic web server concepts... 5

1.1. Static file service ... 5

1.2. Security and authentication ... 6

1.3. Dynamic content .. 7

1.4. Virtual servers .. 7

1.5. Extra features ... 7

1.6. Acting as representatives ... 8

1.7. Additional protocols ... 9

2. Apache server.. 10

2.1. The birth of Apache .. 10

2.2. Installing Apache .. 11

2.2.1. Compiling from source ... 11

2.2.2. Installation with binary packages 12

2.3. Configuring Apache .. 13

2.3.1. Configuration file structure ... 13

2.3.2. Global configuration directives 15

2.3.3. Main directives .. 15

2.3.4. Section directives ... 17

2.3.5. Virtual servers .. 18

3. Other free software web servers.. 21

3.1. AOLServer .. 21

3.2. Roxen and Caudium ... 21

3.3. thttpd ... 22

3.4. Jetty .. 23

4. Practical: installing a web server... 24

4.1. Exercise .. 24

4.2. Solution ... 24

Bibliography... 27

GNUFDL • PID_00148400 5 Server installation

1. Basic web server concepts

A web server is a program that deals with and responds to the diverse requests

performed by browsers, providing the requested resources through HTTP or

HTTPS protocol (the secure, encrypted and authenticated version of HTTP). A

basic web server has a very straightforward schema of operation that executes

the following loop infinitely:

1) It waits for requests on the assigned TCP port (the W3C recommendation

port for HTTP is 80).

2) It receives a request.

3) It looks for the resource in the request string.

4) It sends the resource by the same connection through which it received

the request.

5) It returns to step 2.

A web server following the above steps would meet the basic requirements of

HTTP servers but could only serve static files.

The above schema is the basis for the design and building of all existing HTTP

server programs, which vary only in the type of request (static pages, CGI,

Servlets etc.) that they can serve depending on whether they are multi-process,

multi-threaded, etc. We will now look in detail at some of the main features

of web servers, which obviously expand on the above schema.

1.1. Static file service

All web servers must at least be able to serve the static files located on a specific

part of the disc. One essential requirement is to be able to specify which part

of the disc will be served. We do not recommend having the server force you

to use a specific directory (although you can set up a default one).

Most web servers also allow you to add other directories to be served,

specifying the point of the virtual "file system" on the server where they will

be located.

For example, we can have the following situation:

Disc directory Web directory

/home/apache/html
/home/company/docs
/home/joseph/report

/
/docs
/report-2003

GNUFDL • PID_00148400 6 Server installation

In this case, the server should translate the following web addresses as:

URL Disc file

/index.html
/docs/manuals/product.pdf
/company/who.html
/report-2003/index.html

/home/apache/html/index.html
/home/company/docs/manuals/product.pdf/
/home/apache/html/company/who.html
/home/joseph/report/index.html

Some web servers also allow us to specify security directives (for instance, the

addresses, users, etc. for which a directory will be visible). Others allow us to

specify which files will be considered the directory index.

1.2. Security and authentication

Most modern web servers allow us to control security and user authentication

from the server program.

The simplest method of control is with the use of .htaccess files. This security

system is derived from one of the first web servers (NCSA httpd) and involves

placing a file called .htaccess in any web content directory to be served. In

this file, we indicate which users, machines, etc. have access to the files and

subdirectories of the directory in which the file is located. As the NCSA server

was the most widespread server for a long time, most modern servers allow

use of .htaccess files respecting the syntax of the NCSA server.

Others allow us to specify service rules for directories and files in the web

server configuration, specifying in the latter the users, machines, etc. that can

access the indicated resource.

As for authentication (validation of the username and password provided by

the client), web servers offer a wide variety of features. At the very least, most

allow us to provide the web server with a file containing the usernames and

passwords to validate those sent by the client. In all events, it is common for

servers to provide gateways allowing us to delegate the tasks of authentication

and validation to different software (such as RADIUS, LDAP etc). If we use an

operating system like Linux, which has an authentication infrastructure like

PAM (Pluggable Authentication Modules), we can use this feature as a way to

authenticate the web server. This enables us to use the many methods available

in PAM to authenticate against diverse security systems.

GNUFDL • PID_00148400 7 Server installation

1.3. Dynamic content

One of the most important aspects of the chosen web server is the level of

support offered for serving dynamic content. Since most served web content

is generated dynamically rather than coming from static pages, and this is a

spiralling trend, the web server's support for dynamic content is one of the

most critical factors to take into account when making your choice.

Most web servers offer CGI support (remember that CGIs are the oldest and

most straightforward method of generating dynamic content). Many offer

support for certain programming languages (basically interpreted), such as

PHP, JSP, ASP, Pike, etc. We strongly recommend that the web server you

use provides support for one of these languages (the most widespread being

PHP), without taking into account JSP, which usually requires external web

server software to work (such as a servlet container). There are many products

available in this area but one basic consideration to bear in mind when

choosing a server programming language is whether you want a very W3C

standardised language so that your application will not need to depend on a

specific web server or architecture, or whether portability is not a priority and,

in contrast, the features of a given programming language are.

1.4. Virtual servers

One feature that is fast gaining supporters and users, particularly among

Internet service providers and domain hosting companies, is the ability of

some web servers to provide multiple domains with a single IP address,

discriminating between the various hosted domains by the name of the

domain sent in the header of the HTTP request. This feature allows for a more

rational and economical administration of IP addresses, a resource in short

supply.

If we require several server names (perhaps because we offer hosting or for

some other reason), we need to make sure that the chosen web server provides

these features and that the virtual server support allows us to use a different

configuration for each server (directories, users, security etc). Ideally, each

server will behave as though it were a different computer.

1.5. Extra features

Web servers offer many extra features to set themselves apart from the

competition. Some are very useful and may influence our choice of web server.

However, be aware that if you use any of these characteristics or they become

essential for you, you could be forced to use a certain web server even though

you may wish to change at some point in the future.

GNUFDL • PID_00148400 8 Server installation

Some of the additional features of open source web servers include the

following.

Spelling (Apache), this feature of Apache is used to define an error page for

resources not found. It suggests similar names of resources to that requested

by users in case they made a typing error.

Status (Apache), displays a Web page generated by the server displaying its

operating status, response level, etc.

RXML�Tags (Roxen), adds certain tags to HTML (HTML commands), improved

for programming and generating dynamic content.

SQL�Tags (Roxen), adds Roxen extended HTML (RXML) commands for access

to SQL databases from the HTML pages.

Graphics (Roxen), adds Roxen extended HTML (RXML) commands to

generate graphics, titles, etc., thus omitting the need for graphic design work.

bfnsgd (AOLServer), mod_gd (Apache), enables graphics to be produced from

text and True Type fonts.

mod_mp3 (Apache) ICECAST,�MPEG (Roxen), allows us to convert the web

server into a music server (with streaming etc).

Throttle (Roxen), mod_throttle (Apache), offers means for limiting HTTP

service speed, whether by the user, virtual server, etc.

nsxml (AOLServer), tDOM (AOLServer), mod_xslt (Apache), allows us to

transform XML files using XSL.

Kill�Frame (Roxen), sends a code with each served web page to stop the web

from turning into a frameinside another web page.

1.6. Acting as representatives

Some web servers can be used as intermediate servers (proxy servers).

Intermediate servers can be used for a range of purposes:

• As browsing accelerators for our users (use as proxy cache).

• As front-end accelerators for a web server. Using several web servers

to replicate access to a master server (reverse proxy or HTTP server

acceleration).

• As frontals for a server or protocol.

GNUFDL • PID_00148400 9 Server installation

Some web servers can be used as intermediate servers for some of the

above uses. Nonetheless, for the first two (browser or front-end accelerators),

there are much more efficient specific free software programs, such as Squid

(http://www.squid-cache.org/) which is considered one of the best proxy

products available.

There are modules for diverse web servers that can be used as front-ends for

other servers specialising in another type of service. For instance, Tomcat

is an execution engine for servlets and JSP, and incorporates a small HTTP

server to deal with static content requests and to redirect the rest to the

servlet execution engine (web application development mechanisms, servlets

and JSPs), but besides including a web server, Apache is the web server par

excellence for use with Tomcat. Thus, there is an Apache module that links

up with Tomcat (this module is called mod_jk2).

1.7. Additional protocols

Besides dealing with and serving HTTP (and HTTPS) requests, some servers can

deal with and serve requests from other protocols or protocols implemented

on HTTP. Some of these can become basic requirements of our system. Hence,

their existence on the web server can be essential.

GNUFDL • PID_00148400 10 Server installation

2. Apache server

Apache is a robust, free software web server implemented through a

collaborative effort that offers equivalent features and functionality to

commercial servers. The project is supervised and led by a group of volunteers

from all over the world who use the Internet and web to communicate, plan

and develop the server and its related documentation. These volunteers are

known as Apache Group. In addition to Apache Group, hundreds of people

have contributed to the project with code, ideas and documentation.

2.1. The birth of Apache

In February 1995, the most popular Internet web server was a public domain

server developed at NCSA (National Center for Supercomputing Applications

of the University of Illinois). However, when Rob McCool (the main developer

of the server) left NCSA in 1994, the program's development was reduced

to virtually nothing. Development then passed into the hands of people in

charge of websites who gradually made improvements to their servers. A group

of these individuals, using e-mail as the basic tool for their coordination,

agreed to share these improvements (in the form of patches). Two of these

developers, Brian Behlendorf and Cliff Skolnick, set up a mailing list, a space

in which to share information and a server in California where the main

developers could work. At the start of the following year, eight programmers

formed what would become known as the Apache Group.

Using the NCSA 1.3 server as a basis for their work, they added all published

error corrections and the most valuable improvements that they came across.

They tested the result on their own servers and published what would be the

first official version of the Apache server (0.6.2, in April 1995). Coincidentally,

around the same time, NCSA resumed development of the NCSA server.

At this point in time, the development of Apache followed two parallel lines:

one by the group of developers working on 0.6.2 to produce the 0.7 series,

incorporate improvements, etc., and another where the code was completely

rewritten to create a new modular architecture. In July 1995, the existing

improvements for Apache 0.7 were migrated to this new architecture, which

was made public as Apache 0.8.

On 1 December 1995, Apache 1.0 appeared, which included documentation

and a number of improvements in the form of embedded modules. Shortly

afterwards, Apache surpassed the NCSA server as the most widely used on the

Internet, a position that it has maintained to this day. In 1999, the members of

GNUFDL • PID_00148400 11 Server installation

the Apache Group founded the Apache Software Foundation, which provides

legal and financial support to the development of the Apache server and the

offshoots of this project.

2.2. Installing Apache

There are two main ways to install Apache: we can either compile the source

code or we can install it from a binary package for our operating system.

2.2.1. Compiling from source

To compile Apache from source code, we must first obtain the latest version

from the Apache site (http://httpd.apache.org). After downloading, you will

need to follow these steps:

Decompress the file you have just downloaded, which will create a directory

in which the server sources will be located.

Once inside this directory, the steps are as follows:

• Configure the code for compilation, for which you will need to execute:

$./configure

There are a number of parameters for adjusting the compilation of Apache.

The most common important of these are:

Parameter Meaning

--prefix
--enable-modules
=LIST-MODULES
--enable-mods-shared
=LIST-MODULES
--enable-cache
--enable-disk-cache
--enable-mem-cache
--enable-mime-magic
--enable-usertrack
--enable-proxy
--enable-proxy-connect
--enable-proxy-ftp
--enable-proxy-http
--enable-ssl
--enable-http
--enable-dav
--disable-cgid
--enable-cgi
--disable-cgi
--enable-cgid
--enable-vhost-alias

Directory where you wish to install Apache
Modules to enable
Shared modules to be enabled
Dynamic cache
Dynamic cache on disc
Cache module in memory
Automatic MIME detection
Monitoring of user session
Apache-proxy module
Apache-proxy module to CONNECT
Apache-proxy module for FTP
HTTP Apache-proxy module
SSL/TLS support (mod_ssl)
HTTP protocol handling
WebDAV protocol handling
Optimised CGI support
CGI support
CGI support
Optimised CGI support
Virtual host support

After configuring the source code, if no errors have been detected, it can now

be compiled. To do so, execute:

GNUFDL • PID_00148400 12 Server installation

$ make

Note that, at the very least, GNU Make and GNU CC are required to compile

Apache.

After compiling, we can install it in the directory designated as the destination

in the previous configuration with configure. This step is carried out using

one of the objectives already defined for make. Specifically, we will use:

$ make install

Once installed in its location, in the bin subdirectory of the installation

directory (the one we specified with prefix), we will find a program called

apachectl, which we can use to control the server. To start it:

$cd <installation directory>/bin

$./apachectl start

To stop it:

$cd <installation directory>/bin

$./apachectl stop

2.2.2. Installation with binary packages

Most free software operating systems, particularly Linux distributions, include

Apache server. However, it is often necessary to install Apache (either because

we did not install it previously, we need a new version or because we need to

reinstall it due to problems with a file).

Instructions for installing Apache on some of the most well known Linux

distributions now follow.

Redhat/Fedora

Redhat and Fedora distributions have included Apache server for some time

now, so the installation process is very straightforward.

From the appropriate server (either redhat.com or fedora.us), download the

Apache binary package (in RPM format). Check that you are downloading the

latest version for your distribution because both Redhat and Fedora publish

updates to fix bugs or problems. Once you have the package, install it with:

rpm -ihv httpd-x.x.x.rpm

If it is already installed, you can upgrade with the command:

GNUFDL • PID_00148400 13 Server installation

rpm -Uhv httpd-x.x.x.rpm

For Fedora, since this distribution uses an apt repository, Apache can be

updated or installed using:

apt-get install httpd

You will also need to install any additional modules, such as:

• mod_auth_*

• mod_python

• mod_jk2

• mod_perl

• mod_ssl

• php

• etc.

Debian

Installing Apache on Debian is very easy. You simply need to execute the

following command:

apt-get install apache

which will install Apache or, if it is already installed, update to the latest

version.

2.3. Configuring Apache

After installing the server, you will need to configure it. By default, Apache

comes with a minimum configuration to boot the server on the default

TCP service port (port 80) and serves all files from the folder specified

by the configuration directive DocumentRoot. Apache's configuration file

is called httpd.conf, and is found in the conf subdirectory of the

installation directory. The httpd.conf file is an ASCII file containing

Apache's configuration directives.

2.3.1. Configuration file structure

The httpd.conf file is divided into three basic sections, although the

directives of each section may seem mixed up and disorganised. These sections

are:

• Global parameters

• Operating directives

• Virtual hosts

GNUFDL • PID_00148400 14 Server installation

Some parameters are general for the server while others can be configured

independently for all directories and/or files or for a specific virtual server.

In these cases, the parameters are located in sections indicating the scope of

application of the parameter.

The most important sections are:

<Directory>: the parameters located in this section will only be applied to

the specified directory and its subdirectories.

<DirectoryMatch>: like Directory, but accepts regular expressions in the

name of the directory.

<Files>: the configuration parameters control access to the files through

their name.

<FilesMatch>: as for Files, but accepts regular expressions in the name of

the file.

<Location>: controls file access through the URL.

<LocationMatch>: as for Location, but accepts regular expressions in the

name of the file.

<VirtualHost>: the parameters only apply to the requests directed to this

host (name of server or IP address or TCP port).

<Proxy>: the parameters only apply to the proxy requests (it therefore

requires mod_proxy to be installed) matching the URL specification.

<ProxyMatch>: like Proxy, but accepts regular expressions in the specified

URL.

<IfDefine>: applied if a specific parameter is defined in the command line

(with the -D option) when booting the server.

<IfModule>: the parameters apply if the specified module is loaded (with

LoadModule).

If there is a conflict between parameter specifications, the order of precedence

is as follows:

1) <Directory> and .htaccess

2) <DirectoryMatch> and <Directory>

3) <Files> and <FilesMatch>

4) <Location> and <LocationMatch>

GNUFDL • PID_00148400 15 Server installation

For <VirtualHost>, these directives are always applied after applying the

general directives, so a VirtualHost can always overwrite the default

configuration.

A configuration example would be:

<Directory /home/*/public_html>

 Options Indexes

</Directory>

<FilesMatch \.(?i:gif jpe?g png)$>

 Order allow,deny

 Deny from all

</FilesMatch>

2.3.2. Global configuration directives

Some configuration directives are never applied to any of the above sections

(directories, etc.); they are directives that affect all web servers. The main ones

are:

ServerRoot: specifies the location of the root directory in which the web

server is located. From this directory, we can find the configuration files, etc.

If the server is correctly installed, this should never be changed.

KeepAlive: specifies whether persistent connections will be used to deal with

all requests from a user with the same TCP connection.

Listen: specifies the port where requests will be dealt with. By default, TCP

port 80 is used. We can also specify which IP addresses will be used (if the

server has more than one); by default all of those available are used.

LoadModule: with LoadModule, we can load the additional Apache modules

on the server. The syntax is:

LoadModule module filemodule

We must have installed mod_so to be able to use it.

2.3.3. Main directives

There are some directives that are generally in the main configuration section,

rather than those mentioned above (some of these cannot be in any section

and must be in the main one). These are:

GNUFDL • PID_00148400 16 Server installation

ServerAdmin: used to specify the e-mail address of the administrator. This

address can appear as a contact address in error messages to allow users to

report an error to the administrator. It cannot be inside any section.

ServerName: specifies the name and TCP port that the server uses to identify

itself. These can be determined automatically but it is preferable to specify

them. If the server has no DNS name, it is best to enter the IP address. It cannot

be contained in a section. The syntax is:

ServerName nameaddress:port as in:

ServerName www.uoc.edu:80

ServerName 192.168.1.1:80

DocumentRoot: the root directory from which documents are served. By

default, this is the htdocs directory, located in the Apache installation folder.

It cannot be contained within any section except for VirtualHost. It has a

<Directory> section in which the configuration parameters of this directory

are set.

Directorylndex: specifies the file served by default for each directory if none

are specified in the URL. By default, this is index.html. So, if we were to type

www.uoc.edu in our browser, the server would send www.uoc.edu/index.html

by default. More than one file may be specified and the order in which this

name is indicated will determine the serving priority. The directive can be

located either inside or outside any section.

AccessFileName: specifies the name of the configuration file if other than

.htaccess. For this configuration to work, the AllowOverride directive must

have the correct value. It cannot be inside any section. The default filename

is .htaccess.

ErrorDocument: this directive establishes the server configuration in the

event of an error. Four different configurations can be set:

• Display an error text

• Redirect to a file in the same directory

• Redirect to a file on our server

• Redirect to a file not on our server

The directive syntax is ErrorDocument errorcode action.

This directive can be located either in a section or in the global configuration,

for example:

ErrorDocument 404 /notfound.html.

GNUFDL • PID_00148400 17 Server installation

In a file is not found, the file notfound.html will be displayed.

Alias: the Alias and AliasMatch directives are used to define access to

directories outside DocumentRoot. The syntax is as follows: Alias url

directory

For example:

Alias /docs /home/documents

This will have a request served to http://www.uoc.edu/docs/manual from

/home/documents/manual.

UserDir: this directive is used to tell Apache that a subdirectory of the

working directory of the system users serves to store their personal page.

For example:

public UserDir

This will make the page stored in the user directory test, in the public

subdirectory, accessible as:

http://www.uoc.edu/~test/index.html

2.3.4. Section directives

The configuration of most location sections (Directory, Location, etc.)

includes a series of directives allowing us to control access to their contents.

These directives are supplied by the module mod_access.

Allow: allows us to specify who is authorised to access the resource. We can

specify IP addresses, computer names, parts of the name or address and even

variables of the request. We can use the keyword all to indicate all clients.

Deny: allows us to specify who is not allowed to access the resource. The same

options are available as for Allow.

Order: allows us to fine-tune the operation of the directives Allow and Deny.

We have two options:

• Allow, Deny. Access is denied by default and only clients that meet the

specifications of Allow and do not meet those of Deny are given access.

GNUFDL • PID_00148400 18 Server installation

• Deny, Allow. Access is allowed by default and only clients that do not

meet the specifications of Deny and do meet those of Allow are given

access.

2.3.5. Virtual servers

Apache supports the serving of a number of websites with a single server. For

this, it offers facilities for the creation of virtual domains based on diverse IP

addresses or IP names.

Apache was one of the first servers to support virtual servers without IP,

based on name instead. This considerably simplifies server administration

and generates significant savings in IP addresses, which are normally in short

supply. Virtual name servers are totally transparent for the client with the only

possible exception of very old browsers, which do not send the Host: header

with requests.

Virtual�by�IP�address�servers

To deal with several virtual servers, each with its own IP address, we need to

use the configuration section called VirtualHost. In this section, we define

each of the servers with its own configuration and IP address. An example of

this would be:

<VirtualHost 192.168.1.1>

 ServerAdmin webmaster@uoc.edu

 DocumentRoot /web/uoc

 ServerName www.uoc.edu

 ErrorLog /web/logs/uoc_error_log

 TransferLog /web/logs/uoc_access_log

</VirtualHost>

<VirtualHost 192.168.254.254>

 ServerAdmin webmaster@asociados.uoc.edu

 DocumentRoot /web/asociados

 ServerName asociados.uoc.edu

 ErrorLog /web/logs/asociados_error_log

 TransferLog /web/logs/asociados_access_log

</VirtualHost>

As we can see, this example defines two web servers, each with a different IP

and name. Each has its own DocumentRoot, etc.

To use virtual IP servers, the server system must have the different IP addresses

to be served configured in the operating system.

GNUFDL • PID_00148400 19 Server installation

Virtual�name�servers

To deal with a number of servers all using the same IP address, we need

to use the section called Virtual Host, which will allow us to define the

parameters of each server. If our needs are the same as those in the example

of virtual IP address servers with a single address, we should use the following

configuration:

NameVirtualHost *:80

 <VirtualHost *:80>

 ServerAdmin webmaster@uoc.edu

 ServerName www.uoc.edu

 DocumentRoot /web/uoc

 ErrorLog /web/logs/uoc_error_log

 TransferLog /web/logs/uoc_access_log

 </VirtualHost>

 <VirtualHost *:80>

 ServerAdmin webmaster@uoc.edu

 ServerName asociados.uoc.edu

 DocumentRoot /web/asociados

 ErrorLog /web/logs/asociados_error_log

 TransferLog /web/logs/asociados_access_log

 </VirtualHost>

We can use an IP address in place of * to assign, for example, a group of virtual

name servers to this IP and another group to another.

We require a special use of name server directives when our server has two IP

addresses but we have assigned the same name to both, for instance, when we

have an intranet and an Internet connection with the same name. In this case

we can serve the same contents as follows:

NameVirtualHost 192.168.1.1

NameVirtualHost 172.20.30.40

<VirtualHost 192.168.1.1 172.20.30.40>

 DocumentRoot /www/server1

 ServerName server.uoc.edu

 ServerAlias server

</VirtualHost>

This configuration can be used to serve the same Web page to the intranet and

the Internet. Note the use of an alias for the server so that we do not have to

use domains in the intranet.

There is also a default virtual server specification _default_ for requests not

served by another.

GNUFDL • PID_00148400 20 Server installation

<VirtualHost _default_>

 DocumentRoot /www/default

</VirtualHost>

We can use _default_ with a port number to specify different default servers

for each port.

Apache also allows much more complex configurations of virtual servers,

which is particularly useful for mass servers, etc. You will find an excellent

reference guide on the Apache project website, along with useful advice and

configuration recipes.

GNUFDL • PID_00148400 21 Server installation

3. Other free software web servers

There are many free software HTTP servers, the majority of which have been

eclipsed by the fame of Apache. Some of these have features making them

very interesting.

3.1. AOLServer

AOLserver is the free software web server developed by AOL (America Online,

the world's leading Internet provider). AOL uses AOLserver as the main web

server for one of the web environments with the biggest traffic and Internet

use. AOLserver is a multi-threaded TCL-based web server with many features

for use in large-scale environments or dynamic websites. All AOL domains

and web servers, more than two hundred, which give support to thousands of

users, millions of connections, etc., use AOLserver.

AOLserver has a wide user base, thanks in particular to its integration with

OpenACS, a very powerful free software content management system, initially

developed by a company called ArsDigita and subsequently released under the

GPL. The AOLserver-OpenACS tandem forms the infrastructure for complex

and powerful web projects such as dotLRN (a virtual open source university

campus).

3.2. Roxen and Caudium

Roxen is a web server published under GNU licence by a group of Swedish

developers that later set up the company Roxen Internet Services. The Roxen

server (previously Spinner and Spider) has always attracted attention for

the many functionalities it offers to users. This server, developed in Pike

programming language, offers hundreds of modules to users, allowing us to

easily develop very rich, dynamic websites, etc. with no tools other than the

Roxen server. The main features of Roxen are:

• Cross-platform, can run on a multitude of platforms: Windows, Linux,

Solaris, MAC OS X, etc.

• Free software.

• A very rich and user-friendly web-based administration interface.

• Integrated graphic support that, with just a few RXML tags (Roxen HTML

extension), allows the generation of images, titles, graphics, etc.

GNUFDL • PID_00148400 22 Server installation

• Access to integrated databases, allows access to PostgreSQL, Oracle,

MySQL, etc.

• Integrated MySQL database.

• Server programming with RXML, Java, Perl, PHP and CGIs.

• Excellent cryptographic support.

• Modular architecture allowing server extensions to be uploaded and

downloaded when in operation.

• Platform independence for modules developed by the user.

In mid-2000, following the appearance of Roxen version 2.0, which ended the

latter's compatibility with previous versions, particularly 1.3 (the most widely

used), a group of developers, including some of the founders of Roxen, began

a new project based on Roxen version 1.3 with the aim of developing a web

server that maintained compatibility with the latter. This web server is called

Caudium. At the present time, both Roxen and Caudium have a promising

future, good relations (their developers try to maintain compatibility between

the APIs of the two systems) and a loyal user base.

Roxen is one of the few examples of an excellent product that has always

featured among the fastest and most stable web servers with the most features

and facilities but which has not achieved success because it was always eclipsed

by Apache.

3.3. thttpd

thttpd is an extremely small, very fast, portable and secure HTTP server.

It offers the same features as conventional servers such as Apache but its

performance is far superior under extreme loads.

Its use as a general-purpose web server is rather less widespread, usually being

limited instead to acting as a rapid server of static content, often supporting

Apache servers for serving static binary content such as images, etc., leaving

the dynamic or more complex pages for the Apache server. As an auxiliary of

Apache for serving static content, it has managed to reduce the load of the

main server to a hundredth of its original load.

GNUFDL • PID_00148400 23 Server installation

3.4. Jetty

Jetty is a web server written entirely in Java that also incorporates a servlets

container. It is small and high-performance, making it one of the most

preferred for developing embedded products that require a HTTP server.

Although Jetty servers are rarely found operating in isolation, we do often

come across them as web servers embedded in products. For example:

• Integrated with application servers such as JBoss and Jonas.

• Integrated into the JTXA project as the basis for HTTP transport.

• Integrated into products such as IBM Tivoli, Sonic MQ and Cisco SESM

as a HTTP server.

• On most demo CDs in books on Java, servlets, XML, etc.

• Running on multiple embedded systems and pocket PCs.

GNUFDL • PID_00148400 24 Server installation

4. Practical: installing a web server

4.1. Exercise

2-1 Download the Apache server code from the Internet and install it in a

subdirectory of your user directory. Make sure you install the most recent

version and that you have correctly installed the following modules:

• mod_access

• mod_cgi

2-2 Configure the server you have installed to respond to HTTP requests on

port 1234.

2-3 Configure the web server to serve the documents located in the web

subdirectory of the user's working directory.

2-4 Configure the web server to run CGI programs from the cgi directory of

the user's working directory.

4.2. Solution

2-1 After obtaining the Apache source code, you need to decompress it:

 [carlesm@bofh m2]$ tar xvzf httpd-2.0.48.tar.gz

httpd-2.0.48/

httpd-2.0.48/os/

httpd-2.0.48/os/os2/

httpd-2.0.48/os/os2/os.h

httpd-2.0.48/os/os2/core.mk

httpd-2.0.48/os/os2/config.m4

httpd-2.0.48/os/os2/Makefile.in

httpd-2.0.48/os/os2/core_header.def

....

httpd-2.0.48/include/ap_release.h

httpd-2.0.48/include/.indent.pro

httpd-2.0.48/include/util_cfgtree.h

httpd-2.0.48/acconfig.h

 [carlesm@bofh m2]$

GNUFDL • PID_00148400 25 Server installation

Once you have the source code in your directory, you can configure it for

compilation. First of all, you need to tell Apache where to install it. In this

case, we chose the apache subdirectory of our working directory.

You also need to make sure that the required modules have been included.

[carlesm@bofh m2]$ cd httpd-2.0.48

[carlesm@bofh httpd-2.0.48]$./configure \

 --prefix=/home/carlesm/apache \

 --enable-cgi

checking for chosen layout... Apache

checking for working mkdir -p... yes

checking build system type... i686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

....

creating srclib/pcre/Makefile

creating test/Makefile

config.status: creating docs/conf/httpd-std.conf

config.status: creating docs/conf/ssl-std.conf

config.status: creating include/ap_config_layout.h

config.status: creating support/apxs

config.status: creating support/apachectl

config.status: creating support/dbmmanage

config.status: creating support/envvars-std

config.status: creating support/log_server_status

config.status: creating support/logresolve.pl

config.status: creating support/phf_abuse_log.cgi

config.status: creating support/split-logfile

config.status: creating build/rules.mk

config.status: creating include/ap_config_auto.h

config.status: executing default commands

[carlesm@bofh httpd-2.0.48]$

Then comes the moment to start compiling:

 [carlesm@bofh httpd-2.0.48]$ make

Making all in srclib

make[1]: Entering directory '/srcs/httpd-2.0.48/srclib'

Making all in apr

make[2]: Entering directory '/srcs/httpd-2.0.48/srclib/apr'

Making all in strings

make[1]: Leaving directory '/srcs/httpd-2.0.48'

If compilation is successful, you will be able to install Apache in your chosen

directory:

 [carlesm@bofh httpd-2.0.48]$ make install

GNUFDL • PID_00148400 26 Server installation

Making install in srclib

make[1]: Entering directory '/srcs/httpd-2.0.48/srclib'

Making install in apr

make[2]: Entering directory '/srcs/httpd-2.0.48/srclib/apr'

Making all in strings

....

mkdir /home/carlesm/apache/man

mkdir /home/carlesm/apache/man/man1

mkdir /home/carlesm/apache/man/man8

mkdir /home/carlesm/apache/manual

Installing build system files

make[1]: Leaving directory '/srcs/httpd-2.0.48'

 [carlesm@bofh httpd-2.0.48]$ cd /home/carlesm/apache/

 [carlesm@bofh apache]$ ls

bin build cgi-bin conf error htdocs

icons include lib logs man manual

modules

 [carlesm@bofh apache]$

You must then configure Apache with the requested parameters. To do this,

edit the /home/carlesm/apache/conf/httpd.conf file and change the

following parameters:

Listen 1234

ServerAdmin admin@uoc.edu

DocumentRoot "/home/carlesm/web"

<Directory "/home/carlesm/web">

 Options Indexes FollowSymLinks

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

ScriptAlias /cgi-bin/ "/home/carlesm/cgi/"

<Directory "/home/carlesm/cgi">

 AllowOverride None

 Options None

 Order allow,deny

 Allow from all

</Directory>

GNUFDL • PID_00148400 27 Server installation

Bibliography

Laurie, Ben; Laurie, Peter (2002). Apache: The Definitive Guide, 3rd Edition. O'Reilly.

Bowen, Rich; Lopez Ridruejo, Daniel; Liska, Allan (2002). Apache Administrator's
Handbook. SAMS.

Wainwright, Peter (2002). Professional Apache 2.0. Wrox Press.

Redding, Loren E. (2001). Linux Complete. Sybex.

Web page design

Carles Mateu

PID_00148397

GNUFDL • PID_00148397 Web page design

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148397 Web page design

Index

Introduction... 5

1. Basic HTML.. 7

1.1. Structure of HTML documents ... 8

1.1.1. Comments .. 8

1.2. Blocks of text .. 8

1.2.1. Paragraphs .. 9

1.2.2. Line breaks ... 9

1.2.3. Horizontal rules ... 9

1.2.4. Quoted paragraphs .. 9

1.2.5. Dividing text into blocks .. 10

1.2.6. Pre-formatted text .. 10

1.3. Logical tags .. 12

1.4. Fonts .. 13

1.4.1. Headers ... 14

1.4.2. Font .. 14

1.4.3. Font styles .. 14

1.4.4. Character entities ... 16

1.5. Links .. 17

1.5.1. Links ... 17

1.5.2. Destinations ... 17

1.6. Lists .. 18

1.6.1. Unordered lists ... 19

1.6.2. Ordered (numbered) lists ... 19

1.6.3. Lists of definitions ... 19

1.7. Images .. 21

1.8. Tables ... 22

1.8.1. The <TABLE> tag. .. 22

1.8.2. The <TR> tag. .. 23

1.8.3. The <TD> and <TH> tags ... 23

1.8.4. The <CAPTION> tag. .. 23

1.9. Forms ... 25

1.9.1. Form elements ... 26

2. Advanced HTML... 31

2.1. Style sheets .. 31

2.1.1. Style sheet format .. 31

2.1.2. The SPAN and DIV tags ... 32

2.1.3. More important properties .. 33

2.1.4. Text properties ... 33

2.1.5. Block properties ... 34

GNUFDL • PID_00148397 Web page design

2.1.6. Other properties ... 35

2.2. Layers ... 35

3. Dynamic HTML... 37

4. JavaScript... 41

4.1. First basic program .. 41

4.2. Basic elements of JavaScript ... 43

4.2.1. Comments .. 43

4.2.2. Literals .. 43

4.3. Data types and variables ... 44

4.3.1. Variables ... 44

4.3.2. References .. 45

4.3.3. Vectors .. 45

4.3.4. Operators .. 46

4.4. Control structures ... 46

4.4.1. Conditional forks ... 46

4.4.2. Loops .. 47

4.4.3. Object handling structures .. 47

4.5. Functions ... 48

4.6. Objects ... 48

4.6.1. Defining objects in JavaScript 48

4.6.2. Inheritance ... 49

4.6.3. Predefined objects .. 49

4.7. Events .. 50

5. Practical: creating a complex web page using the

techniques described... 52

Bibliography... 61

GNUFDL • PID_00148397 5 Web page design

Introduction

HTML (HyperText Markup Language) is used to create documents with a

hypertext structure. A hypertext document contains information that is

cross-referenced with other documents, allowing us to switch from the first

document to the cross-referenced one from the same application being used

to view it. HTML can also be used to create multimedia documents, i.e. those

containing information that is not merely textual. For example,

• Images

• Video

• Sound

• Active subprograms (plug-ins, applets)

HTML is not the only language available for creating hypertext documents;

there are languages that came before and after HTML (SGML, XML, etc.), but

HTML has become the W3C recommendation language for creating content

for the Internet.

GNUFDL • PID_00148397 7 Web page design

1. Basic HTML

HTML documents are created as plain text documents (with no special

formatting) in which all text formatting is specified using textual marks (called

tags) that delimit the content affected by the tag (start and end tags are used).

These tags are textual marks that begin with the character <, followed by the

name of the tag and any additional attributes, and end with the character >.

So, initial tags look like this:

<TAG>

End tags start with the character <, followed by the character /, followed by

the name of the tag and the character >. So, end tags look like this:

</TAG>

Tags are case-insensitive. Examples of HTML tags include:

<title>Name of document</title>

<P>Example of the use of tags to mark text</P>

Bold<I>Italics</I>Bold

Tag attributes, which indicate additional tag parameters, are included in the

start tag as follows:

<TAG ATTRIBUTE ATTRIBUTE...>

The form of these attributes is either the name of the attribute or the name

of the attribute followed by =, followed by the value we want to assign it

(generally inside inverted commas). For example:

Link

In some cases, HTML can omit the end tag if it does not need to surround the

text that it affects (as is the case of IMG). Another important point to note is

that if the WWW client we use (the browser we are using) does not understand

a tag, it will be ignored along with all of the text affected by it.

GNUFDL • PID_00148397 8 Web page design

1.1. Structure of HTML documents

All HTML documents have more or less the same structure. The whole

document needs to be contained within a HTML tag and is split into two: the

header, contained in a HEAD tag and the body of the document (containing

the document information), which is contained within a tag called BODY. The

header contains some definitions of the document: its title, extra formatting

marks, keywords, etc.

One example might be:

<HTML>

 <HEAD>

 <title>Document title</TITLE>

 </HEAD>

 <BODY>

 Text of document

 </BODY>

</HTML>

If we open a document with these contents in a browser, we will see that

the text inside the TITLE tag is not displayed in the document; instead the

browser displays it in the title bar of the window.

1.1.1. Comments

In HTML, we can enter comments on the page with the tags <!-- and --!>.

The content inside these two marks is ignored by the browser and is not

displayed to the user.

1.2. Blocks of text

There are several types of blocks of text in HTML:

• Paragraphs

• Line breaks

• Quoted blocks

• Divisions

• Pre-formatted text

• Centred text

GNUFDL • PID_00148397 9 Web page design

1.2.1. Paragraphs

The <P> tag is used to separate paragraphs. Since HTML ignores line breaks

entered in the original file and the entire text is continuous for HTML, we need

a mechanism to indicate the start and end of paragraphs; this mechanism is

provided by <P> and </P>.

The P tag can also have an attribute, ALIGN, indicating the alignment of the

text in the paragraph. This can be one of the following values:

LEFT, aligned to the left; this is the default behaviour.

RIGHT, aligned to the right.

CENTER, centred text.

The end of paragraph mark, </P>, is optional in W3C recommendation HTML

and can be omitted. If this is the case, the browser will take a new <P> to

indicate the end of the previous paragraph.

1.2.2. Line breaks

The
 tag indicates a line break. It can be used as an initial mark and does

not require an end tag. BR does not modify the parameters specified for the

paragraph in which we are located at this time.

1.2.3. Horizontal rules

HTML has a tag for including a horizontal rule on our page (a line drawn from

one side of the page to the other) with a variable width. This tag, HR, is used to

separate blocks of text. This element only has an initial label but comes with

several attributes for adapting its appearance:

• NOSHADE: eliminates the shadow effect of the bar.

• WIDTH: defines the length of the line in relation to the page.

• SIZE: defines the thickness of the line.

1.2.4. Quoted paragraphs

HTML has an element called the BLOCKQUOTE that allows us to represent

paragraphs quoted literally from another text. These are generally indented or

extended to the left and have a paragraph break before and after the quoted

paragraph. We should avoid using BLOCKQUOTE to indent text, reserving it for

literal quotations because the browser may represent this in other ways, e.g.

by not indenting.

GNUFDL • PID_00148397 10 Web page design

1.2.5. Dividing text into blocks

The <DIV> element is used to divide text into blocks by inserting a single line

between the blocks like BR, although it can have the same attributes as P, i.e.

we can define the alignment of the text for each DIV block.

The alignments supported by DIV with the ALIGN parameter are:

• LEFT, aligned to the left; this is the default behaviour.

• RIGHT, aligned to the right.

• CENTER, centred text.

1.2.6. Pre-formatted text

The text inserted between the <PRE> and </PRE> tags will be displayed by

the browser respecting the format of the line breaks and spaces used to enter

it. Browsers generally display this text with a fixed-width typeface similar to

that of a typewriter.

We can see some of these tags in the following example:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

 <BODY>

<P ALIGN=LEFT>

In a village of La Mancha, the name of which I have no desire to call to mind, there lived not

long since one of those gentlemen that keep a lance in the lance-rack, an old buckler, a lean

hack, and a greyhound for coursing. An olla of rather more beef than mutton, a salad on most

nights, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, made away

with three-quarters of his income.

</P>

<DIV ALIGN=RIGHT>

In a village of La Mancha, the name of which I have no desire to call to mind, there lived not

long since one of those gentlemen that keep a lance in the lance-rack, an old buckler, a lean

hack, and a greyhound for coursing. An olla of rather more beef than mutton, a salad on most

nights, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, made away

with three-quarters of his income.

</DIV>

<DIV ALIGN=CENTER>

In a village of La Mancha, the name of which I have no desire to call to mind, there lived not

long since one of those gentlemen that keep a lance in the lance-rack, an old buckler, a lean

hack, and a greyhound for coursing. An olla of rather more beef than mutton, a salad on most

nights, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, made away

with three-quarters of his income.

</DIV>

GNUFDL • PID_00148397 11 Web page design

<PRE>

In a village of La Mancha,

 the name of which I have no desire to call to mind,

 there lived not long since one of those gentlemen

 that keep a lance in the lance-rack, an old buckler,

 a lean hack, and a greyhound for coursing.

An olla of rather more beef than mutton,

</PRE>

<ADDRESS>

 Miguel de Cervantes

 Shakespeare Street, 23

 09876, Madrid

</ADDRESS>

 <CENTER>

 <P>

In a village of La Mancha, the name of which I have no desire to call to mind, there lived not

long since one of those gentlemen that keep a lance in the lance-rack,

 </P>

 </CENTER>

</BODY>

</HTML>

This HTML code will be displayed as follows:

One of the utilities provided by some free software browsers like Mozilla or

Firebird is that they show the block elements that make up a web page; in this

case, our example would be seen as follows:

GNUFDL • PID_00148397 12 Web page design

1.3. Logical tags

HTML also has a group of tags for formatting the text not as we wish to show

it but by giving the format based on the semantics of this block of text, which

allows the browser to display the text in the most appropriate manner.

These tags are:

• <CITE>: literal quotation from a text or document.

• <ADDRESS>: address.

• <SAMP>: example of code or result.

• <CODE>: program code.

• <KBD>: data that needs to be typed in.

• <VAR>: variable definition.

• <DFN>: definition of text or a word (there is little browser support for this

option).

These tags will be formatted differently according to the browser and how we

have configured it. This example shows how they look in the Mozilla browser:

GNUFDL • PID_00148397 13 Web page design

The code that produced this result is:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

 <BODY>

<P><CITE>The C Programming Language</CITE>,

Ritchie, Dennis; Kernighan, Ritchie. AT&T Bell Labs.

<P> Our address is:

<ADDRESS>

10, Downing Street.

London.

</ADDRESS>

<P>

Files ending in the extension

<SAMP>jpg</SAMP> are image files.

<P>

<CODE>printf("Hello World\n");</CODE>

<P>After entering, type <KBD>startx</KBD> to boot...

<P>We will define the variable <VAR>neigh</VAR> to save...

<P>A <DFN>Distributed-CSP</DFN> is a problem, of...

<P><CITE>© 2003, Carles Mateu</CITE>

 </BODY>

</HTML>

1.4. Fonts

HTML includes tags for changing attributes of our texts such as font and

colour. HTML also has certain special tags called character entities that allow

us to enter special characters such as the copyright symbol, accents etc. where

these are not supported by our keyboard, text editor, character set, etc.

GNUFDL • PID_00148397 14 Web page design

1.4.1. Headers

There is an element called <Hx> that we can use to define the parts of our text

that need to be considered as headers (section, chapter, etc.) The tag assigns

a larger text size to the characters (based on x, as we shall see), uses a bold

typeface for the header and inserts a paragraph break after this header.

The header size (or level or index of importance of the latter) can vary from 1

to 6, so there are six possible tags: H1, H2, H3, H4, H5 and H6.

1.4.2. Font

HTML has a tag for dealing with typefaces. This tag, FONT, is obsolete in HTML

4.01, so you should avoid using it and try to use style sheets (CSS) instead.

FONT this is used to specify:

• Measurements, with the SIZE attribute

• Colours, with the COLOR attribute

• Typefaces, with the FACE attribute

Be cautious about using this tag to specify typefaces because your client may

not have this particular typeface installed and the page will not be viewed as

you had planned.

The attributes supported by FONT, used to define font characteristics, are:

• SIZE: character size, with values from 1 to 7 or relative values (-7 to +7).

• COLOR: colour of the characters.

• FACE: typeface to use; you can indicate more than one, separated by

commas.

The SIZE attribute defines the size of font in relation to the default document

size, which is defined using BASEFONT. BASEFONT has just one parameter,

SIZE, used to set the base size for the document.

1.4.3. Font styles

HTML has a set of tags that can be used to define different letter styles for the

text inside the tags. The available tags are:

B (bold).

I (italics).

U (underlined).

STRIKE (strikethrough).

SUP (superscript).

SUB (subscript).

BLINK (blinking).

GNUFDL • PID_00148397 15 Web page design

TT (teletype).

BIG (big).

SMALL (small).

Besides these physical typefaces, there are also some logical typefaces, which

browsers may prefer to represent in another way:

EM (emphasised).

STRONG (highlighted).

CODE (program code).

CITE (quotation).

KBD (keyboard entry).

SAMP (example).

VAR (program variable).

Some of these logical styles also introduce a paragraph style, which we saw

earlier.

With HTML, we can mix different styles such as bold and italics, etc. In this

case, the corresponding HTML tags are nested:

<I>Bold and italics</I>

We can see how these typefaces and colours look on the next page:

The HTML code that produced this result is:

<HTML>

GNUFDL • PID_00148397 16 Web page design

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

<BODY>

<h1>Header H1</h1>

<h2>Header H2</h2>

<h3>Header H3</h3>

<h4>Header H4</h4>

<h5>Header H5</h5>

<h6>Header H6</h6>

Font size

1 2

3 4

5 6

7 6

5 4

3 2

1

<P>

Colours

CO

LO

RE

S . D

E . L

ET

RA

S

<P> Bold
 <i>Italics</i>
 <u>Underlined</u>

<strike>Strikethrough</strike>
 A^{Superscript}

B_{Subscript}
 <blink>Blinking</blink>

<tt>Typewriter(Teletype)</tt>
 <big>Big

text</big>
 <small>Small text</small>

</BODY>

</HTML>

1.4.4. Character entities

HTML has a series of special codes called character entities, used to type

characters that cannot be entered with the keyboard, such as accents,

circumflexes, special symbols, etc. We can also use special character entities

to type any character from the ISO-Latin1 character table.

GNUFDL • PID_00148397 17 Web page design

Code Result

á, Á, é, É,...
¿
¡
º
ª
™ or ™
©
®

<
>
&
"

á,Á,é,É,...
¿
¡
o
a
Trademark symbol
Copyright symbol
Registered symbol
(non-breaking space)
<
>
&
"

1.5. Links

One of the key features of the Web that has had the greatest impact on

its success is its hypertextual nature, i.e. the possibility of intuitively and

transparently linking documents that may be located on different servers.

Links can be made to images, audio, video, etc. as well as to web pages.

We can create links using a tag called A and its set of attributes, NAME, HREF,

TARGET, affording us total control over link creation in documents.

There are four types of main link:

• Links within a page

• Links to other pages on our system

• Links to pages from other system

• Links to documents consulted through other protocols (e-mail, etc.)

1.5.1. Links

To create a link, we need to use the A tag with the attribute HREF. The value

of this attribute will be the destination of the link:

Text or image

The contents of the tag are given special consideration and displayed

differently by the browser (generally by underlining). When we click on this

text, we will be taken to the destination indicated by the value of the HREF

attribute, which must be a URL.

1.5.2. Destinations

A destination is a URL address indicating a service we wish to obtain or a

resource we wish to access. The format for URLs is as follows:

GNUFDL • PID_00148397 18 Web page design

service://user:password@server:port/resourcepath

Several services can be indicated in the URL and these will be accepted by

most browsers:

http: indicates the web page transfer service and is in everyday use.

https: indicates a secure and encrypted HTTP service.

ftp: indicates that we need to use the file transfer protocol, FTP. If we do not

enter a username and password, anonymous transfer will be attempted. If this

fails, we will be asked for the username and password.

mailto: indicates that an e-mail should be sent to the specified address.

news: access to the USENET news service.

Examples of URLs include:

http://www.uoc.edu
https://www.personales.co/usuarios/carles/indice.html
ftp://user:secret@ftp.cesca.es/pub/linux
mailto:destination@e.mail.co
news://noticias.uoc.edu/es.comp.os.linux

Destinations�within�a�page

One of the possibilities of HTML is that of jumping to destinations within the

same page. To do this, we need to define the destinations on the page, called

anchors with a name. To do so, we can use the NAME attribute of the A tag.

For example:

Once we have defined the anchors in our documents, we can either browse

through or go directly to them. To browse these anchors, we will use a URL

extension such as:

Link

If we create this link on the same page, we can abbreviate the address to:

Link

1.6. Lists

In HTML we can define three main types of lists and numberings:

• Unordered lists

• Ordered (numbered) lists

• Lists of definitions

GNUFDL • PID_00148397 19 Web page design

1.6.1. Unordered lists

To enter unordered lists, we can use the tag to indicate the start of the

list, the tag to indicate the end of the list and to indicate each

of the items in the list.

We can also use the TYPE attribute to indicate the marker to use to highlight

the various items: DISC, CIRCLE, SQUARE.

All of the items must be entered between and .

1.6.2. Ordered (numbered) lists

Ordered lists are used in a very similar way to unordered lists. This time, we

can use the tag to indicate the start of the list, the tag to indicate

the end of the list and to indicate each of the items in the list.

We can also use the TYPE attribute to indicate the marker to use to number

the various items:

TYPE=1 Numbers (the default option).

TYPE=A Upper-case letters.

TYPE=a Lower-case letters.

TYPE=I Upper-case Roman numerals.

TYPE=i Lower-case Roman numerals.

We can also use the START attribute to indicate the point at which line

numbering should begin. The TYPE attribute can be used in the individual

items too.

All of the items must be entered between and .

1.6.3. Lists of definitions

A list of definitions is a non-numbered list that allows us to give a description

or definition of each element. The descriptive lists are formed with the tags:

<DL> and </DL> to define the list, <DT> to indicate the term to be defined

and DD to indicate the definition.

For DL, we can use the COMPACT attribute, which tells the browser to display

the list in the most compact way possible by putting the term and its

definition on the same line.

The different examples of HTML lists can be seen in this diagram:

GNUFDL • PID_00148397 20 Web page design

The HTML code that produced this result is:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

<BODY>

 First element

 Second element

 Third element

<P>

 First element

 Second element

 <LI TYPE=A>Third element

<P>

<dl compact>

 <dt>ASCII <dd>

7-bit character set.

Only 127 characters allowed.

 <dt>EPS <dd>

Encapsulated PostScript Format.

 <dt>PNG<dd> Portable Network Graphics,

 high efficiency graphics format.

</dl>

</BODY>

</HTML>

GNUFDL • PID_00148397 21 Web page design

1.7. Images

A single tag is used to include graphics and images on our pages: .

 has several attributes for specifying the image file to use, its

measurements, etc.

The attribute for specifying the image to display is SRC. With this tag, we can

specify a URL for the image file that will be requested from the server by the

browser in order to display it.

The images referenced with the SRC attribute can be located in any directory

on the server, on other servers, etc. The value we enter for SRC must be a URL.

We can also use the ALT attribute to assign an alternative text to the image

if the browser cannot show it. In this case, the browser will display this

alternative text to the user.

In addition, there are several attributes allowing us to specify the image

measurements, width and height, WIDTH and HEIGHT. If these are not

specified, the browser will display the image at the size of the actual image file.

If we specify the measurements, the browser resizes the image to suit. Using

image measurement parameters allows the browser to leave the space taken

up by the image and display the rest of the page while the images are loading.

Images are commonly used as buttons for links. In this case, the browser will

generally add a border to distinguish it from the rest of the text. You can

prevent this effect by adding a further attribute, BORDER, which is used to

specify the thickness of this border. To remove it, change the value to zero.

The HTML code that produced this screen is:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

<BODY>

 <P>

GNUFDL • PID_00148397 22 Web page design

<P>

</BODY>

</HTML>

1.8. Tables

HTML has a group of tags that can be used to enter text in table form. The

tags for this feature are:

• TABLE: marks the start and end of the table.

• TR: marks the start and end of a row.

• TH: marks the start and end of a header cell.

• TD: marks the start and end of a cell.

• CAPTION: used to insert titles in tables.

The code for a simple table might be:

<TABLE>

 <TR><TH>Header 1</TH>...<TH>Header n</TH></TR>

 <TR><TD>Cell 1.1</TD>...<TD>Cell n</TD></TR>

 ...

 <TR><TD>Cell 1.1</TD>...<TD>Cell n</TD></TR>

 <CAPTION>Title</CAPTION>

</TABLE>

As we can see, the table is enclosed by TABLE tags. Each table row needs

to be contained between the <TR> and </TR> tags. We have two options for

displaying cells in individual rows: we can either enclose them in <TH> tags

or in <TD> tags. The difference is that the first option selects a bold typeface

and centres the column.

1.8.1. The <TABLE> tag.

The TABLE tag has some attributes that can be used to specify the exact format

to give to the table.

• BORDER: indicates the size of the cell borders.

• CELLSPACING: indicates the size in points of the space between cells.

• CELLPADDING: indicates the distance in points between the contents of a

cell and its borders.

• WIDTH: specifies the width of the table. This can be in points or in relation

to the percentage of the total available width. For example, 100% indicates

the entire browser window.

GNUFDL • PID_00148397 23 Web page design

• ALIGN: aligns the table in relation to the page, to the left (LEFT), right

(RIGHT) or middle (CENTER).

• BGCOLOR: specifies the background colour of the table.

1.8.2. The <TR> tag.

The TR tag can be used to enter the rows making up the table. TR has the

following attributes:

• ALIGN: aligns the content of the cells in a row horizontally to the left

(LEFT), right (RIGHT) or middle (CENTER).

• VALIGN: aligns the content of the cells in a row vertically along the top

(TOP), bottom (BOTTOM) or middle (MIDDLE).

• BGCOLOR: specifies the background colour of the row.

1.8.3. The <TD> and <TH> tags

The TD and TH tags are used to add the cells that will make up the row where

they are located. The main difference between the two is that TH horizontally

centres the cell contents and displays them in bold. Both tags can have the

following attributes:

• ALIGN: aligns the content of the cells in a row horizontally to the left

(LEFT), right (RIGHT) or middle (CENTER).

• VALIGN: aligns the content of the cells in a row vertically along the top

(TOP), bottom (BOTTOM) or middle (MIDDLE).

• BGCOLOR: specifies the background colour of the cell.

• WIDTH: specifies the width of the cell in points or as a percentage; in the

latter case, remember that this is the width of the table rather than the

window.

• NOWRAP: stops the line inside cells from being divided by spaces.

• COLSPAN: indicates how many cells to the right including the current one

will be merged to form a single one. If COLSPAN is zero, all cells to the

right will be merged.

• ROWSPAN: indicates the number of column cells below the current one will

be merged with the latter.

1.8.4. The <CAPTION> tag.

This is used to add a centred legend or title above or below a table. It has just

one attribute:

GNUFDL • PID_00148397 24 Web page design

ALIGN: this indicates where the CAPTION tag will be located in relation to

the table. The possible values are: TOP, places it above the table, and BOTTOM,

which places it below.

Two HTML tables can be seen in the image:

The HTML code that produced this result is:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

 <BODY>

 <TABLE BORDER=1>

 <TR>

 <TD COLSPAN=2>1.1 and 1.2</TD>

 <TD>1.3</TD>

 </TR>

 <TR>

 <TD ROWSPAN=2>2.1 and 3.1</TD>

 <TD>2.2</TD>

 <TD>2.3</TD>

 </TR>

 <TR>

 <TD>3.2</TD>

 <TD>3.3</TD>

 </TR>

 <CAPTION ALIGN=bottom>Simple Table</CAPTION>

 </TABLE>

 <HR>

GNUFDL • PID_00148397 25 Web page design

 <TABLE BORDER=0 CELLSPACING=0 BGCOLOR=#0000FF>

 <TR><TD>

 <TABLE BORDER=0 CELLSPACING=1 CELLPADDING=2

 WIDTH=400 BGCOLOR=#FFFFFF>

 <TR>

 <TH></TH>

 <TH>April</TH>

 <TH>May</TH>

 <TH>June</TH>

 <TH>July</TH>

 </TR>

 <TR>

 <TD BGCOLOR=#A0A0A0>Vehicles</TD>

 <TD>22</TD>

 <TD>23</TD>

 <TD>3</TD>

 <TD>29</TD>

 </TR>

 <TR>

 <TD BGCOLOR=#A0A0A0>Visitors</TD>

 <TD>1234</TD>

 <TD>1537</TD>

 <TD BGCOLOR=#FFa0a0>7</TD>

 <TD>1930</TD>

 </TR>

 <TR>

 <TD BGCOLOR=#A0A0A0>Income</TD>

 <TD>11000</TD>

 <TD>13000</TD>

 <TD BGCOLOR=#FF4040>-500</TD>

 <TD BGCOLOR=#a0a0FF>60930</TD>

 </TR>

 </TABLE>

 </TD></TR>

 </TABLE>

 </BODY>

 </HTML>

1.9. Forms

Forms are HTML elements used to collect user information. A variety of form

elements are available, allowing for rich and efficient interaction with users.

In all events, forms do not process the information entered by users. We will

need to process this ourselves later through other means (CGI, JSP, Servlets

etc).

GNUFDL • PID_00148397 26 Web page design

One way to create a form is as follows:

<FORM ACTION="url process" METHOD="POST">

...

Elements

..

</FORM>

The FORM tag provides us with certain attributes:

• ACTION: this attribute is used to specify the URL where the data that the

user types into the form will be sent. An e-mail address can be used as the

URL, for example:

mailto:address@e.mail

or we can enter a HTTP URL (the most common method for sending data to

CGI programs):

http://www.uoc.edu/proceso.cgi

• METHOD: the method specifies the way in which the data is sent. We are

offered two options: GET and POST. We will look at these options in detail

later when we discuss CGI programming.

• ENCTYPE: specifies the type of encoding used. It is generally only used

when the form result is sent by e-mail and changes the encoding to

text/plain.

• NAME: used to assign a name to the form, which will be necessary later for

using with JavaScript.

1.9.1. Form elements

HTML provides us with a wide variety of input elements for forms. These can

be used to carry out a range of functions, including typing in text and sending

files.

The�<INPUT> Elements

The INPUT element is perhaps the most widely known and used of form

elements and is used as an input field. There are different types of INPUT

element, depending on the value of the TYPE attribute:

GNUFDL • PID_00148397 27 Web page design

• TYPE=RADIO: allows us to choose from a range of options but only one

from those of the same name.

• TYPE=RESET: clears the entire form.

• TYPE=TEXT: allows the user to enter a line of text.

• TYPE=PASSWORD: allows the user to enter a line of text, displaying

characters such as "*" instead of the text. This is generally used where

passwords must be typed in.

• TYPE=CHECKBOX: allows us to choose from one or more options.

• TYPE=SUBMIT: accepts the data entered in the form and carries out the

specified action.

• TYPE=HIDDEN: text field not visible to the user. Used to store values.

The INPUT element also has some optional attributes:

• NAME: names the field. This is important for subsequent processing with

our programs.

• VALUE: assigns an initial value to the field.

• SIZE: size of fields, where applicable. TEXT and PASSWORD.

• MAXLENGTH: maximum length allowed for user input TEXT and PASSWORD

fields).

• CHECKED: for RADIO or CHECKBOX, indicates whether they are marked or

unmarked by default.

The�SELECT Elements

The SELECT element is used to select one or more of the available options. An

example of a SELECT element would be:

<SELECT name="destination">

 <option> Africa

 <option> Antarctica

 <option> America

 <option> Asia

 <option> Europe

 <option> Oceania

</SELECT>

The attributes of the SELECT element are:

GNUFDL • PID_00148397 28 Web page design

• SIZE: the on-screen size of the SELECT element If 1, only one option will

be displayed and SELECT will operate as a drop-down list. If greater than

1, the user will be presented with a selection list.

• MULTIPLE: users can choose more than one option if this is selected.

The OPTION element has two attributes:

• VALUE: the value that will be assigned to the variable when this option

is selected.

• SELECTED: this option will be selected by default.

The�TEXTAREA element

The TEXTAREA element is used to obtain multiple-line text elements from the

user. The format is as follows:

<TEXTAREA name="comments" cols=30 rows=6>

Enter comments about the page

</TEXTAREA>

Note that the contents enclosed by <TEXTAREA> and </TEXTAREA> are

considered to be the initial value of the field. The attributes for TEXTAREA are:

• ROWS: the rows that will be taken up by the text box.

• COLS: the columns that will be taken up by the text box.

We will now look at an example of this basic form, built with the above

elements.

GNUFDL • PID_00148397 29 Web page design

The HTML code that produced this result is:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

<BODY>

<H1>Form test</H1>

<FORM METHOD=GET>

Name: <INPUT TYPE=TEXT NAME=NAME SIZE=10>

Surname: <INPUT TYPE=TEXT NAME=SURNAME SIZE=30>

Password: <INPUT TYPE=PASSWORD NAME=PASS SIZE=8>

<HR>

Gender:

<INPUT TYPE="RADIO" NAME="Gender">Male

<INPUT TYPE="RADIO" NAME="SEXO">Female

GNUFDL • PID_00148397 30 Web page design

Hobbies:

<INPUT TYPE="CHECKBOX" NAME="SPORT">Sport

<INPUT TYPE="CHECKBOX" NAME="MUSICA">Music

<INPUT TYPE="CHECKBOX" NAME="LECTURA">Reading

Origin:

<SELECT name="ORIGIN">

 <option> Africa

 <option> Antarctica

 <option> America

 <option> Asia

 <option> Europe

 <option> Oceania

</SELECT>

<HR>

Where would you like to travel:

<SELECT name="destination" MULTIPLE SIZE=4>

 <option> Africa

 <option> Antarctica

 <option> America

 <option> Asia

 <option> Europe

 <option> Oceania

</SELECT>

Your opinion:

<TEXTAREA COLS=25 ROWS=10 NAME="YOUR OPINION">

Tell us what you think!

</TEXTAREA>

<HR>

<INPUT TYPE=SUBMIT> <INPUT TYPE=RESET>

</FORM>

</BODY>

</HTML>

GNUFDL • PID_00148397 31 Web page design

2. Advanced HTML

2.1. Style sheets

Style sheets are a mechanism for separating the format for representing and

presenting contents. This is done by associating presentation attributes to

each HTML tag or its subclasses.

For example, if we want all of the paragraphs in our document (defined

by <P></P>) to have a red background and yellow text, we would use the

following definition:

<STYLE TYPE="text/css"> P {color: red; background:yellow;} </STYLE>

To indicate which styles we need to use on a page, the STYLE tag can be used

to specify them in situ, while the LINK tag allows us to indicate an external

file containing our styles.

The STYLE tag must be located in the page header. The TYPE setting is used to

indicate the syntax we will use to define the styles, which, in our case, will be

text/css. The LINK tag, used to define an external style sheet, looks like this:

<LINK REL="stylesheet" HREF="miweb.css" TYPE="text/css">

In fact, use of the LINK tag is highly recommended when defining the style

sheets associated with a page as this will facilitate maintenance because all the

styles of a site will be concentrated into a single file instead of being repeated

on each page.

2.1.1. Style sheet format

As we saw in the previous examples, the format of style sheets is as follows:

<element>{<format>}

For example:

P {color: red; background:yellow;}

Please,note that CSS syntax is case sensitive.

GNUFDL • PID_00148397 32 Web page design

This syntax will allow us to define the format we would like for the paragraphs

in our website. There is an extension for this syntax used to define a style

that will only be applied to parts of the document. Specifically, it allows us to

define classes of elements to which the style will be applied. For example,

to define a paragraph class that we will call highlighted:

P.highlighted {color: red; background:yellow;}

We can then use the CLASS attribute that HTML 4.0 added to HTML to define

the class of each paragraph:

<P CLASS="highlighted">A highlighted paragraph</P>

<P>A normal paragraph</P>

<P CLASS="highlighted">Another highlighted one</P>

There is also a method for assigning a style to individual paragraphs, thus

offering more granularity to the class concept. For this, we need to define the

style of an individual HTML element with CSS using the following syntax:

#paragraph1 {color: green; background:yellow;}

We can then assign this identity to an HTML element using the ID attribute:

<p CLASS="destacado">A highlighted paragraph</P>

<P>A normal paragraph</P>

<P CLASS="highlighted" ID="paragraph1">Another highlighted one but but the colour here

is assigned by its identity</P>

2.1.2. The SPAN and DIV tags

Earlier, we saw how to assign styles to HTML elements (paragraphs, etc.),

but we sometimes need to assign styles to sections of text or content that

do not form part of an HTML block. For example, we may want to define a

style that would allow us to mark specific words of text (to indicate changes,

for instance). Obviously, we cannot define a new HTML tag as the existing

browsers, which would not be familiar with our tag, would ignore this content.

The solution comes in the form of the DIV tag, which we saw earlier, and SPAN

tag.

If we want to mark a section of content as belonging to a specific class in order

to define a style for it or to assign individual identification to it, we will need

to wrap this content inside SPAN or DIV. The difference between them is that

DIV ensures that there is a line break at the start and end of the section. This

allows us to define blocks of text without having to enclose them in tags that

would modify their format (such as P).

GNUFDL • PID_00148397 33 Web page design

For example, we could define:

all.unsure{color: red; } all.revised { color:blue; }

and then use it in our HTML document:

<P>This long paragraph must be

reviewed by the CEO

</P>

2.1.3. More important properties

We will now look at the more important properties that can be defined using

CSS. Given the incompatibilities between different browsers, we recommend

testing your pages with different browsers and different versions to make sure

that they display properly.

Typeface�properties

The properties allowing us to define the appearance (typeface) of the text are:

• font-family: font (which can be generic from among: serif, cursive,

sans-serif, fantasy and monospace). We can specify single fonts or a

list of fonts, whether generic or otherwise, separated by commas. Be aware

when specifying fonts that they may not be installed on the computer of

the user visiting your page.

• font-size: size of the font. xx-small, x-small, small, medium, large,

x-large, xx-large and the numerical relative or absolute size values.

• font-weight: thickness of the font. The possible values are: normal,

bold, bolder, lighter and numerical values from 100 to 900 (where

900 is the thickest bold font).

• font-style: style of font. We can use normal, italic, italic small

caps, oblique, oblique small caps and small caps.

2.1.4. Text properties

There is also a group of properties used to alter the text on the page and its

format.

• line height: line spacing as a numerical or percentage value.

GNUFDL • PID_00148397 34 Web page design

• text decoration: decoration of the text: none, underline, overline,

line-through and blink.

• vertical-align: vertical alignment of the text. This can be: baseline

(normal), sub (subscript), super (superscript), top, text-top, middle,

bottom, text-bottom or a percentage.

• text-transform: text modification: capitalize (initial in upper case),

uppercase (converts the text to upper case), lowercase (converts it to

lower case) or none.

• text-align: horizontal alignment of the text: left, right, center or

justify

• text-indent: indentation of the first line of text in absolute or

percentage values.

2.1.5. Block properties

The following properties affect blocks of text (paragraphs etc).

• margin-top, margin-right, margin-bottom, margin-left:

minimum distance between a block and the adjacent elements. Possible

values: size, percentage or auto.

• padding-top, padding-right, padding-bottom, padding-left: fills

in the space between the border and contents of the block. Possible values:

size as an absolute value, percentage or auto.

• border-top-width, border-right-width, border-bottom-width,

border-left-width: width of the block border in numerical values.

• border-style: style of the block border. none, solid or 3D.

• border-color: colour of the block border.

• width, height: measurements of the block. Values as a percentage,

absolute values or auto.

• float: justification of a block's content. Values: left, right or none.

• clear: the other elements are positioned in relation to the current one.

Possible values: left, right, both or none.

GNUFDL • PID_00148397 35 Web page design

2.1.6. Other properties

There are other style sheet properties that can be used to change other aspects:

• color: text colour.

• background: background colour or image. Values, a colour or a URL of

the image file.

background: url(nicebackground.gif);

• display: decides whether or not an element has a block character. This

can be: inline (such as <I> or), block such as <P>, list such as

 or none, which disables the element.

• list-style: style of marker of an element of a list (allowing us to use

graphics as markers). Possible values: disc, circle, square, decimal,

lower-roman, upper-roman, lower-alpha, upper-alpha, none or a

URL of an image.

• white-space: indicates how blank spaces should be treated, whether as

usual or whether they should be respected as in the block <PRE>. Values:

normal and pre.

2.2. Layers

HTML 4.0 introduced a new concept to increase our control over the

positioning of elements on our pages. We can now define layers as pages

embedded within other pages.

We can specify the attributes of these layers (position, visibility, etc.) using

style sheets, just like other HTML elements. Layers, which can be controlled

with programming languages like JavaScript, are the basis of what we now

know as dynamic HTML. Unfortunately, the implementations of the different

browsers are incompatible between each other, so we either need to use huge

volumes of program code to cover all possibilities or to limit ourselves to using

only the common minimums. One of the few options we have to make layers

work in the majority of browsers is to define them using CSS style sheets.

The following example shows how to add a layer that we will call thelayer

using the ID attribute.

<STYLE TYPE="text/css">

 #thelayer {position:absolute; top:50px; left:50px;}

</STYLE>

URLs in CSS

In CSS, the format for URLs is
as follows: url(address)

GNUFDL • PID_00148397 36 Web page design

In this example, thelayer would be placed 50 points from the upper

left-hand corner of the page. To define the layer, in this case, we will use a

SPAN tag.

 ...

 Content of the layer

 ...

In this example, we positioned the previous layer in a specific position on the

page; we can also place layers in relative positions in relation to the position

that the text would occupy on the page where they are written.

The definition for this is as follows:

<STYLE TYPE="text/css"> #flotlayer {position: relative; left: 20px; top: lOOpx;} </STYLE>

There are several specific layer properties that can be easily modified:

• left, top: these are used to indicate the position of the upper left-hand

corner of the layer in relation to the layer where it is located. The whole

document is considered a layer.

• height, width: indicate the height and width of the layer.

• clip: allows us to define a clipped area inside the layer.

• z-index: indicates the depth in the stack of layers. The greater the

z-index, the shallower the depth and the greater the visibility (they

will be superimposed on those with smaller z-indexes). By default, the

z-index is assigned by order of definition in the HTML file.

• visibility: specifies whether the layer should be visible or hidden. The

possible values are visible, hidden or inherit (inherits the visibility

of the parent layer).

• background-image: Image that will be used as the background of the

layer.

• background-color, layer-background-color: defines the

background colour of the layer for Internet Explorer and

Mozilla/Netscape, respectively.

GNUFDL • PID_00148397 37 Web page design

3. Dynamic HTML

Dynamic HTML (DHTML) is not a recommendation defined by the W3C;

it is a marketing term used by Netscape and Microsoft to refer to new Web

technologies as a whole. These include:

• HTML, particularly HTML 4.0

• Style sheets (CSS)

• JavaScript

These technologies are generally known as DHTML, especially where they

work together to add to the user's web experience. Among other things, this

combination of technologies offers much richer and more complex graphic

user interfaces, the possibility of controlling forms more efficiently (JavaScript

code is executed on the client, resulting in enhanced performance), etc.

One of the key features of DHTML is DOM (Document Object Model), which

defines a hierarchy of objects accessible through JavaScript (a tree in fact)

representing each and every element in the HTML document. The tree used

in DOM is as follows:

We will now look at an example of how to define a form in HTML that uses

controls directed by JavaScript and DOM to handle a TEXTAREA element.

<html>

 <head>

 <meta http-equiv="Content-Type"

 content="text/html; charset=ISO-8859-1">

GNUFDL • PID_00148397 38 Web page design

 <title>Textarea</title>

 <meta name="Author" content="ShinSoft">

 <meta http-equiv="Content-Script-Type" content="text/javascript">

 <meta http-equiv="Content-Style-Type" content="text/css">

 <style type="text/css">

 <!--

table{ background-color:#99ff99; border:2px solid #66cc66; }

td textarea { background-color:#ffffff; border:2px inset #66cc66; width:100 %; }

td input[type="button"]{ background-color:#ccccff; border:2px outset #9999ff; }

td input[type="text"] { background-color:#ffffee; border:2px solid #ff9999; text-align:right; }

[readonly]{ color:#999966; }

dt { font-weight:bold; font-family:fantasy; }

#t { background-color:#ffffee; border:2px solid #ff9999; }

 -->

 </style>

<script language="JavaScript">

<!--

function notSupported(){ alert('No browser support.'); }

function setSel(){

 var f=document.f;

 var t=f.ta;

 if(t.setSelectionRange){

 var start=parseInt(f.start.value);

 var end =parseInt(f.end .value);

 t.setSelectionRange(start,end);

 t.focus();

 f.t.value = t.value.substr(t.selectionStart, t.selectionEnd-t.selectionStart);

 } else notSupported();

} function setProp(id){

 var f=document.f;

 var t=f.ta;

 if(id==0) t.selectionStart = parseInt(f.start.value);

 if(id==1) t.selectionEnd = parseInt(f.end .value);

 f.t.value = t.value.substr(t.selectionStart,

 t.selectionEnd-t.selectionStart);

 t.focus();

}

function getProp(id){

 var f=document.f; var t=f.ta; if(id==0) f.start.value = t.selectionStart;

 if(id==1)

 f.end.value = t.selectionEnd;

 if(id==2)

 f.txl.value = t.textLength;

 f.t.value = t.value.substr(t.selectionStart,

 t.selectionEnd-t.selectionStart);

 t.focus();

GNUFDL • PID_00148397 39 Web page design

 }

function init(){

 var f=document.f;

 var t=f.ta;

 if(t.setSelectionRange){

 f.start.value = t.selectionStart

 f.end .value = t.selectionEnd;

 f.txl .value = t.textLength;

 } else notSupported();

}

// -->

</script>

</head>

<body bgcolor="#ffffff" text="#000000"

 link="#cc6666" alink="#ff0000" vlink="cc6666"

 onload="init();">

<h2>Textarea Element</h2>

<form name="f">

<table border=0 cellspacing=1>

 <tr>

 <th>Start of selection</th>

 <td>

 <input type="text" name="start" size=4 value="0">

 <input type="button" value="obtain" onClick="getProp(0);">

 <input type="button" value="place" onClick="setProp(0);">

 </td>

 <td rowspan=2>

 <input type="button" value="Select" onClick="setSel();">

 </td>

 </tr>

 <tr>

 <th>End of selection</th>

 <td>

 <input type="text" name="end" size=4 value="1">

 <input type="button" value="obtain" onClick="getProp(1);">

 <input type="button" value="place" onClick="setProp(1);">

 </td>

 </tr>

 <tr>

 <th>Length of text</th>

 <td>

 <input type="text" name="txl" id="txl" size=4 value="" readonly>

 <input type="button" value="obtain" onClick="getProp(2);">

 </td>

 </tr>

 <tr>

 <th>TextArea Element</th>

GNUFDL • PID_00148397 40 Web page design

 <td colspan=2>

 <textarea name="ta" id="ta" cols=30 rows=5>

 We can select parts of this text

 </textarea></td></tr>

 <tr>

 <th>selected string</th>

 <td colspan=2>

 <textarea name="t" id="t" readonly></textarea>

 </td>

 </tr>

</table>

</form>

<dl>

<dt>Place button:</dt>

<dd>Assign the value according to the Textarea contents.</dd>

<dt>Select button:</dt>

<dd>Use the values to select text.</dd>

<dt>Obtain button:</dt>

<dd>Obtain the values according to what has been selected.</dd>

</dl>

</body></html>

The result that will appear in the browser is as follows:

GNUFDL • PID_00148397 41 Web page design

4. JavaScript

JavaScript is an interpreted programming language (a script language).

Although there are interpreters that do not depend on a given browser, it

is a script language usually linked to web pages. JavaScript and Java are two

different programming languages with very different philosophies. The only

thing they have in common is their syntax, since Netscape based its design of

JavaScript on the syntax of Java.

4.1. First basic program

As is now the norm when demonstrating programming languages, our first

contact with JavaScript will be to create our first program displaying the

typical "Hello world" message. Since JavaScript is a language that is generally

linked to a web page, the following code will be a HTML file that we will need

to display in a browser.

<HTML>

 <HEAD>

 <SCRIPT LANGUAGE="Javascript">

 function Greeting()

 {

 alert("Hello world");

 }

 </SCRIPT>

 </HEAD>

 <BODY>

 <FORM>

 <INPUT TYPE="button" NAME="Button"

 VALUE="Press" onClick="Greeting()">

 </FORM>

 </BODY>

</HTML>

This JavaScript program paints a button on our screen; this button opens a

window with a message when we click on it. The program looks like this:

GNUFDL • PID_00148397 42 Web page design

We will now discuss the above code so that we can introduce the diverse

elements of JavaScript.

As we can see, the JavaScript code is wrapped by <SCRIPT> tags. These tags

can appear at whichever point in the document we wish; they do not have

to appear in the header.

Browsers that do not offer JavaScript support will ignore the content of

the tags. Optionally, we may require our users to have a specific version of

JavaScript if we use tags like:

<SCRIPT LANGUAGE="Javascriptl.1">

...

</SCRIPT>

An easy way to use the <SCRIPT> tags is to put them in the page header, as

this makes for a more legible HTML code.

The <SCRIPT> tag contains the JavaScript code. In this case, it only has one

function, but it could have more.

Our code:

function Greeting() { alert("Hello world"); }

defines a function called Greeting. As we can see, in contrast to Java,

this function does not belong to an object. Despite being object-oriented,

JavaScript allows functions to exist outside of objects (like C++).

We will see that the only code contained by this function is a call to function,

alert (a window object method).

The following block of JavaScript code is inside the HTML definition of the

form.

<FORM>

 <INPUT TYPE="button" NAME="Button"

GNUFDL • PID_00148397 43 Web page design

 VALUE="Press" onClick="Greeting()">

</FORM>

In this case, the JavaScript code declares an event manager, specifically for the

onClick event, for the object button. An event is an occurrence of something

(in this case a mouse click by the user). When the JavaScript event takes place,

it executes the code indicated in the onClick event manager. This code is a

call to a function, Greeting.

4.2. Basic elements of JavaScript

JavaScript sentences end in ; (like C and Java) and can be grouped into blocks

delimited by { and }.

Another point to bear in mind is that symbols (names of variables, functions,

etc.) are case-sensitive.

4.2.1. Comments

There are two options for adding comments to the program:

// Single-line comment

/*

 comment that takes

 up several lines

*/

As you can see, the format of comments is identical to Java.

4.2.2. Literals

JavaScript follows the same mechanism as Java and C for defining literals, i.e.

it has the following literals:

• Integers 123

• Real 0.034

• Boolean true, false

• Strings "Text string"

JavaScript also offers vector support:

seasons = ["Autumn"," Winter"," Spring"," Summer"];

Special�characters

GNUFDL • PID_00148397 44 Web page design

Like Java, JavaScript uses certain character sequences for inserting special

characters in our string constants.

Within these strings, we can indicate several special characters with special

meanings. The most widely-used are:

Character Meaning

\n New line

\t Tab

\' Inverted comma

\" Quotation marks

\\ Backslash

\xxx The ASCII number (Latin-1 code) of the hexadecimal character

4.3. Data types and variables

In JavaScript, data types are dynamically assigned as we assign values to the

different variables. These can be:

• character strings

• integers

• real

• Boolean

• vectors

• matrices

• references

• objects

4.3.1. Variables

In JavaScript, the names of variables begin with an alphabetical character or

the character '_', and may be formed by alphanumeric characters and the

character '_'.

There is no need for an explicit declaration of variables as they are global.

If you want a local variable, however, you will need to declare it using

the reserved word var and do so in the body of a function. In a variable

declaration with var we can declare several variables by separating their

names with, .

The variables will take the data type from the type of data object we assign

to them.

GNUFDL • PID_00148397 45 Web page design

4.3.2. References

JavaScript eliminates pointers to memory from the language, but maintains

the use of references. References work in a very similar way to pointers

to memory, except that they skip out memory management tasks for

programmers, which make pointers so prone to errors in other languages.

JavaScript allows references to objects and to functions. This ability to

reference functions will be very useful when using functions that hide

differences between browsers.

function onlyExplorer()

{

 ...

}

function onlyMozilla()

{

 ...

}

function all()

{

 var function;

 if(browserMozilla)

 function=onlyMozilla;

 else

 function=onlyExplorer;

 function();

}

4.3.3. Vectors

Javascript has a type of data for handling collections of data. The elements in

these arrays can vary.

As we can see in the code below, JavaScript arrays are objects (array type)

whose index of access may be a non-numerical value for which we should not

initially declare the measurements. We do not have an n-dimensional type of

vector, so we can use vectors of vectors for this.

//we dimension a vector of 20

vector elements = new Array(20);

//the vector grows to house the 30

myWonderfulVector elements [30] = "contained";

GNUFDL • PID_00148397 46 Web page design

//we dimension a capitals

vector = new Array ();

//we can use strings as capital indices

vector["France"] = "Paris";

4.3.4. Operators

Javascript has the same operators as Java and C, and behaves in the same way

as these languages usually do:

• Arithmetical�operators: the usual arithmetical operators are available (+,

-, *, /, %, etc.), as well as increment (+ +) and decrement (-) operators.

• Comparison�operators: we can use the following:

– Equality ==

– Inequality !=

– Strict equality ===

– Strict inequality !==

– Less than <

– Greater than >

– Less than or equal to <=

– Greater than or equal to <=

• Logical�operators: JavaScript has the following logical operators:

– Not !

– and &&

– or ||

• Object�operators: for object handling we also have:

– Create an object new

– Delete an object delete

– Reference to the current object this

4.4. Control structures

Like all programming languages, JavaScript has some control structures.

4.4.1. Conditional forks

JavaScript offers the two best-known control structures:

if (condition)

 <code>

else

 <code>

GNUFDL • PID_00148397 47 Web page design

switch(value)

{

 case valuetest1:

 <code>

 break;

 case valuetest2:

 <code>

 break;

 ...

 default:

 <code>

}

4.4.2. Loops

There are three loops, while and do, while, and the for loop.

while(condition)

 <code>

do

 {

 <code>

 } while(condition);

for(start; condition; increase)

 <code>

4.4.3. Object handling structures

There are two very specific structures for object handling. Firstly, we have the

for..in loop, which allows us to cycle through the properties of an object

(generally in vectors):

for (<variable> in <object)

 <code>

Secondly, we have with, which is very convenient when dealing with multiple

properties of a single object. We can write:

with (object)

{

 property1 = ...

 property2 = ...

}

GNUFDL • PID_00148397 48 Web page design

Instead of:

object.property1=...

object.property2=...

4.5. Functions

JavaScript incorporates the necessary constructions for defining functions.

The syntax is as follows:

function name(argument1, argument2,..., argument n)

{

 code

}

The parameters are passed by value.

4.6. Objects

In JavaScript, an object is a data structure that contains both variables

(object properties) and functions for handling the object (methods). The

object-oriented programming model used by Javascript is a lot simpler than

that of Java or C++. JavaScript does not distinguish between objects and object

instances.

The mechanism for accessing the properties or methods of an object is as

follows:

object.property

value=object.method(parameter1, parameter2, ...)

4.6.1. Defining objects in JavaScript

To define an object in JavaScript, we must first define a special function whose

purpose is to build the object. We need to assign the same name to this

function, called constructor, as we did to the Object.

function MyObject(attr1, attr2)

{

 this.attr1=attr1;

 this.attr2=attr2;

}

From now on we can create objects of the type MyObject

object=new MyObject(....)

GNUFDL • PID_00148397 49 Web page design

object.attr1=a;

To add methods to an object we must first define these methods as a normal

function:

function Method1(attr1, attr2)

{

 //code

 // we have the object in this

}

To assign this method to an object method, type:

object.method1=Method1;

From now on, we can enter the following:

object.method1(....);

4.6.2. Inheritance

In object-oriented programming, inheritance allows us to create new objects

with the methods and properties of objects that are called parents. This allows

us to create derived objects, thus moving from generic implementations to

increasingly specific implementations.

The syntax for creating an object derived from another, such as a

ChildObject derived from a ParentObject that had two arguments (arg1

and arg2) will be:

function ChildObject(arg1, arg2, arg3)

{

 this.base=ParentObject;

 this.base(arg1,arg2);

}

At this point, we can obtain access through a ChildObject to both the

methods and properties of the child and parent objects.

4.6.3. Predefined objects

The existing JavaScript implementations incorporate a series of predefined

objects:

• Arrays Vectors.

• Date For storing and handling dates.

• Math Mathematical methods and constants.

GNUFDL • PID_00148397 50 Web page design

• Number Some constants.

• String String handling.

• RegExp Regular expression handling.

• Boolean Boolean values.

• Function Functions.

4.7. Events

One of the most important aspects of JavaScript is its browser interaction. For

this, it incorporates a series of events triggered just as the user carries out an

action on the web page.

Event Description

onLoad Page loading finishes. Available in: <BODY>

onUnLoad A page is left. Available in: <BODY>

onMouseOver The mouse is hovered over. Available in: <A>, <AREA>,..

onMouseOut The mouse stops hovering over an element.

onSubmit A form is sent. Available in: <FORM>

onClick An element is clicked. Available in: <INPUT>

onBlur The cursor is lost. Available in: <INPUT>, <TEXTAREA>

onChange Content is changed. Available in: <INPUT>, <TEXTAREA>

onFocus The cursor is found. Available in: <INPUT>, <TEXTAREA>

onSelect Text is selected. Available in: <INPUT TYPE="text">, <TEXTAREA>

There are two mechanisms for indicating the function to handle an event:

<HTML>

<HEAD>

 <SCRIPT LANGUAGE="Javascript">

 function Alarm() {

 alert("Hello World");

 }

 </SCRIPT>

</HEAD>

<BODY onLoad="Greeting()">

...

</BODY>

</HTML>

<HTML>

<HEAD>

 <SCRIPT LANGUAGE="Javascript">

GNUFDL • PID_00148397 51 Web page design

 function Greeting() {

 alert("Hello World");

 }

 window.onload = Greeting;

 </SCRIPT>

</HEAD>

<BODY>

...

</BODY>

</HTML>

GNUFDL • PID_00148397 52 Web page design

5. Practical: creating a complex web page using the
techniques described.

We will now create a web page using all of the techniques seen up to this

point. The result will be a page like this:

To build this page, we are not going to use any tables or frames). We are only

going to use separators like DIV, P, etc. and CSS positioning.

We will also incorporate an animation effect in the title of the business, for

which we will not use any components that are not DHTML. This will also

allow the animation to work properly in Mozilla/Netscape browsers, such as

Opera, and in Internet Explorer, etc.

Another of the principles for the design of this page will be that we will use

two different files to maintain the style sheets, one containing the colours and

the other containing the styles per se. This will make it easier to make any

changes in style, etc.

We will now show the same page as before, indicating the type of element in

each of the blocks that make up the page:

GNUFDL • PID_00148397 53 Web page design

This is the code for the style sheet indicating the format, which, in our

example, is called style.css

/* ###### Body ###### */

Body {

 font-family: verdana, tahoma, helvetica, arial, sans-serif;

 font-size: 94%;

 margin: 0;

}

h1, h2, h3 {

 font-family: arial, verdana, tahoma, sans-serif;

}

h1 {

 font-size: 164%;

 font-weight: bold;

 font-style: italic;

 padding-top: lem;

 border-top-style: solid;

 border-top-width: 1px;

} P {

 padding-bottom: lex;

} img {

 border: none;

}

code {

font-family: "lucida console", monospace;

font-size: 95%; }

GNUFDL • PID_00148397 54 Web page design

dt {

 font-weight: bold;

}

dd {

 padding-bottom: 1.5em;

}

#textBody {

 text-align: justify;

 line-height: 1.5em;

 margin-left: 12em;

 padding: 0.5ex 14em 1em 1em;

 border-left-style: solid;

 border-left-width: 1px;

}

#textBody a {

 /* colours.css */

}

#textBody a:hover {

 text-decoration: none;

}

/* ###### Header ###### */

#header{

 height: 4em;

 padding: 0.25em 2.5mm 0 4mm;

}

.headerTitle {

 font-size: 252%;

 text-decoration: none;

 font-weight: bold;

 font-style: italic;

 line-height: 1.5em;

 }

.headerTitle span {

 font-weight: normal;

}

.headerLinks {

 font-size: 87%;

 padding: 0.5ex lOem 0.5ex 1em;

 position: absolute; right: 0; top: 0;

}

GNUFDL • PID_00148397 55 Web page design

.headerLinks * {

 text-decoration: none;

 padding: 0 2ex 0 lex;

}

.headerLinks a:hover {

 text-decoration: underline;

}

.menuBar {

 text-align: center;

 padding: 0.5ex 0;

}

.menuBar * {

 text-decoration: none;

 font-weight: bold;

 padding: 0 2ex 0 lex;

}

.menuBar a:hover {

 /* colours.css */

}

/* ###### Left ###### */

.leftBar {

 font-size: 95%;

 width: 12.65em;

 float: left;

 clear: left;

}

.leftBar a, .leftBar span {

 text-decoration: none;

 font-weight: bold;

 line-height: 2em;

 padding: 0.75ex lex; display: block;

}

[class ="leftBar"] a, [class ="leftBar"] span {

 line-height: 1.5em;

}

.leftBar a:hover {

 /* colors.css */

}

.leftBar .leftBarTitle {

GNUFDL • PID_00148397 56 Web page design

 font-weight: bold;

 padding: 0.75ex lex;

}

.leftBar .textBar {

 font-weight: normal;

 padding: lex 0.75ex lex lex;

}

.leftBar .thePage{

/* colors.css */

}

/* ###### Right ###### */

.rightBar {

 font-size: 95%;

 width: 12.65em;

 margin: 2ex 0.8ex 0 0;

 float: right;

 clear: right;

 border-style: solid;

 border-width: 1px;

}

[class ="rightBar"] {

 margin-right: 1.5ex;

}

.rightBar a {

 font-weight: bold;

}

.rightBar a:hover {

 text-decoration: none;

}

.rightBar .leftBarTitle {

 font-weight: bold;

 margin: 1em 1ex;

 padding: 0.75ex 1ex;

}

.rightBar .textBar {

 font-weight: normal;

 line-height: 1.5em;

 padding: 0 3ex 1em 2ex;

GNUFDL • PID_00148397 57 Web page design

}

We will now show colors.css:

/* ###### Text colours ###### */

#textBody a, .rightBar a

{ color: #ff2020; }

.rightBar a

{ color: #ff2020; }

h1, .rightBar span

{ color: #a68c53; }

.headerTitle, .headerLinks *, .leftBar

.leftBarTitle, .leftBar .thePage,

.rightBar

.leftBarTitle

{ color: black; }

.menuBar a:hover, .leftBar a:hover

{ color: black; }

.leftBar a:hover

{ color: black; }

.headerTitle span, .menuBar, .menuBar *

{ color: white; }

.headerLinks

{ color: #b82619; }

/* ###### Background colours ###### */

body

{ background-color: #c3c2c2; }

#textBody, .headerLinks, .menuBar a:hover,

.rightBar

{ background-color: white; }

#header

{ background-color: #b82619; }

.menuBar

{ background-color: black; }

GNUFDL • PID_00148397 58 Web page design

.leftBar .leftBarTitle, .rightBar

.leftBarTitle

{ background-color: #e6dfcf; }

/* ###### Border colours ###### */

h1, #textBody, .rightBar

{ border-color: #e6dfcf; }

We will now reveal the code for the website of Company X, our fictitious

company:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

 <head>

 <meta http-equiv="content-type" content="application/xhtml+xml; charset=iso8859-1" />

 <meta name="author" content="haran" />

 <meta name="generator" content="Windows Notepad" />

 <link rel="stylesheet" type="text/css" href="style.css" />

 <link rel="stylesheet" type="text/css" href="colours.css"/>

 <title>Demo</title>

 <style type="text/css"> .textoexp {

 font-family: Arial;

 color: black;

 font-size: 30pt;

 text-align: left;

 letter-spacing: -20px;

 } </style>

 <script type="text/javascript"> function

 expandText(start, end, step, speed){

 if (start < end){

 document.getElementById("textoexpand").style.letterSpacing = start+"px";

 start=start+step;

 setTimeout("expandText("+start+","+end+","+step+","+speed+")",speed);

 }

 }

 </script>

 </head>

 <body onLoad="expandText(-20,30,1,5);">

 <div id="top"></div>

 <!-- ###### Header ###### -->

 <div id="header">

GNUFDL • PID_00148397 59 Web page design

 Company X

 <div class="headerLinks">

 Site Map

 Contact

 Help

 </div>

 </div>

 <div class="menuBar">

 Products

 Solutions

 Store

 Customer car

 Contact us

 About Company X

 </div>

 <!-- ###### Left ###### -->

 <div class="leftBar">

 <div class="leftBarTitle">Content</div>

 Welcome

 Our mission

 Our clients

 The future

 <div class="leftBarTitle">Company X</div>

 Europe

 South America

 Asia/Pacific

 Rest of the world

 <div class="leftBarTitle">Search</div>

 <form method="GET">

 <Input type=text size=13 name="text"><input type=submit

 name="Go" value="Go"></form>

 </div>

 <!-- ###### Right ###### -->

 <div class="rightBar">

 <div class="leftBarTitle">News</div>

 <div class="textBar">1 Oct 03

 Launch of VaporWare 1.0! Following years of evaluation versions,

 VaporWare 1.0 is launched.

 </div>

 </div>

 <div class="textBar">15 May 03

GNUFDL • PID_00148397 60 Web page design

 The new offices of the R&D department have been inaugurated

 in Sant Bartomeu del Grau. </div>

 <div class="textBar">more news...</div>

 <div class="leftBarTitle">Downloads</div>

 <div class="textBar">X-Linux

 data ; download</div>

 <div class="textBar">VaporWare

 data ; download</div>

 </div>

 <!-- ###### Text ###### -->

 <div id="textBody">

 <h1 id="Welcome"

 style="border-top: none;

 padding-top: 0;">Welcome to Company X!</h1>

 <p>This is the website of Company X, a fictitious company

 that develops software based on free software.

 <h1 id="Notes">Notes on this design</h1>

 <dl>

 <dt>Compliance with standards</dt>

 <dd>We have used the 1.0 Strict and CSS 2 XHTML standards

 for display with most browsers.</dd>

 <dt>Design without tables</dt>

 <dd>It has been designed without the use of tables, for

 greater clarity and speed of rendering.</dd>

 <dt>Javascript+DOM</dt>

 <dd>We have used JavaScript+DOM for the animation so that

 it is rendered correctly on all browsers.</dd>

 <dt>Two style sheets</dt> <dd>A separate style sheet has

 been used for the colour scheme.</dd>

 </dl>

 </div>

</body>

</html>

GNUFDL • PID_00148397 61 Web page design

Bibliography

Musciano, Chuck; Kennedy, Bill (2000). HTML & XHTML: The Definitive Guide. 4th
Edition. O'Reilly.

Meyer, Eric A. (2000). Cascading Style Sheets: The Definitive Guide. O'Reilly.

Flanagan, David (2001). JavaScript: The Definitive Guide. O'Reilly.

Goodman, Danny (2002). Dynamic HTML: The Definitive Reference. O'Reilly.

Text structured
format: XML

Carles Mateu

PID_00148402

GNUFDL • PID_00148402 Text structured format: XML

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148402 Text structured format: XML

Index

1. Introduction to XML... 5

2. XML.. 9

2.1. Well-formed document ... 10

2.2. Well-formed is equivalent to analysable 11

2.3. Namespaces ... 12

2.3.1. Using namespaces .. 13

3. Validation: DTD and XML Schema.. 15

3.1. DTD ... 15

3.1.1. Syntactic conventions of DTD 16

3.1.2. ELEMENT element ... 17

3.1.3. ATTLIST element ... 19

3.1.4. Linking documents to a DTD .. 21

3.2. XML Schema ... 23

3.2.1. The <schema> element ... 25

3.2.2. Simple elements ... 26

3.2.3. Attributes .. 27

3.2.4. Content restrictions ... 28

3.2.5. Complex elements in XSD .. 33

3.2.6. Indicators for complex types ... 38

4. Transformations: XSLT... 42

4.1. Simple transformation .. 43

4.2. The xsl:template element... 45

4.3. The value-of element ... 46

4.4. The xsl:for-each element .. 46

4.5. Sorting information: xsl:sort... 47

4.6. Conditions in XSL .. 48

4.6.1. The xsl:if element .. 48

4.6.2. The xsl:choose element... 49

4.7. The xsl:apply-templates element .. 50

4.8. Introduction to XPath .. 51

4.8.1. Selecting unknown elements .. 52

4.8.2. Selecting branches of the tree 53

4.8.3. Selecting multiple branches .. 53

4.8.4. Selecting attributes .. 54

4.8.5. Functions library .. 54

5. Practical: creating an XML document with its

corresponding XML Schema and transformations with

XSLT... 55

GNUFDL • PID_00148402 Text structured format: XML

Bibliography... 65

GNUFDL • PID_00148402 5 Text structured format: XML

1. Introduction to XML

XML is the abbreviation of Extensible Markup Language. It is a World Wide

Web Consortium recommendation (http://www.w3.org is a basic reference

for XML), whose original aim was to rise to the challenge of the electronic

publication of documents on a large scale. XML is becoming increasingly

important in the exchange of a wide variety of information on the Web and

in other contexts.

XML derives from a markup language called SGML (an ISO standard,

specifically ISO-8879) and it is a subset of SGML whose aim is to be served,

received and processed on the Web like HTML. XML was designed for

simplicity of implementation and interoperability with SGML and HTML, and

for use in the design of data-based applications.

XML was developed in 1996 by a group under the auspices of W3C, originally

known as the SGML working group, with the following goals, as set down in

the standard definition document:

1) XML shall be straightforwardly usable over the Internet.

2) XML shall support a wide variety of applications.

3) XML shall be compatible with SGML.

4) It shall be easy to write programs which process XML documents.

5) The number of optional features in XML is to be kept to the absolute

minimum, ideally zero.

6) XML documents should be human-legible and reasonably clear.

7) The XML design should be prepared quickly.

8) The design of XML shall be formal and concise.

9) XML documents shall be easy to create.

10) Brevity in XML markup is of minimal importance.

Another area of the recommendation refers to other related standards

that, together with the definition of XML, are absolutely essential for

understanding XML:

GNUFDL • PID_00148402 6 Text structured format: XML

This specification, together with associated standards (Unicode and

ISO/IEC 10646 for characters, Internet RFC 1766 for language

identification tags, ISO 639 for language name codes, and ISO 3166

for country name codes), provides all the information necessary to

understand XML Version 1.0 and construct computer programs to

process it.

You may wonder why W3C saw the need to develop a new language for the

Web when we already had HTML. By 1996, HTML had already revealed some

of its most serious deficiencies:

• HTML was optimised to be easy to learn, not to be easy to process:

– A single set of tags (regardless of applications).

– Predefined semantics for each tag.

– Predefined data structures.

• HTML sacrifices power for ease of use.

• HTML is fine for straightforward applications but not so good for complex

applications:

– Complex data sets.

– Data that needs to be handled in different ways.

– Data for controlling programs.

– No possibility of formal validation.

In the light of this, the W3C developed a new language (XML) providing:

Extensibility: new tags and attributes can be defined as needed.

Structure: any type of hierarchically organised data can be modelled.

Validity: data can be automatically validated (structurally).

Media� independence: the same content can be published on a range of

media.

XML can be characterised as follows:

XML is a simplified version of SGML that is very easy to implement.

It is a metalanguage, rather than a language, designed for defining

an unlimited number of languages for specific purposes which can be

processed using the same tools regardless of the purpose for which they

were built.

As this definition indicates, XML is not a language, it is a metalanguage

that allows us to define a multitude of languages for specific purposes. The

following chapters will explain how to define these languages and how to

GNUFDL • PID_00148402 7 Text structured format: XML

define rules for the structural validation of the languages. These definitions

and even the definition of programs to translate and transform XML files are

in XML, which gives us a clue as to the power of XML. Many languages

have been defined in XML; the configuration files of some of the Web's most

widely-used programs (Tomcat, Roxen, etc.) are defined with XML and many

data files and documents, among others, also use it for their definition. The

most well-known languages defined with XML include:

• SVG (Scalable Vector Graphics)

• DocBook�XML (Docbook-XML)

• XMI (XML Metadata Interface Format)

• WML (WAP Markup Language)

• MathML (Mathematical Markup Language)

• XHTML (XML HyperText Markup Language)

Here is an example of an XML document that we have defined:

<?xml version="l.0" encoding="iso-8859-l"?>

 <library>

 <book language="English">

 <title>The Hobbit</title>

 <author>J. R. R. Tolkien</author>

 <publisher>Allen and Unwin</publisher>

 </book>

 <book language="Spanish">

 <title>El Quijote</title>

 <author>Miguel de Cervantes</author>

 <publisher>Alfaguara</publisher>

 </book>

 </library>

This sample document contains some of the features of XML already

mentioned, such as a hierarchical structure, legibility, designed for a specific

use (the storage of books in our library). The example also demonstrates the

differences between XML and HTML that justified the introduction of XML.

We will now write a similar document in HTML:

<HTML>

 <HEAD>

 <title>Library</TITLE>

 </HEAD>

 <BODY>

 <Hl>The Hobbit</Hl>

 <P>Author:J. R. R. Tolkien</P>

 PublisherAllen and Unwin</P>

 <H1>El Quijote</Hl>

GNUFDL • PID_00148402 8 Text structured format: XML

 <P>Author:Miguel de Cervantes</P>

 <P>PublisherAlfaguara</P>

 </BODY>

</HTML>

As we can see, HTML offers us ways of representing the display format (,

<I> etc. represent the format: bold, italic etc.), but these do not give us any

information on the semantics of the data they contain. In XML, we have

tags that tell us about the semantics of the data: <author> indicates that the

data contained corresponds to the author etc. No information is given on the

display format; we are not told how the name of the author will be visualised

on screen (bold, italics, etc). XML has other tools for specifying this and for

changing the format of representation according to where it is to be displayed

(to adapt it to a specific web browser, mobile telephone etc).

GNUFDL • PID_00148402 9 Text structured format: XML

2. XML

An XML object (or XML document) is defined as a document formed by tags

and values that meets the XML specification and is well formed.

We will begin our study of XML with a sample XML document to see how it is

made. To do so, we will design an XML format to represent kitchen recipes. We

will save our recipes in this XML format (generally called XML application),

which we call RecipeXML.

<?xml version="1.0"?>

 <Recipe>

 <Name>Spanish omelette</Name>

 <Description>

 The traditional, typical Spanish omelette,

 just like our mothers make it.

 </Description>

 <Ingredients>

 <Ingredient>

 <Quantity unit="piece">3</Quantity>

 <Item>Potatoes</Item>

 </Ingredient>

 <Ingredient>

 <Quantity unit="piece">2</Quantity>

 <item>Eggs</Item> </Ingredient>

 <Ingredient>

 <Quantity unit="litre">0.1</Quantity>

 <Item>Oil</Item>

 </Ingredient>

 </Ingredients>

 <Instructions>

 <Step>

 Peel and slice the potatoes

 </Step>

 <Step>

 Add some oil to a frying pan

 </Step>

 <!-- And continue in this way... -->

 </Instructions>

 </Recipe>

Recipe written in RecipeXML

XML specification

The XML specification is
available from the W3C
website: http://www.w3c.org

GNUFDL • PID_00148402 10 Text structured format: XML

This document is an XML document. All well-formed XML documents must

begin with a line like this:

<?xml version="1.0"?>

, telling us the version of the XML specification used and that it is

an XML document. It must also be made up exclusively of XML tags

organised hierarchically. We can quickly see that XML does not store how

the information should be represented or displayed; instead, it stores the

semantics of this. Our document shows how this information is organised:

Recipes are made up of a list of ingredients and instructions. The list of ingredients

is a series of ingredients each with its name, quantity etc.

As in our recipe, all XML tags follow the format shown.

2.1. Well-formed document

The well-formed concept is taken from mathematics, in which it is plausible

to write an expression containing mathematical symbols such as:

1)1(– –5(+ =)4 < 3

which, although formed by mathematical symbols, means nothing because

it does not follow the rules and conventions of writing mathematical

expressions. This mathematical expression is not well formed.

In XML, a well-formed document must follow these rules:

All� tags� closed: in HTML, we can be quite lax about syntactical rules,

leaving tags (like , for example) open for the whole of a document

or indiscriminately using tags like <P> without closing them with their

corresponding </P>. XML does not permit such laxness. All open tags

GNUFDL • PID_00148402 11 Text structured format: XML

must have their corresponding closing tags. This is because tags in XML

represent hierarchical information showing how the different elements relate

to one another. If we do not close the tags, we create ambiguities in this

representation that will inhibit automatic processing.

Tags�cannot�overlap: a tag opened inside another tag must be closed before

the tag that contains it is closed. The example:

<Book>Platero y Yo<Author>J. R.Jiménez</Book></Author>

is not well formed because Author is not closed inside Book, where it should

be. The correct sentence should read:

<Book>Platero y Yo<Author>J. R. Jiménez</Author></Book>

In other words, the structure of the document must be strictly hierarchical.

The�values�of�attributes�must�appear�inside�quotation�marks: unlike HTML,

where we can indicate attributes without quotation marks, for example:

<IMAGE SRC=img.jpg SIZE=10>

in XML, all attributes must be enclosed by quotation marks. The above

attributes would therefore be written as:

<IMAGE SRC="img.jpg" SIZE="10">.

The�characters�<,�>�and�"�are�always�represented�by�character�entities: to

represent these characters (in the text, rather than as tag marks), we must

always use special character entities: <, > and ". These characters

are specific to XML.

2.2. Well-formed is equivalent to analysable

The importance of whether or not a document is well formed in XML lies

in the fact that a well-formed document can be subject to syntactic analysis

or parsing (i.e. it can be automatically processed). There are many parsers

(analysers) in many programming languages enabling us to work with XML

documents. XML parsers can detect structural errors in XML documents (i.e.

whether they are well formed) and report them to the program. This feature

is very important for programmers because it releases them from the task of

having to detect errors by assigning it to a program (the parser), which does

it automatically.

GNUFDL • PID_00148402 12 Text structured format: XML

Some parsers go beyond simply detecting whether the document is well

formed and can even detect whether it is valid, which means that the structure,

position and number of tags is correct and makes sense. Let's take the

following excerpt from our recipe document:

<Ingredient>

 <Quantity unit="piece">3</Quantity>

 <Quantity unit="litre">4</Quantity>

 <Item>Potatoes</Item>

</Ingredient>

This XML is well formed and meets all the criteria for this but it does not make

sense. What does it mean? We have potatoes in our recipe, but how many

do we need? In this case, the problem is that we have a well-formed XML

document but it is useless because it makes no sense. We need some sort of

way to ensure that our document makes sense. In this case, we need to specify

that each ingredient will only have a quantity type tag, that this will have an

optional attribute and that it will not contain nested tags. To do this, XML

has two document structure specification languages, XML�Schema and DTD,

which we will see later.

2.3. Namespaces

XML is a standard designed for the sharing of information. What happens

when we take information from two different sources and combine it in XML

to send it to somebody else? We may have some sort of conflict arising from

coincidences in the names of tags.

Imagine this scenario: an Internet provider saves all of its data in XML. The

sales division stores the home address of clients in a field called <address>.

The client helpdesk uses <address> to store the client's e-mail address and,

lastly, the network control centre uses <address> to store the IP address of the

client's computer. If we combine the information from the three departments

of the company in a single file, we could end up with:

<client>

 ...

 <address>Royal Street</address>

 ...

 <address>sales@client.com</address>

 ...

 <address>192.168.168.192</address>

 ...

</client>

GNUFDL • PID_00148402 13 Text structured format: XML

Clearly, we would have a problem in this case because we would be unable to

work out the meaning of <address> in each case.

Therefore, in 1999, the W3C defined an XML extension called namespaces,

which can resolve many conflicts and ambiguities of this nature.

2.3.1. Using namespaces

Namespaces are a prefix added to XML tags to indicate the context of the tag

in question. In the above example, we could define:

<network:address>: for use by the network control centre.

<help:address>: for use by the client helpdesk.

<sales:address>: for use by the sales department.

Our combined document would thus look like this:

<client>

 ...

 <sales:address>Royal Street</sales:address>

 ...

 <help:address>sales@client.com</help:address>

 ...

 <network:address>192.168.168.192</network:address>

 ...

</client>

In order to use a namespace in a document we must first declare it. This can

be done in the root element of the document as shown:

<?xml version="1.0" encoding="iso-8859-1"?>

<clientportfolio

 xmlns:sales="http://www.company.com/sales"

 xmlns:help="http://www.company.com/help"

 xmlns:network="http://www.company.com/network">

 <client>

 ...

 <sales:address>Royal Street</sales:address>

 ...

 <help:address>sales@client.com</help:address>

 ...

 <network:address>192.168.168.192</network:address>

 ...

 </client>

</clientportfolio>

GNUFDL • PID_00148402 14 Text structured format: XML

The definition has xmlns attributes(XML namespace) where we indicate the

prefix that we will use for the namespace and a URI (Uniform Resource

Identifier) that will act as the unique namespace identifier.

GNUFDL • PID_00148402 15 Text structured format: XML

3. Validation: DTD and XML Schema

As we have seen, XML allows us to check a document's form automatically, but

without additional information it is impossible to check the validity of this

form based on the document. As a result, W3C has developed XML standards

to validate documents with a formal specification of how they should be.

These standards are called DTD and XSchema.

DTD is an old standard derived from SGML that has some major weaknesses,

the biggest being that it is not written in XML. XSchema, on the other hand,

is a relatively modern, very powerful and extensible standard that is written

entirely in XML.

3.1. DTD

DTD (Document� Type� Definition) is a standard allowing us to define a

grammar that our XML documents must follow in order to be considered valid.

A DTD definition for n XML documents specifies which elements can exist

in an XML document, the attributes that these can have and which elements

can or must be contained within other elements and their order.

XML parsers that can validate documents with DTDs read these documents

and the associated DTD. If the XML document does not meet the requirements

set down in the DTD, the parsers report the error and do not validate the

document.

With DTDs, we define our XML dialect (remember that we define which tags

we will use in our documents, the meaning we give to them etc). This ability

to define a specific XML dialect is what gives the latter its extensible character.

Although the DTD standard should have been replaced by XML Schema, it

is still commonplace, easier to use and more compact than XML Schema.

In addition, most users do not need the improvements introduced by XML

Schema. A variety of XML dialects have been defined with DTD that are widely

used on the Internet, such as RDF for semantic web, MathML for mathematical

documents, XML/EDI for electronic data interchange in business, VoiceXML

for applications operated by voice or which use voice, WML to represent

documents for browsers on mobile devices such as telephones, etc.

Here is a possible DTD for our sample recipe that will define the way in which

our recipes should be written in RecipeXML:

<!- Sample DTD for RecipeXML ->;

<!ELEMENT Recipe (Name, Description?,

 Ingredients?, Instructions?)>;

GNUFDL • PID_00148402 16 Text structured format: XML

<!ELEMENT Name (#PCDATA)>;

<!ELEMENT Description (#PCDATA)>;

<!ELEMENT Ingredients (Ingredient*)>;

<!ELEMENT Ingredient (Quantity, Item)>;

<!ELEMENT Quantity (#PCDATA)>;

<!ATTLIST Quantity unit CDATA #REQUIRED>;

<!ELEMENT Item (#PCDATA)>;

<!ATTLIST Optional item CDATA "0"

 vegetarian CDATA "yes">;

<!ELEMENT Instructions (Step)+>;

<!ELEMENT Step (#PCDATA)>;

We can work out the validity rules from this DTD document and produce a

more legible description:

• A recipe consists of a name (compulsory), description (optional),

ingredients (optional) and instructions (optional).

• The name and description can contain alphanumeric characters (PCDATA

means Parsed Character Data).

• The ingredients are a list of ingredient elements.

• An ingredient consists of an item and the quantity.

• The quantity is an alphanumeric value and the tag has an attribute, the

unit, which describes the unit of measurement being used.

• A recipe item consists of the name (an alphanumeric value) and can have

two attributes: optional (whether the ingredient is compulsory or not) and

vegetarian (whether the ingredient is suitable for vegetarians).

• The instructions for preparation are a list of steps.

• A step consists of an alphanumeric text describing the step.

We will now look at DTD syntax in order to define XML dialects.

3.1.1. Syntactic conventions of DTD

As we have seen, the syntax of DTD is not very clear at first sight; however, it

is not too complicated. The first step towards understanding it is to know the

definitions and uses of the symbols used, which can be seen in Table

GNUFDL • PID_00148402 17 Text structured format: XML

Symbol Description

() Parentheses are used to group subtags
<!ELEMENT Ingredient (Quantity,Item)>

, Exact order of the elements
(Name, Description?, Ingredients?, Instructions?)

| Just one of the elements indicated
(Boil | Fry)

If we do not indicate anything, the elements only appear once
(Quantity, Item)

+ Once or more
Step+

? Optional element
Instructions?

* Zero times or more
Ingredient*

#PCDATA Parsed Character Data
<!ELEMENT Item (#PCDATA)>

Syntactic elements of DTD

3.1.2. ELEMENT element

The DTD elements called ELEMENT define a tag in our XML dialect. For

example:

<!ELEMENT Recipe (Name, Description?, Ingredients?, Instructions?)>

defines the Recipe tag, specifying that it contains the subtags: Name,

Description, Ingredients and Instructions, and that the last three are optional

(indicated by the ? symbol).

The definition of ELEMENT is as follows:

<!ELEMENT name category>

<!ELEMENT name (content)>

Empty�elements

Empty elements are declared with the EMPTY category.

<!ELEMENT name EMPTY>

In XML, this name element would be used like this:

<name />

GNUFDL • PID_00148402 18 Text structured format: XML

Character-only�elements

Elements that only contain alphanumeric data are declared using #PCDATA

inside parentheses.

<!ELEMENT name (#PCDATA)>

Elements�with�any�content

The elements we declare using ANY as an indicator of content can contain

any combination of parseable data:

<!ELEMENT name ANY>

Elements�with�subelements�(sequences)

Elements with one or more child elements are defined with the name of the

child elements inside parentheses:

<!ELEMENT name (child1)>

<!ELEMENT name (child1, child2,)>

For example:

<!ELEMENT car (make, number plate, colour)>

Children declared in a sequence of elements separated by commas must

appear in the same order in the document. Child elements must also be

declared in the DTD document. These child elements can also have children

themselves.

The full declaration of car is therefore:

<!ELEMENT car (make, number plate, colour)>

<!ELEMENT make (#PCDATA)>

<!ELEMENT number plate (#PCDATA))>

<!ELEMENT colour (#PCDATA)>

Cardinality�of�element�occurrences

The following declaration indicates that the child element can only occur

inside the parent element:

<!ELEMENT name (child)>

If we want the child element to appear more than once and at least once:

GNUFDL • PID_00148402 19 Text structured format: XML

<!ELEMENT name (child+)>

If we want it to appear any number of times (including the possibility that it

does not appear at all):

<!ELEMENT name (child*)>

If we only want to allow it to appear once but do not want this to be

compulsory:

<!ELEMENT name (child?)>

Mixed�content�elements.

We can declare elements containing other child elements and/or

alphanumeric data.

<!ELEMENT name (#PCDATA child child2)*>

3.1.3. ATTLIST element

As we have seen, elements can have attributes in XML. Obviously, DTD has a

mechanism for indicating which attributes an ELEMENT can have, the type,

whether they are compulsory, etc. We use the ATTLIST element for this, whose

syntax is:

<!ATTLIST element attribute type-attribute value-default>

An example of its use would be:

<!ATTLIST payment method CDATA "cash on delivery" >

And its use in XML:

<payment method="cash on delivery" />

The attribute type must be one taken from the following list:

GNUFDL • PID_00148402 20 Text structured format: XML

Value Description

CDATA
(V1/V2/...)

ID
IDREF
IDREFS

NMTOKEN
NMTOKENS

ENTITY
ENTITIES

NOTATION
xml:

The value is character data
The value must be one from an enumerated list
The value is a unique ID
The value is the ID of another element
The value is a list of other IDs
The value is a valid XML name
The value is a list of valid XML names
The value is an entity
The value is a list of entities
The value is a name of a notation
The value is a predefined XML value

The default value can be one of the following:

Value Description

value The default value of the attribute

#REQUIRED The value of the attribute must appear in the element

#IMPLIED The attribute does not need to be included value

#FIXED value The value of the attribute is fixed

Default�value

This example:

<!ELEMENT payment EMPTY><!ATTLIST payment method CDATA "cash on delivery" >

the following XML is considered valid:

<payment />

In this case, since we have not specified a value for method, it will contain

the default value, cash on delivery.

Syntax�of�#IMPLIED

This example:

<!ELEMENT payment EMPTY>

<!ATTLIST payment method CDATA #IMPLIED >

will validate the following XML correctly:

<payment method="card" />

<payment />

GNUFDL • PID_00148402 21 Text structured format: XML

Thus, we use #IMPLIED when we do not want to force the user to use an

attribute but where we cannot enter default values.

Syntax�of�#REQUIRED

This example:

<!ELEMENT payment EMPTY>

<!ATTLIST payment method CDATA #REQUIRED >

will validate the following XML correctly:

<payment method="card" />

but it will not validate:

<payment />

We use #REQUIRED when we cannot supply a default value but we want the

attribute to appear and have a value assigned to it.

3.1.4. Linking documents to a DTD

There are two ways to link an XML document to a DTD: either include the

DTD in the XML document or use an external reference to the DTD.

The first option is the easiest but has the most disadvantages because it

increases the size of the XML documents and complicates their maintenance,

since a change in the DTD will require revising every document that included

it.

The format of an XML document in which it is included would look like this:

<?xml version="1.0"?>

<!DOCTYPE Recipe [

 <!ELEMENT Recipe (Name, Description?,

 Ingredients?, Instructions?)>

 <!ELEMENT Name (#PCDATA)>

 <!ELEMENT Description (#PCDATA)>

 <!ELEMENT Ingredients (Ingredient)*>

 <!ELEMENT Ingredient (Quantity, Item)>

 <!ELEMENT Quantity (#PCDATA)>

 <!ATTLIST Quantity unit CDATA #REQUIRED>

 <!ELEMENT Item (#PCDATA)>

 <!ATTLIST Optional item CDATA "0"

 vegetarian CDATA "yes">

 <!ELEMENT Instructions (Step)+>

GNUFDL • PID_00148402 22 Text structured format: XML

 <!ELEMENT Step (#PCDATA)>

]>

<Recipe>

 <Name>Spanish omelette</NAME>

 <Description>

 The traditional, typical Spanish omelette,

 just like our mothers make it.

 </Description>

 <Ingredients>

 <Ingredient>

 <Quantity unit="piece">3</Quantity>

 <Item>Potatoes</Item>

 </Ingredient>

 <Ingredient>

 <Quantity unit="piece">2</Quantity>

 <Item>Eggs</Item>

 </Ingredient>

 <Ingredient>

 <Quantity unit="litre">0.1</Quantity>

 <Item>Oil</Item>

 </Ingredient>

 </Ingredients>

 <Instructions>

 <Step> Peel and slice the potatoes </Step>

 <Step> Add some oil to a frying pan </Step>

 <!-- -->

 </Instructions>

</Recipe>

We can reference an external DTD to the XML document using two possible

types of reference: public or private.

This is an example of a private reference:

<?xml version="1.0"?>

<!DOCTYPE Recipe SYSTEM "Recipe.dtd">

<Recipe>

...

While the following example uses a public external reference:

<?xml version="1.0"?>

<!DOCTYPE Recipe

 PUBLIC "-//W3C//DTD XHTML 1.0 STRICT/EN

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<Recipe>

GNUFDL • PID_00148402 23 Text structured format: XML

...

3.2. XML Schema

XML Schema was launched in 2001 as part of W3C's efforts to redress the

obvious failures of DTD:

• We do not have significant control over what is considered valid.

• We have no control over data types (integers etc).

• It is not defined as XML.

• The syntax can sometimes be complicated.

XML Schema has certain features making it far more powerful than DTD:

• It is defined in XML, which means that it is possible to validate XML

Schema documents too.

• It enables control over data types (integers etc).

• It allows us to define new data types.

• It allows us to describe the content of documents.

• It is easy to validate correct data.

• It is easy to define data patterns (formats).

Despite its many advantages, DTD is still the most common mechanism for

defining the structure of XML documents.

Extensibility

XML Schema is extensible because it allows definitions from a schema can be

reused in another schema. It can also be used to define data types from the

data types in the standard and other schemas, and allows a single document

to use several schemas.

We will introduce XML Schema (also known as XSD, XML Schema Definition)

by comparing it to the now-familiar DTD. We will do this using an XML

document, our RecipeXML.

<?xml version="1.0"?>

 <Recipe>

 <Name>Spanish omelette</Name>

 <Description>

 The traditional, typical Spanish omelette,

 just like our mothers make it.

 </Description>

 <Ingredients>

 <Ingredient>

 <Quantity unit="piece">3</Quantity>

 <Item>Potatoes</Item>

GNUFDL • PID_00148402 24 Text structured format: XML

 </Ingredient>

 <Ingredient>

 <Quantity unit="piece">2</Quantity>

 <item>Eggs</Item>

 </Ingredient>

 <Ingredient>

 <Quantity unit="litre">0.1</Quantity>

 <Item>Oil</Item>

 </Ingredient>

 </Ingredients>

 <Instructions>

 <Step> Peel and slice the potatoes </Step>

 <Step> Add some oil to a frying pan </Step>

 <!-- And continue in this way... -->

 </Instructions>

 </Recipe>

This time, instead of showing the DTD associated with it as we saw in the

previous section, we will define an XSD for the document in RecipeXML.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="Quantity">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:decimal">

 <xs:attribute name="unit"

 type="xs:string" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="Description" type="xs:string"/>

 <xs:element name="Ingredient">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Quantity"/>

 <xs:element ref="Item"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Ingredients">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Ingredient"

 maxOccurs="unbounded"/>

GNUFDL • PID_00148402 25 Text structured format: XML

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Instructions">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Step"

 maxOccurs="unbounded"

 minOccurs="l"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Item" type="xs:string" />

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Step" type="xs:string"/>

 <xs:element name="Recipe">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name"/>

 <xs:element ref="Description"/>

 <xs:element ref="Ingredients"/>

 <xs:element ref="Instructions"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

3.2.1. The <schema> element

The <schema> element is the root element of all XSDs:

<?xml version="1.0"?>

<xs:schema>

... ...

</xs:schema>

This element can have some attributes and generally looks similar to this:

<?xml version="1.0"?>

 <xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.company.com"

 xmlns="http://www.company.com"

 elementFormDefault="qualified">

 </xs:schema>

GNUFDL • PID_00148402 26 Text structured format: XML

The following fragment:

xmlns:xs="http://www.w3.org/2001/XMLSchema"

indicates that the elements and data types used in our schema, element etc.

come from the namespace defined in http://www.w3.org/-2001/XMLSchema.

It also assigns a prefix to this namespace, in this case, xs.

This fragment targetNamespace="http://www.company.com" indicates

that the elements defined by this schema (Ingredient, etc.) come from the

"http://www.company.com" namespace.

This one: xmlns="http://www.company.com", indicates that the default

namespace is http://www.company.com, which means that we can assign tags

without a prefix to this namespace.

This one: elementFormDefault="qualified" indicates that all of the

elements used in the XML document declared in this schema must be qualified

in the namespace.

3.2.2. Simple elements

A simple element is an XML element that can only contain text. It cannot

contain other elements or attributes. Nonetheless, the text it contains can be

of any type included in the XSD definition (Boolean, integers, string, etc.) or

it can be a type defined by us. We can also add restrictions to limit the content

or require the data it contains to follow a given pattern.

The syntax for defining a simple element is:

<xs:element name="name" type="type"/>

where name is the name of the element and type is the data type of the element.

Some examples of declarations might be:

<xs:element name="Item" type="xs:string" />

<xs:element name="Age" type="xs:integer"/>

<xs:element name="Date" type="xs:date"/>

The following are XML elements that meet the above restrictions:

<Item>Potatoes</Item>

<Age>34</Age>

<Date>1714-09-11</Date>

XSD offers the following data types:

GNUFDL • PID_00148402 27 Text structured format: XML

• xs:string

• xs:decimal

• xs:integer

• xs:boolean

• xs:date

• xs:time

Fixed�and�default�values

Simple elements can have a default or fixed value. A default value is

automatically assigned to the element when we do not specify a value. This

example assigns Oil as the default value.

<xs:element name="Item" type="xs:string"

 default="Oil"/>

An element with a fixed value always has the same value and we cannot assign

another one to it.

<xs:element name="Item" type="xs:string"

 fixed="Oils"/>

3.2.3. Attributes

Simple elements cannot have attributes. If an element has attributes it is

considered a complex type. The attribute, however, is always declared as a

simple type. We have the same basic data types for attributes as we do for

elements.

The syntax for defining an attribute is

<xs:attribute name="name" type="type"/>

where name is the name of the attribute and type is the data type of the

attribute. One XML element with RecipeXML attributes is:

<Quantity unit="piece">3</Quantity>

and the corresponding XSD for this definition is:

<xs:attribute name="unit" type="xs:string"

 use="required"/>

Fixed�and�default�values

GNUFDL • PID_00148402 28 Text structured format: XML

The declaration of attributes with fixed and default values uses the same

schema as elements:

<xs:attribute name="unit" type="xs:string"

 default="grams"/>

<xs:attribute name="unit" type="xs:string"

 fixed="grams"/>

Optional�and�required�attributes

Attributes are optional by default. Nonetheless, we can openly specify that an

attribute is optional:

<xs:attribute name="unit" type="xs:string"

 use="optional"/>

To specify that it is required:

<xs:attribute name="unit" type="xs:string"

 use="required"/>

3.2.4. Content restrictions

With XSD, we can extend the content restrictions of XSD data types (integers,

etc.) with restrictions designed by ourselves (facets). For example, in the

following code, we specify an element, age, which must have a whole value

between 1 and 120.

<xs:element name="age">

<xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="120"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

Restrictions�on�a�set�of�values

With XSD, we can limit the content of an XML element so that it can only

contain a value from a set of acceptable elements. To do this, we use the

enumeration restriction). For example, we can define an element called wine

by specifying the possible values:

<xs:element name="wine">

<xs:simpleType>

 <xs:restriction base="xs:string">

GNUFDL • PID_00148402 29 Text structured format: XML

 <xs:enumeration value="White"/>

 <xs:enumeration value="Rosé"/>

 <xs:enumeration value="Red"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

The wine element is a simple data type with restrictions. Its acceptable values

are: Red, Rosé and White. We could also have defined it like so:

<xs:element name="wine" type="wineType"/>

<xs:simpleType name="wineType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="White"/>

 <xs:enumeration value="Rosé"/>

 <xs:enumeration value="Red"/>

 </xs:restriction>

</xs:simpleType>

In this case, we could also use the wineType data type for other elements

because it is not part of the definition of wine.

Restrictions�on�a�series�of�values

We can use patterns to define elements containing a specific series of numbers

or letters. For example:

<xs:element name="letter">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-z]"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

The letter element is a simple type with a restriction whose only acceptable

value is ONE of the lowercase letters.

For example, the following element:

<xs:element name="productcode">

<xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:pattern value="[0-9][0-9][0-9][0-9][0-9]"/>

GNUFDL • PID_00148402 30 Text structured format: XML

 </xs:restriction>

</xs:simpleType>

</xs:element>

defines a productcode formed by precisely five digits from 0 to 9.

The following code defines a letters type:

<xs:element name="letters">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="([a-z])*"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

that can take the value of any lowercase letter that appears zero or more times,

i.e. it can have a null value. However, in:

<xs:element name="letters">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="([a-z][A-Z])+"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

, the element can contain lowercase letters but it must contain at least one

letter.

Patterns allow the same type of definitions as restrictions on a set of elements.

For example:

<xs:element name="gender">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="male female"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

GNUFDL • PID_00148402 31 Text structured format: XML

defines a gender element whose value can be: male or female. We can also

define more complex types using patterns such as:

<xs:element name="password">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-zA-ZO-9]{8}"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

which defines a password element made up of eight characters, either letters

or numbers.

Restrictions�on�whitespace�characters

XSD has a restriction for specifying how to handle whitespaces. This is called

the whiteSpace restriction. For example:

<xs:element name="address">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="preserve"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

allows us to define an element called address where we tell the XML processor

that we do not want it to remove any whitespaces. However, the following

definition:

<xs:element name="address">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="replace"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

GNUFDL • PID_00148402 32 Text structured format: XML

tells the XML processor that we want it to replace whitespace characters (tabs,

line breaks, etc.) with spaces. The collapse option will also replace whitespace

characters with spaces and reduce consecutive multiple spaces and characters

at the start or end of a line to a single space.

Length�restrictions

To restrict the length of a value in an element, the following constraints are

available: length, maxLength and minLength. We will define an element called

password:

<xs:element name="password">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="8"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

to have a compulsory length of 8. We can also set it to have a variable length

of 5 to 8:

<xs:element name="password">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="5"/>

 <xs:maxLength value="8"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

The following table summarises the restrictions that can be applied to data

types:

Restriction Description

enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of permitted decimal digits. This must be
greater than or equal to zero.

length Specifies the exact required size. It must be greater than or equal to zero.

maxExclusive Specifies the upper limit for numerical values (the value must be less than
this number).

GNUFDL • PID_00148402 33 Text structured format: XML

Restriction Description

maxlnclusive Specifies the upper limit for numerical values (the value must be less than
or equal to this number).

maxLength Specifies the maximum permitted size. This must be greater than or equal
to zero.

minExclusive Specifies the lower limit for numerical values (the value must be greater
than this number).

minlnclusive Specifies the lower limit for numerical values (the value must be greater
than or equal to this number).

minLength Specifies the minimum required size. This must be greater than or equal
to zero.

pattern Specifies the pattern defining the exact string of permitted characters.

totalDigits Specifies the exact number of permitted digits. It must be greater than
zero.

whiteSpace Specifies how whitespace characters (spaces, tabs, etc.) should be dealt
with.

3.2.5. Complex elements in XSD

A complex element is an XML element that contains other elements and/or

attributes. We can divide complex elements into four main classes:

• Empty elements

• Elements that only contain other elements

• Elements that contain text only

• Elements that contain other elements and text

All complex elements can also contain attributes.

The following are complex elements of each type:

An empty product element:

<product id="1345"/>

A student element that contains other elements:

<student>

<name>John</name>

<surname>Smith</surname>

</student>

An accommodation element that contains only text:

<accommodation type="hotel">

South Coast Inn

GNUFDL • PID_00148402 34 Text structured format: XML

</accommodation>

An expedition element containing both text and elements:

<expedition destination="Fitz Roy">

We arrive at Chaltén in Patagonia on

<date>22.08.2003</date>

</expedition>

Defining�complex�elements

Let's look at the student element that contains other elements:

<student>

<name>John</name>

<surname>Smith</surname>

</student>

We can define this XML element in different ways:

1)We can openly declare the student element:

<xs:element name="student">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Thus, only the student element may use the complex type defined. Note that

the elements contained in student (name and surname) are contained in a

sequence command, which means that they must appear in the same order

in the element.

2)The student element may have a type attribute referring to the complex

type to be used:

<xs:element name="student" type="personinfo"/>

 <xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 </xs:sequence>

GNUFDL • PID_00148402 35 Text structured format: XML

</xs:complexType>

With this technique, multiple elements can refer to the same complex type.

Thus:

<xs:element name="student" type="personinfo"/>

<xs:element name="teacher" type="personinfo"/>

<xs:element name="staff" type="personinfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

We can also use a complex type as a base for building more elaborate complex

types:

<xs:element name="student" type="personinfo"/>

<xs:complexType name="person">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="personinfo">

 <xs:complexContent>

 <xs:extension base="person">

 <xs:sequence>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Empty�elements

Take the following XML element:

<product id="1345"/>

GNUFDL • PID_00148402 36 Text structured format: XML

It is an XML element that contains neither text nor XML elements. To define

it, we need to define a type that only allows elements in its content but we

must not declare any elements. So:

<xs:element name="product">

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="xs:integer">

 <xs:attribute name="id" type="xs:positiveInteger"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

Here, we define a complex type that only contains elements (with

complexContent). This directive indicates that we want to derive the content

from a complex type but do not enter content. We also have a restriction that

adds a whole attribute. We can define the declaration more compactly:

<xs:element name="product">

 <xs:complexType>

 <xs:attribute name="id" type="xs:positiveInteger"/>

 </xs:complexType>

</xs:element>

or define it as a name type to use in the definition of other elements:

<xs:element name="product" type="producttype"/>

<xs:complexType name="producttype">

 <xs:attribute name="id" type="xs:positiveInteger"/>

</xs:complexType>

Defining�complex�types�that�contain�elements�only

Study the following element, which only contains other elements:

<student>

<name>John</name>

<surname>Smith</surname>

</student>

We can define this element in XSD as follows:

<xs:element name="student">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

GNUFDL • PID_00148402 37 Text structured format: XML

 <xs:element name="surname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

As before, we can define it as a name type for use in multiple elements:

<xs:element name="student" tipo="person">

 <xs:complexType name="person">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

Note the use of sequence, indicating that the elements (name and surname)

must appear inside the element in this order.

Elements�containing�text�only

To define elements that only contain text, we can define an extension or

restriction inside a simpleContent element like so:

<xs:element name="element">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="type">

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

or, as a restriction:

<xs:element name="element">

 <xs:complexType>

 <xs:simpleContent>

 <xs:restriction base="type">

 </xs:restriction>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

Look at the following example of an element containing text only:

GNUFDL • PID_00148402 38 Text structured format: XML

<accommodation type="hotel"> South Coast Inn</accommodation>

One possible definition would be:

<xs:element name="accommodation" type="acctype"/>

<xs:complexType name="acctype">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="type" type="xs:string" />

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

Defining�types�containing�text�and�elements

Study the following element, which only contains both text and elements:

<expedition>

We arrive at Chaltén in Patagonia on

<date>22.08.2003</date>

</expedition>

The date element is a child element of expedition. One possible definition

might be:

<xs:element name="expedition">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:element name="date" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

To include text as well as elements in the content of expedition we need to

change the mixed attribute to true. We can obviously also define the type

with a name and use it to define other elements or types.

3.2.6. Indicators for complex types

XSD indicators are used to control how we use elements in complex types.

There are seven indicators:

• Order indicators:

– All

– Choice

GNUFDL • PID_00148402 39 Text structured format: XML

– Sequence

• Occurrence indicators:

– maxOccurs

– minOccurs

• Group indicators:

– Group

– attributeGroup

Order�indicators

Order indicators are used to define how elements occur.

Allindicator

The all indicator specifies that each child element must appear only once

and in any order

<xs:complexType name="person">

 <xs:all>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 </xs:all>

</xs:complexType>

If we use this indicator, we can use the minOccurs set at 0 or 1, and

maxOccurs set only at 1 (we will describe these two indicators later on).

TheChoice indicator

This indicator specifies that only one of the children may appear.

<xs:complexType name="person">

 <xs:choice>

 <xs:element name="Identdocumen" type="xs:string"/>

 <xs:element name="passport" type="xs:string"/>

 </xs:choice>

</xs:complexType>

TheSequence indicator

This indicator specifies that the children must appear in a specific order:

<xs:complexType name="person">

 <xs:sequence>

GNUFDL • PID_00148402 40 Text structured format: XML

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

Occurrence�indicators

Occurrence indicators are used to define how often an element can occur.

For all order and group indicators (any, all, choice, sequence, group) the

default value of maxOccurs and minOccurs is 1.

maxOccurs indicator

The maxOccurs indicator specifies the maximum number of times that an

element can occur.

For an element to appear an unlimited number of times, we need to assign

maxOccurs="unbounded".

minOccurs indicator

This indicator defines the minimum number of times that an element must

appear.

<xs:element name="student">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="subject" type="xs:string" maxOccurs="10" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

This example shows how to use minOccurs and maxOccurs to limit the

appearance of the subject between 0 and 10 times.

Group�indicators

Group indicators are used to define groups of related elements.

Element groups

Element groups are defined as follows:

<xs:group name="groupname">

 ...

GNUFDL • PID_00148402 41 Text structured format: XML

</xs:group>

We must use an order indicator in our definition. For example:

<xs:group name="personGroup">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 <xs:element name="surname2" type="xs:string"/>

 <xs:element name="DOB" type="xs:date"/>

 </xs:sequence>

</xs:group>

We can now use this group to define a type, element, etc. For example:

<xs:complexType name="studentInfo"> <xs:sequence> <xs:group ref="personGroup"/> <xs:element name="department" type="xs:string"/> </xs:sequence> </xs:complexType>

Attribute groups

Attribute groups behave in a similar way to element groups and are defined

with attributeGroup like this:

<xs:attributeGroup name="name">

 ...

</xs:attributeGroup>

For example:

<xs:attributeGroup name="personAttGroup">

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="surname" type="xs:string"/>

 <xs:attribute name="surname2" type="xs:string"/>

 <xs:attribute name="DOB" type="xs:date"/>

</xs:attributeGroup>

It can then be used like this:

<xs:element name="student">

 <xs:complexType>

 <xs:attributeGroup ref="personAttGroup"/>

 </xs:complexType>

</xs:element>

GNUFDL • PID_00148402 42 Text structured format: XML

4. Transformations: XSLT

XSL (eXtensible Stylesheet Languageis an XML language for expressing

style sheets (how a specific XML language should be represented). It has

three main components: XSLT (XSL Transformations), XPath and XSL-FO

(XSL-Formatting Objects).

In contrast to HTML, where the meaning of each tag is clearly defined

(paragraph break, line break, header, bold) and assigning styles (fonts, sizes,

colours, etc.) to these tags is a simple task, tags are not defined in XML. Instead,

the user defines them. In XML, the table tag can represent either an HTML

table or the measurements for a wooden table, so browsers do not know how

to represent the tags. As a result, the presentation language of style sheets must

describe how to display an XML document more clearly.

The XML style language, XSL, has three main components:

• XSLT, a document transformation language.

• XPath, a language for referencing parts of XML documents.

• XSL-FO, an XML document formatting language.

With these three components, XSL can:

• Transform XML into XML, such as XHTML or WML.

• Filter and/or sort XML data.

• Define parts of an XML document.

• Format an XML document based on the values of stored data.

• Extract XML data to XSL-FO to generate files like PDFs.

XSL is a standard W3C language that was standardised in two stages. The

first, in November 1999, included XSLT and XPath, while the second was

completed in October 2001 and included XSL-FO.

XSLT is the part of the XML standard used to transform XML documents into

other XML documents (for example, XHTML, WML etc).

Normally, XSLT does this by transforming each XML element into another

XML element. XSLT can also add other XML elements on output and it can

remove elements. It can resort and reposition elements and check and make

decisions on which elements to display.

GNUFDL • PID_00148402 43 Text structured format: XML

During transformation, XSLT uses XPath to specify or reference parts of

the document that follow one or more defined patterns. When it comes

across a matching pattern, XSLT transforms the matching part of the

original document into the result document. The non-matching parts are not

transformed and remain unchanged in the result document.

4.1. Simple transformation

Like virtually all W3C recommendations, XSLT is essentially an XML language

and must start with a root element. This root element is of the

xsl:stylesheet or xsl:transform type (the two are equivalent). The

correct way to use them is:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

This declaration identifies the namespace recommended by the W3C. If we

use this namespace, we must also include the version attribute with the value

1.0.

Incorrect�declaration

In draft versions of the standard, the correct declaration of a style sheet was:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/TR/WD-xsl">

This declaration is now obsolete but if you use the IE-5 browser, then you

must use it.

The example XML file that we will be transforming is the following one:

<?xml version="1.0" encoding="ISO-8859-1"?>

<student report="Linus Torvalds">

 <subject id="1">

 <name>

 Basic Programming

 </name>

 <grade>

 Good

 </grade>

 </subject>

 <subject id="2">

 <name>

 Operating systems

 </name>

GNUFDL • PID_00148402 44 Text structured format: XML

 <grade>

 Excellent

 </grade>

 </subject>

 <subject>

 ...

This XML document is an academic report on a university student. It is a very

basic document but perfectly valid for our needs.

The XSL document for converting this XML document to another XHTML

document is:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Academic Report</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Subject</th>

 <th align="left">Grade</th>

 </tr>

 <xsl:for-each select="report/subject">

 <tr>

 <td><xsl:value-of select="name"/x</td>

 <td><xsl:value-of select="grade"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

If we name the XSL document report.xsl we can link it to our XML by

adding a reference to the style sheet at the start of the XML, as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<?xml-stylesheet type="text/xsl" href="report.xsl"?>

<student report="Linus Torvalds">

 <subject id="1">

GNUFDL • PID_00148402 45 Text structured format: XML

 <name>

 Basic Programming

 </name>

 <grade>

 Good

 </grade>

 </subject>

 ...

If you use a browser with XSL support (Mozilla 1.2 or higher), when opening

the XML document, the browser will use the XSL document to transform it

into XHTML.

4.2. The xsl:template element

An XSL style sheet consists of a series of transformationtemplates. Each

xsl:template element contains the XSL transformations that must be

applied if the template specified in the element matches that found in the

XML document.

To specify the XML element to which we must apply the template, we use the

match attribute (we can also apply the template to the entire XML document

by specifying match="/"). The values that we can give the match attribute

are specified by the XPath standard.

For example, the following XSL transformation returns a specific XHTML code

when processing the document with the student report.

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Academic Report</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Subject</th>

 <th align="left">Grade</th>

 </tr>

 </table>

 </body>

 </html>

</xsl:template>

GNUFDL • PID_00148402 46 Text structured format: XML

</xsl:stylesheet>

As we will see if we test this XSL document, it only produces a page header.

If we analyse the XSL document, we see that it has a template that is applied

when it matches the root element of the document (match="/") and prints

the contents of this tag in the result.

4.3. The value-of element

The value-of element is used to select and add the value of the selected XML

element to the output stream.

For example, if we add the following code to our previous example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Academic Report</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Subject</th>

 <th align="left">Grade</th>

 </tr>

 <tr>

 <td><xsl:value-of

 select="report/subject/name"/></td>

 <td><xsl:value-of

 select="report/subject/grade"/></td>

 </tr>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

we see that the first grade of the report appears in the result. This is because the

value-of tags select the value of the first element that matches the specified

pattern.

4.4. The xsl:for-each element

The xsl:for-each element in XSL can be used to select each of the elements

of the XML document belonging to a given set.

GNUFDL • PID_00148402 47 Text structured format: XML

In the above example, where only the first grade of the report appeared, we

can add an xsl:for-each that will run through the entire report as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Academic Report</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Subject</th>

 <th align="left">Grade</th>

 </tr>

 <xsl:for-each select="report/subject">

 <tr>

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="grade"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

This will give us a list of all grades for all subjects.

4.5. Sorting information: xsl:sort

To sort our output, we simply need to add an xsl:sort element to the

xsl:for-each element in our XSL file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Academic Report</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Subject</th>

GNUFDL • PID_00148402 48 Text structured format: XML

 <th align="left">Grade</th>

 </tr>

 <xsl:for-each select="report/subject">

 <xsl:sort select="name"/>

 <tr>

 <td><xsl:value-of select="name"/x/td>

 <td><xsl:value-of select="grade"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

The select attribute is used to indicate the element that we will use to base

sorting on; in this case, the name of the subject.

4.6. Conditions in XSL

There are two XSL elements for implementing conditions in our

transformations. These are xsl:if and xsl:choose.

4.6.1. The xsl:if element

The xsl:if element allows us to use a template only if the specified condition

is met (it is true).

An example of xsl:if format is:

<xsl:if test="grade < 5">

 it will only appear with grades of less than 5.....

</xsl:if>

We can modify the above code to show only grades above 5, for example.

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Academic Report</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

GNUFDL • PID_00148402 49 Text structured format: XML

 <th align="left">Subject</th>

 <th align="left">Grade</th>

 </tr>

 <xsl:for-each select="report/subject">

 <xsl:if test="grade > 5">

 <tr>

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="grade"/></td>

 </tr>

 </xsl:if>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

4.6.2. The xsl:choose element

The xsl:choose element (together with xsl:when and xsl:otherwise)

is used to express multiple conditional tests. In other words, using a multiple

condition (with multiple possible values), we can obtain diverse results.

An example of dexsl:choose format is:

<xsl:choose>

 <xsl:when test="grade < 5">

 ... código (fail)

 </xsl:when>

 <xsl:when test="grade < 9">

 ... code (normal)

 </xsl:when>

 <xsl:otherwise>

 ... code (excellent)

 </xsl:otherwise>

</xsl:choose>

We can modify the above example so that grades under 5 appear in red:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

GNUFDL • PID_00148402 50 Text structured format: XML

 <h2>Academic Report</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Subject</th>

 <th align="left">Grade</th>

 </tr>

 <xsl:for-each select="report/subject">

 <tr>

 <td><xsl:value-of select="name"/></td>

 <td>

 <xsl:choose>

 <xsl:when test="grade < 5">

 <xsl:value-of select="grade"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="grade"/>

 </xsl:otherwise>

 </xsl:choose>

 </td>

 </tr>

 </xsl:if>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

4.7. The xsl:apply-templates element

apply-templates applies a template to the current element or child

elements of the current element. The select attribute is used to process only

the child elements that we specify and the order in which they are processed.

For example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>Academic Report</h2>

GNUFDL • PID_00148402 51 Text structured format: XML

 <xsl:apply-templates />

 </body>

 </html>

</xsl:template>

<xsl:template match="report">

 <xsl:apply-templates select="subject"/>

</xsl:template>

<xsl:template match="subject">

<p>

 <xsl:apply-templates select="name"/>

 <xsl:apply-templates select="grade"/>

</p>

</xsl:template>

<xsl:template match="name">

Name: <xsl:value-of select="."/>

</xsl:template>

<xsl:template match="grade">

Grade: <xsl:value-of select="."/>

</xsl:template>

</xsl:stylesheet>

As we can see, this organisation is much more modular and allows for better

maintenance and revision of the style sheet.

4.8. Introduction to XPath

XPath is a W3C recommendation that defines a set of rules for referencing

parts of an XML document. Based on W3C's definition, we can define XPath

as:

• XPath is a definition of syntax for referencing parts of an XML document.

• XPath uses "paths" to define XML elements.

• XPath defines a library of functions.

• XPath is a basic element of XSL.

• XPath is not defined in XML.

• XPath is a W3C recommendation.

XPath uses expressions similar to the "paths" of files in operating systems (e.g.

/home/user/file.txt).

GNUFDL • PID_00148402 52 Text structured format: XML

Let's take the following XML file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<student report="Linus Torvalds">

 <subject id="1">

 <name>

 Basic Programming

 </name>

 <grade>

 Good

 </grade>

 </subject>

 <subject id="2">

 <name>

 Operating systems

 </name>

 <grade>

 Excellent

 </grade>

 </subject>

 <subject>

 ...

The following XPath expression selects the root report element:

/report

This expression selects all subject elements of the report�element:

/report/subject

This one selects all grade elements of all subject elements of the report

element:

/report/subject/grade

4.8.1. Selecting unknown elements

As with all file systems, we can use special characters (*) to indicate unknown

elements.

The following expression selects all child elements of all subject elements of

the report�element:

/report/subject/*

Supplementary content

Like file systems, if an element
begins with / this indicates an
absolute path to an element.

Supplementary content

If an element begins with //
all elements matching the
criterion will be selected,
regardless of their location in
the XML tree.

GNUFDL • PID_00148402 53 Text structured format: XML

This expression selects all name elements descended from the report�element

regardless of the parent element:

/report/*/name

This expression selects all elements in the document:

//*

4.8.2. Selecting branches of the tree

We can specify which parts of the node tree we wish to select using square

brackets ([�]) in XPath expressions.

For example, we can select the first subject element of the report�element

/report/subject[1]

This expression selects the last child subject element of the report�element:

/report/subject[last()]

This expression selects all child subject elements of the report� element

containing a grade�element:

/report/subject[grade]

This one also forces the grade�element to have a specific value:

/report/subject[grade>5]

This expression selects the names of subjects with a grade�element of a specific

value:

/report/subject[grade>5]/name

4.8.3. Selecting multiple branches

We can use the | operator in XPath expressions to select multiple paths.

For example, the following expression selects all grade and name elements of

the subject element of the report�element:

/report/subject/name/report/subject/grade

This expression selects all name and grade elements in the document:

GNUFDL • PID_00148402 54 Text structured format: XML

//name//note

4.8.4. Selecting attributes

In XPath, attributes are specified with the prefix @.

This XPath expression selects all attributes called id:

//@id

The following expression selects all subject elements with an id attribute of

a specific value:

//subject[@id=1]

The following expression selects all subject elements with any attribute:

//subject[@*]

4.8.5. Functions library

XPath has a functions library that can be used in XPath predicates to fine-tune

our selection. Included in this library is last() the function we saw earlier.

Some of the most important functions include:

Name Syntax Description

count() n=count(nodes) Returns the number of nodes in the set provided

id() nodes=id(value) Selects nodes for their unique ID

last() n=last() Returns the position of the last node in the list of nodes to be
processed.

name() cad=name() Returns the name of the node

sum() n=sum(nodes) Returns the value of the sum of the specified set of nodes

There are also several functions for handling strings, numbers, etc.

GNUFDL • PID_00148402 55 Text structured format: XML

5. Practical: creating an XML document with its
corresponding XML Schema and transformations
with XSLT

We are going to create an XML document to store hotel information. To do

so, we must first design the XML Schema file we are going to use. This will

allow us to validate our design as we add the different parts to it.

The XML Schema produced by our design will be:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="Accommodation">

 <xs:annotation>

 <xs:documentation>Hotel information</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:all>

 <xs:element name="Hotels">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Hotel" maxOccurs="unbounded">

 <xs:complexType>

 <xs:all>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Location"

 type="LocationType"/>

 <xs:element name="Rooms">

 <xs:complexType>

 <xs:all>

 <xs:element name="Doubles">

 <xs:complexType>

 <xs:sequence>

 <xs:element

 name="Number" type="xs:int"/>

 <xs:element

 name="Price" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Singles">

 <xs:complexType>

GNUFDL • PID_00148402 56 Text structured format: XML

 <xs:sequence>

 <xs:element

 name="Number" type="xs:int"/>

 <xs:element

 name="Price" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="Pool" type="xs:boolean"/>

 <xs:element name="Category" type="xs:int"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Chains" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Chain" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name"/>

 <xs:element name="Location"

 type="LocationType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="LocationType">

 <xs:all>

 <xs:element name="Country"/>

 <xs:element name="City"/>

 <xs:element name="Region" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

</xs:schema>

GNUFDL • PID_00148402 57 Text structured format: XML

The design we have chosen for our XML is:

We will now create a document based on the schema we have designed. With

the use of test data, this document will be:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="Hotels.xslt"?>

<Accommodation

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="hotels.xsd">

 <Hotels>

 <Hotel>

 <Name>Hotel Port Aventura</Name>

 <Location>

 <Country>Spain</Country>

 <City>Salou</City>

 <Region>Costa Dorada</Region>

 </Location>

 <Rooms>

 <Doubles>

 <Number>50</Number>

 <Price>133</Price>

 </Doubles>

 <Singles>

 <Number>10</Number>

 <Price>61</Price>

 </Singles>

 </Rooms>

 <Pool>false</Pool>

 <Category>3</Category>

 </Hotel>

 <Hotel>

 <Name>Hotel Arts</Name>

GNUFDL • PID_00148402 58 Text structured format: XML

 <Location>

 <Country>Spain</Country>

 <City>Barcelona</City>

 </Location>

 <Rooms>

 <Doubles>

 <Number>250</Number>

 <Price>750</Price>

 </Doubles>

 <Singles>

 <Number>50</Number>

 <Price>310</Price>

 </Singles>

 </Rooms>

 <Pool>true</Pool>

 <Category>5</Category>

 </Hotel>

 <Hotel>

 <Name>Parador Seu d'Urgell</Name>

 <Location>

 <Country>Spain</Country>

 <City>Seu d'Urgell</City>

 <region>Pyrenees</Region>

 </Location>

 <Rooms>

 <Doubles>

 <Number>40</Number>

 <Price>91.5</Price>

 </Doubles>

 <Singles>

 <Number>2</Number>

 <Price>44.4</Price>

 </Singles>

 </Rooms>

 <Pool>true</Pool>

 <Category>4</Category>

 </Hotel>

 </Hotels>

 <Chains>

 <Chain>

 <Name>HUSA</Name>

 <Location>

 <Country>Spain</Country>

 <City>Barcelona</City>

 </Location>

 </Chain>

 <Chain>

GNUFDL • PID_00148402 59 Text structured format: XML

 <Name>NH Hoteles</Name>

 <Location>

 <Country>Spain</Country>

 <City>Pamplona</City>

 </Location>

 </Chain>

 <Chain>

 <Name>Paradores de Turismo</Name>

 <Location>

 <Country>Spain</Country>

 <City>Madrid</City>

 </Location>

 </Chain>

 </Chains>

</Accommodation>

We will now use the following XSLT document:

<?xml version="1.0" encoding="UTF-8"?>

 <xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" version="1.0"

 encoding="UTF-8" indent="yes"/>

 <xsl:template match="Location">

 <xsl:value-of select="City" />,

 <xsl:value-of select="Country" />

 <xsl:if test="Region ">

 <i>(<xsl:value-of select="Region" />)</i>

 </xsl:if>

 </xsl:template>

 <xsl:template match="Hotels">

 <hl>List of hotels</hl>

 <xsl:for-each select=".">

 <xsl:apply-templates select="Hotel" />

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="Pool">

 <xsl:choose>

 <xsl:when test="node() = 'true'">

 Yes

 </xsl:when>

 <xsl:otherwise>

 No

 </xsl:otherwise>

GNUFDL • PID_00148402 60 Text structured format: XML

 </xsl:choose>

 </xsl:template>

 <xsl:template match="Hotel">

 <h2>Hotel</h2>

 Name: <xsl:value-of select="Name" /> (Stars:

 <xsl:value-of select="Category" />)

 Location: <xsl:apply-templates select="Location" /xbr />

 Pool: <xsl:apply-templates select="Pool" />

 <h3>Rooms</h3>

 <table>

 <tbody>

 <tr>

 <th>Type</th>

 <th>Number</th>

 <th>Price</th>

 </tr>

 <tr>

 <td>Singles</td>

 <td><xsl:value-of

 select="Rooms/Singles/Number" /></td>

 <td><xsl:value-of select="Rooms/Singles/Price" /></td>

 </tr>

 <tr>

 <td>Doubles</td>

 <td><xsl:value-of select="Rooms/Doubles/Number" /></td>

 <td><xsl:value-of select="Rooms/Doubles/Price" /></td>

 </tr>

 </tbody>

 </table>

 </xsl:template>

 <xsl:template match="Chain">

 <h2>Chain</h2>

 Name: <xsl:value-of select="Name" />

 Location: <xsl:apply-templates select="Location" />

 </xsl:template>

 <xsl:template match="Chains">

 <hl>List of hotel chains</hl>

 <xsl:for-each select=".">

 <xsl:apply-templates select="Chain" />

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="/">

GNUFDL • PID_00148402 61 Text structured format: XML

 <html>

 <head>

 <title>Hotel information</title>

 </head>

 <body>

 <xsl:apply-templates />

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

To obtain a list of the hotels in HTML:

<?xml version="1.0" encoding="UTF-8"?>

 <html>

 <head>

 <title>Hotel information</title>

 </head>

 <body>

 <h1>List of hotels</h1>

 <h2>Hotel</h2>

 Name: Hotel Port Aventura (Stars: 3)

 Location: Salou, Spain<i> (Costa Dorada)</i>

 Pool: No

<h3>Rooms</h3>

 <table>

 <tbody>

 <tr>

 <th>Type</th>

 <th>Number</th>

 <th>Price</th>

 </tr>

 <tr>

 <td>Singles</td>

 <td>10</td>

 <td>61</td>

 </tr>

 <tr>

 <td>Doubles</td>

 <td>50</td>

 <td>133</td>

 </tr>

 </tbody>

 </table>

 <h2>Hotel</h2>

 Name: Hotel Arts (Stars: 5)

 Location: Barcelona, Spain

 Pool: Yes

GNUFDL • PID_00148402 62 Text structured format: XML

 <h3>Rooms</h3>

 <table>

 <tbody>

 <tr>

 <th>Type</th>

 <th>Number</th>

 <th>Price</th>

 </tr>

 <tr>

 <td>Singles</td>

 <td>50</td>

 <td>310</td>

 </tr>

 <tr>

 <td>Doubles</td>

 <td>250</td>

 <td>750</td>

 </tr>

 </tbody>

 </table>

 <h2>Hotel</h2>

 Name: Parador Seu d'Urgell (Stars: 4)

 Location: Seu d'Urgell, Spain<i> (Pyrenees)</i>

 Pool: Yes

 <h3>Rooms</h3>

 <table>

 <tbody>

 <tr>

 <th>Type</th>

 <th>Number</th>

 <th>Price</th>

 </tr>

 <tr>

 <td>Singles</td>

 <td>2</td>

 <td>44.4</td>

 </tr>

 <tr>

 <td>Doubles</td>

 <td>40</td>

 <td>91.5</td>

 </tr>

 </tbody>

 </table>

 <h1>List of hotel chains</h1>

 <h2>Chain</h2>

 Name: HUSA

GNUFDL • PID_00148402 63 Text structured format: XML

 Location: Barcelona, Spain

 <h2>Chain</h2> Name: NH Hoteles

 Location: Pamplona, Spain

 <h2>Chain</h2> Name: Paradores de Turismo

 Location: Madrid, Spain

 </body>

 </html>

GNUFDL • PID_00148402 65 Text structured format: XML

Bibliography

Rusty Harold, Elliotte; Means, W. Scott (2002). XML in a Nutshell, 2nd Edition. O'Reilly.

Tidwell, Doug (2001). XSLT. O'Reilly.

van der Vlist, Eric (2001). XML Schema. O'Reilly.

Ray, Eric T. (2001). Learning XML. O'Reilly.

Dynamic content

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148398

GNUFDL • PID_00148398 Dynamic content

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148398 Dynamic content

Index

1. CGI.. 5

1.1. Introduction to CGIs .. 5

1.2. Communicating with CGIs .. 5

1.3. CGI response ... 6

1.3.1. Decoding of the QUERY_STRING 8

1.4. Redirections ... 9

2. PHP... 10

2.1. The workings of PHP .. 10

2.2. PHP syntax .. 11

2.3. Variables .. 12

2.4. Operators ... 14

2.5. Control structures ... 15

2.5.1. Conditionals .. 15

2.5.2. Loops .. 17

2.6. Functions ... 19

2.7. Using PHP for web applications ... 20

2.7.1. Displaying information ... 20

2.7.2. Collecting user information .. 21

2.8. String functions ... 22

2.9. File access .. 23

2.10. Database access ... 23

2.10.1. Access to mySQL from PHP ... 24

2.10.2. Access to PostgreSQL from PHP 25

2.11. More information ... 26

3. Java servlets and JSP... 27

3.1. Introduction to Java servlets .. 27

3.1.1. Efficiency .. 27

3.1.2. Ease of use ... 27

3.1.3. Power .. 28

3.1.4. Portability ... 28

3.2. Introduction to Java Server Pages or JSP 28

3.3. The servlets/JSP server ... 29

3.4. A simple servlet ... 30

3.5. Compiling and executing servlets .. 31

3.6. Generating content from servlets ... 31

3.7. Handling form data .. 33

3.8. The HTTP request: HttpRequest ... 37

3.9. Additional request information .. 38

3.10. Status and response codes .. 39

3.10.1. Status codes .. 39

GNUFDL • PID_00148398 Dynamic content

3.10.2. Return headers ... 39

3.11. Session monitoring ... 40

3.11.1. Obtaining the session associated with the request 41

3.11.2. Accessing the associated information 41

3.12. Java Server Pages: JSP .. 42

3.12.1. Script elements.. 43

3.12.2. JSP directives .. 45

3.12.3. Predefined variables ... 48

3.12.4. Actions ... 49

4. Other dynamic content options... 54

5. Practical: creation of a simple application with the

techniques described... 56

5.1. CGI .. 56

5.2. Java Servlet .. 57

GNUFDL • PID_00148398 5 Dynamic content

1. CGI

One of the first mechanisms for generating dynamic content for the web

was the API called CGI (the acronym of Common Gateway Interface). This

very simple mechanism allows a web server to run a program written in any

programming language (whether in response to a HTML form, from a link,

etc.), that can pass certain parameters to it (either from the user, via forms,

or through server configuration parameters, execution environment, etc.) and

lastly, it makes it possible to send the result of the execution of this program

to the user as a web page or any other type of content (graphic, etc).

With this simple mechanism, web pages that had static and unmovable

content,─until the appearance of CGIs,are generated dynamically in response

to specific requests. This opens up a whole new world for web application

programmers. We will now look at the API of CGIs, often relegated to a

secondary role because of the many problems it suffers, the main one being

performance issues.

1.1. Introduction to CGIs

Unlike with servlets, etc., there are no restrictions on the programming

language we can use to write a CGI. We can use those scripts written in the

shell language of the operating system, programs written in the assembler and

the broad range of programming languages currently available: C, C++, Perl,

Python, etc. Until now, the most popular language for writing CGIs has been

Perl, as it offers utilities to the programmer that greatly simplify the task of

writing CGI programs.

1.2. Communicating with CGIs

The first thing to bear in mind when writing programs like CGIs is the

mechanism of communication provided by the web server. We have two

options for sending data to a CGI (the data generally come from a user, usually

via a form):

• GET method. The GET method passes all information (except for files) to

the CGI in the address line of the HTTP request.

• POST method. The POST method passes all information to the CGI in the

standard entrance, including files.

GNUFDL • PID_00148398 6 Dynamic content

Once it receives a request that it needs to direct to a CGI file, the server

executes this program, the CGI, and sends it the information through

environment variables (or through the standard entrance, if applicable). Some

of the environment variables defined by the CGI standard are:

SERVER_NAME Name of the server.

SERVER_PROTOCOL Protocol used by the request.

REQUEST_METHOD Method used for invocation (GET or POST).

PATH_INFO Information on the path specified in the request.

PATH_TRANSLATED Physical path to the location of the CGI on the server.

SCRIPT_NAME Name of the CGI.

REMOTE_ADDR IP address of the computer making the request.

REMOTE_HOST Name of the computer making the request.

REMOTE_USER User making the request.

AUTH_TYPE Type of authentication.

CONTENT_TYPE MIME type of the request content, particularly useful in POST

requests.

CONTENT_LENGTH Size of the content, particularly useful in POST requests.

Most web servers also provide the QUERY_STRING, which contains the data of

the request if it is GET type or if data has been added to the URL. Some web

servers add extra data to the environment. Most of these additional variables

begin with HTTP_ to avoid conflicts with later versions of the standard.

For example, the Roxen web server adds a variable called QUERY_ which is a parameter
for each parameter of a form.

1.3. CGI response

CGIs respond to requests by constructing part of the HTTP response that will

be received by the clients themselves. Firstly, they must indicate the MIME

type of the served content. They can then add extra fields (those specified in

the HTTP standard). The content must appear after a blank line of separation.

GNUFDL • PID_00148398 7 Dynamic content

The simplest possible CGI, written here in shell script and enumerating the

environment variables commented above, is:

#!/bin/sh

echo Content-type: text/plain

echo

echo

echo SERVER_NAME=$SERVER_NAME

echo SERVER_PROTOCOL=$SERVER_PROTOCOL

echo REQUEST_METHOD=$REQUEST_METHOD

echo PATH_INFO=$PATH_INFO

echo PATH_TRANSLATED=$PATH_TRANSLATED

echo SCRIPT_NAME=$SCRIPT_NAME

echo REMOTE_ADDR=$REMOTE_ADDR

echo REMOTE_HOST=$REMOTE_HOST

echo REMOTE_USER=$REMOTE_USER

echo AUTH_TYPE=$AUTH_TYPE

echo CONTENT_TYPE=$CONTENT_TYPE

echo CONTENT_LENGTH=$CONTENT_LENGTH

echo QUERY_STRING=$QUERY_STRING

As we can see in this example (the shell script syntax used is very simple), to

list the environment variables received, we send the type of content, followed

by a compulsory blank line and all of the environment variables mentioned.

If we execute this server with no additional parameters, we end up with:

Figure 17.

GNUFDL • PID_00148398 8 Dynamic content

As we can see, if we simply call the CGI without parameters and it does not

activate a form, it will have few variables with values. However, if we call the

CGI by passing parameters and an extra PATH (note the directory after the

name of the CGI), the result is as follows:

Figure 18.

1.3.1. Decoding of the QUERY_STRING

As we have seen in the examples above, the parameters sent to our CGI used

a specific and very special coding. One of the disadvantages of using CGI

compared to more modern alternatives like servlets is that we need to decode

and analyse this string manually. Fortunately, there are libraries for almost

every programming language that make this task easier.

The coding rules are as follows:

• We separate the list of parameters from the rest of the URL address with

the character?

• We separate parameters (which are always in name, value pairs) using the

character &. In some cases, the character ; is accepted as a substitute for

separation.

• The names of parameters are separated from the values with the character

=.

• The special characters are replaced according to the following table:

– The ' ' character (blank space) is changed to +.

– Non-alphanumeric characters and special characters, like those used

for coding (+, etc.), are represented as %HH, where HH represents the

hex value of the ASCII code of the character.

GNUFDL • PID_00148398 9 Dynamic content

– Line breaks are represented as %0D %0A.

1.4. Redirections

We can redirect the client to a different page from a CGI program. To do so,

we must not return the standard HTML code preceded by Content-type.

Instead, we must return a status code field followed by the location of the new

page, as in the example:

#include <stdio.h>

int main()

 {

 printf("Status: 302\r\n");

 printf("Location: new.html\r\n");

 exit(1);

 }

GNUFDL • PID_00148398 10 Dynamic content

2. PHP

PHP (a recursive acronym of hypertext preprocessor), is a simple language

with an easy syntax similar to that of languages like Perl, C y C++. It is

fast, interpreted, object-oriented and cross-platform, and there are many

libraries available for it. PHP is an ideal language for learning to develop

web applications and for developing complex web applications. On top of

this, PHP has the advantage that the PHP interpreter, the range of modules

and the number of libraries developed for PHP are free software, so the PHP

programmer has recourse to an astonishing arsenal of free software tools with

which to develop applications.

PHP is usually used with Perl, Apache, MySQL or PostgreSQL in Linux systems,

forming an economical (all of the components are free software), powerful

and versatile combination. The expansion of this combination has been so

great that it has even been christened with the name LAMP (formed by the

initials of each of the products).

Apache, like other web servers, including Roxen, can incorporate PHP as a

module of the server itself. This means that applications written in PHP are

much faster than normal CGI applications.

2.1. The workings of PHP

If we request a PHP page from our server, the latter sends the page to the PHP

interpreter that executes it (in fact, it is simply a program) and returns the

result (generally HTML) to the web server, which, in turn, sends it to the client.

Let's suppose we have a PHP page with the following content:

<?php echo "<h1>Hello world!</h1>";?>

If we have this code in a file with the extension .php, the server will send

the page to the PHP interpreter, which will then execute the page and obtain

the following result:

<h1>Hello world!</h1>

The server will send it to the client browser that requested the page and the

message will appear on the latter's screen. We will see how PHP allows HTML

and PHP to be combined on the same page, which means that working with

GNUFDL • PID_00148398 11 Dynamic content

the latter is considerably easier. However, this can also be a hidden danger

because it complicates matters if web designers and programmers are working

together on the site.

In systems where PHP is installed, we have a global PHP configuration file

called php.ini, which can help us to configure certain global settings. It is a

good idea to check this file because, although the default values are usually

correct, we may wish to make certain changes.

2.2. PHP syntax

To introduce the syntax of the language, we will analyse a basic PHP program:

<?php

 $MYVAR = "1234";

 $myvar = "4321";

 echo $MYVAR. "
\n";

 echo $myvar."
\n";

?>

If we run this program (display it in a browser), the result will be as follows:

1234

4321

The first point we need to make is that PHP code blocks are delimited in HTML

by <?php and ?>. We can therefore write an HTML page including several PHP

instruction blocks:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

<BODY>

 <h1>Header H1</h1>

 <?php echo "Hello" ?>

 <h1>Second header H1</h1>

 <?php

 $MYVAR = 1234;

 $myvar = 4321;

 echo $MYVAR. "
";

 echo $myvar."
";

 // This program displays some numbers on the screen

 ?>

 </BODY>

</HTML>

GNUFDL • PID_00148398 12 Dynamic content

The second point worth mentioning is that the names of variables are

distinguishable because they always begin with $ and, as in C/C++, they are

case-sensitive, meaning that we differentiate between capital and lower-case

letters. Note also that to concatenate text (variables and "
"), we use the

full stop character "." and that all statements end in ";".

You should also be aware that although variables are numerical, they can be

concatenated with a text ("
"). In this case, the interpreter converts the

numerical value of the variable into text to perform concatenation.

You will see that there is a comment inside the code. This comment will not

affect the program in any way nor will it be sent to the client browser (in

fact, the client browser never receives PHP code). There are two options for

inserting comments in our code:

// Single-line comment

/* This comment takes up several lines.

 So we use this other marker

 to indicate the start and end of the comment */

2.3. Variables

In PHP, we do not need to declare a priori the variable or type of variable that

we are going to use. PHP will declare the variable and assign the correct type

of data to it when we use it for the first time:

<?php $string = "Hello World";

 $number = 100;

 $decimal = 8.5;

?>

As we can see, the three variables were defined when they were assigned a

value and we did not need to define types.

In PHP, variables can basically have two scopes: global, where they can be

accessed from the entire code, and local, where they are only accessible from

the function in which we create them. To assign a global scope to a variable,

simply declare it (in this case, you must make a variable declaration) and use

the reserved word global in the declaration:

<?php

 global $test;

?>

The scope of variables that we do not qualify as global but which are defined

outside a function, will be global.

GNUFDL • PID_00148398 13 Dynamic content

We simply need to define a variable within a function. In this case, the scope

will be restricted to the function where we declare it.

<?php

 global $variable; // Global variable

 $a=1; // Implicit global variable

 Add function()

 {

 $b=1; // b is a local variable

 $res=$a+$b; // res is a local variable

 }

?>

We can see that both a and variable are global variables while b and

res are local variables.

In PHP, we also have arrays. These are variables that can contain lists of

elements, which we access through an index.

<?php

 $seas = array(); //with array() we declare an array

 $seas[0]= "Mediterranean";

 $seas[1]= "Aral";

 $seas[2]= "Dead";

?>

As you can see, we have declared the seas variable with a call to array().

This tells PHP that the variable is an elements array.

To access the individual elements of the array, we will need to use the name

of the vector and indicate the position of the element we wish to access in

square brackets. In PHP, array numbering starts at 0.

As well as arrays with numerical indices, PHP also supports arrays with text

string indices:

<?php

 $mountains=array(); //with array() we declare an array

 $mountains["Everest"]= "Himalaya";

 $mountains["Fitz Roy"] = "Andes";

 $mountains["Montblanc"] = "Alps";

 echo $mountains["Everest"]; // Will print Himalaya

?>

GNUFDL • PID_00148398 14 Dynamic content

2.4. Operators

Operators are symbols that are used to perform both mathematical operations

and comparisons or logical operations.

The most common ones in PHP are:

• Mathematical operators:

a) + Adds several numbers: 5 + 4 = 9.

b) - Subtracts several numbers: 5 - 4 = 1.

c) * Performs a multiplication: 3 * 3 = 9.

d) / Performs a division: 10/2 = 5.

e) % Returns the remainder of a division: 10 % 3 = 1.

f) ++ Increments by 1: $v++ (Increments $v by 1).

g) -- Decrements by 1: $v-- (Decrements $v by 1).

• Comparison operators:

a) == Evaluates as true if the condition for equality is met:

2 == 2 (True).

b) != Evaluates as true if the condition for equality is not met:

2 != 2 (False).

c) < Evaluates as true if a number is less than another

2 < 5 (True).

d) > Evaluates as true if a number is greater than another

6 > 4 (True).

e) <=Evaluates as true if a number is less than or equal to another

2 <= 5 (True).

f) >=Evaluates as true if a number is greater than or equal to another

6 >= 4 (True).

• Logical operators:

a) && Evaluates as true if the two operators are true.

b) || Evaluates as true if one of the operators is true.

GNUFDL • PID_00148398 15 Dynamic content

c) And Evaluates as true if the operators are true.

d) Or Evaluates as true if one of the operators is true.

e) Xor Evaluates as true if one operator or another is true.

f) ! Reverses the true value of the operator.

This example indicates the most common mathematical operators:

<?php

 $a = 5;

 $b = 10;

 $c = ($a + $b); //$c is equal to 15

 $d = ($b - $a); //$d is equal to 5

 $e = ($a * $b); //$e is equal to 50

 $f = ($b / $a); //$f is equal to 2

 $g = ($b % $a); //$g is equal to 0

?>

2.5. Control structures

PHP control structures allow us to control the flow of operation of our

program, ensuring that portions of code are executed at all times in line with

certain conditions.

2.5.1. Conditionals

Conditionals are structures that allow us to perform certain operations only

if a given condition is met. They are usually called forks because they allow

us to divide the execution flow of the program according to the true value of

a statement or condition.

In PHP, we have two main conditionals, the if/else conditional and the

switch.

The if conditional is used to choose between code blocks, according to

whether or not a condition is met.

<?php

 $a = 0;

 $b = 1;

 if($a == $b)

 {

 echo "It turns out that 0 is equal to 1";

 }

 else

GNUFDL • PID_00148398 16 Dynamic content

 {

 echo "Everything is as it was. 0 is not equal to 1";

 }

?>

If we follow the execution flow of this program, we see that two variables are

created initially, a and b, to which we assign two different numerical values.

We then come to the conditional statement if. This confirms the truth or

compliance of a specified condition. In this case, we have an == equality

operator returning that the comparison is false; hence, the if statement does

not execute the first code block, the one it would have executed had the

condition been met. Instead, it executes the second, the one preceded by

else.

We can therefore define the structure of if/else as:

if(condition)

 {

 code executed if the condition is true

 }

else

 {

 code executed if the condition is false

 }

We can check more than one condition by chaining several if/else:

if(condition1)

 if(condition2)

 {

 code executed if condition2 is true

 and condition1 is true

 }

 else

 {

 code executed if condition2 is false

 and condition1 is true

 }

else

 {

 code executed if condition1 is false

 }

An advanced case of if/else chaining is that corresponding to events where

we need to execute a different code depending on the value of a variable.

Although we can carry out if/else chaining by checking the value of this

GNUFDL • PID_00148398 17 Dynamic content

variable, if we need to check a number of values, the code can be rather

cumbersome. PHP therefore offers a more ideal conditional construction

called switch.

<?php

 $a=1;

 switch($a)

 {

 case 1:

 case 2: echo "A is 1 or 2"; break;

 case 3: echo "A is 3"; break;

 case 4: echo "A is 4"; break;

 case 5: echo "A is 5"; break;

 case 6: echo "A is 6"; break;

 default: echo "A is another value";

 }

Executing switch is a rather complex task.. I fact, it is very similar to C. The

switch statement is executed line by line. Initially, no codes or any lines are

executed. When it comes to a case with a value that matches the value of the

switch variable, PHP begins to execute the statements. This continues until

the end of switch or until it comes to a break. So, in our example, if the

variable has a value or 1 or a value of 2, the same code block is executed.

There is also a special value, default, which always matches the value of

the variable.

2.5.2. Loops

Loops are another important control structure. These are used to execute a

code block repeatedly in accordance with a condition.

PHP has three main loops: for, while and foreach.

The while loop

The while loop is the simplest of the three but, even so, it is probably the

most common one. The loop is executed while the condition we have passed

to it is true:

<?php

 $a = 1;

 while($a < 4)

 {

 echo "a=$a
";

 $a++;

 }

GNUFDL • PID_00148398 18 Dynamic content

?>

In this case, the loop will be executed four times. Each time it is executed,

we will increment the value of a and print a message. Each time the code

is executed, the while loop checks the condition and, if met, executes the

code again. The fourth time that it is executed, since a will have the value

of four, the condition specified will not be met and the loop will no longer

be executed.

The for loop

For the above type of loop, where the condition for continuing is that

a variable increases or decreases with each iteration, we can use a more

appropriate type of loop: for.

Using for the above code would end up as follows:

<?php

 for($a=1;$a < 4; $a++)

 {

 echo "a=$a
";

 }

?>

As we can see, in the case of the for loop, in the same statement we declare

the variable over which we will be iterating, the condition for ending and

condition for incrementing or continuing.

foreach

When we want our loop to run through the elements of an array, we can use

a statement to simplify this: foreach.

<?php

$a = array (1, 2, 3, 17);

foreach ($a as $v

{

 print "Value: $v.\n";

}

?>

As we can see, in its simplest form, foreach assigns a variable v to each of

the values of an array a, one by one.

GNUFDL • PID_00148398 19 Dynamic content

2.6. Functions

Another key point about PHP are functions. In PHP, functions may or may

not receive parameters and can always return a value. Functions are used to

give greater modularity to the code, thus avoiding code repetition, allowing

us to re-use code in other projects, etc.

One function schema is as follows:

<?php

 examp function ($arg_1, $arg_2, ..., $arg_n)

 {

 // Code of the function

 return $return;

 }

?>

We can call the functions from the main code or from other functions:

<?php

 sum function ($a1, $a2)

 {

 $return=$a1+$a2;

 return $return;

 }

 summation function ($b1, $b2, $b3)

 {

 for($i=$b1;$i<$b2;$i++)

 {

 $res=sum($res,$b3);

 }

 return $res;

 }

 echo summation(1,3,2);

?>

The result of executing this program will be to print the number six.

In PHP, functions usually receive parameters by value, i.e. the variable passed

as the parameter in the code called is not modified if the parameter of the

function is modified. Nonetheless, we can pass parameters by reference (in a

similar way to pointers in other programming languages):

<?php

 modifi function ($&a1, $a2)

 {

GNUFDL • PID_00148398 20 Dynamic content

 $a1=0;

 $a2=0;

 }

 $b1=1;

 $b2=1;

 modifi($b1,$b2);

 echo $b1." ".$b2;

?>

In this case, the result of the program will be:

1 0

2.7. Using PHP for web applications

To use PHP as a web application development language, the first thing we

need to do is know how PHP will interact with our web user. We can divide

this interaction in two parts, displaying information to the user and collecting

information from the latter.

2.7.1. Displaying information

PHP can display information to users in two ways: it can write current HTML

pages, inserting only the PHP code we require in the middle of the HTML

code. For example:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

<BODY>

 <h1>Header H1</h1>

 <?php $a=1; ?>

 <h1>Second header H1</h1>

 <?php $b=1; ?>

 </BODY>

</HTML>

Alternatively, we can use PHP to generate dynamic content. To do this, we

need to use the PHP data output instructions, the most important being echo.

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

<BODY>

 <h1>Header H1</h1>

GNUFDL • PID_00148398 21 Dynamic content

 <?php echo "Content ofpage"; ?>

 <h1>Second header H1</h1>

 </BODY>

</HTML>

2.7.2. Collecting user information

To collect user information, we can use HTML forms, using our PHP programs

as the ACTION of these forms. Because PHP was designed to create web

applications, access to the values entered by users in the form fields is

extremely easy in PHP as it defines an array called REQUEST accessible with

the name of the field as the index and which contains the value inside the

latter when the PHP program is executed.

If we have this form:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

<BODY>

 <FORM ACTION="program.php" METHOD=GET>

 Type in the name: <INPUT TYPE=TEXT NAME="name">

 <INPUT TYPE=submit>

 </FORM>

 </BODY>

</HTML>

And we define the following PHP program as program.php in order to

respond to the form:

<HTML>

 <HEAD>

 <TITLE>Document title</TITLE>

 </HEAD>

 <BODY>

 <?php

 echo "Hello".$REQUEST["name"];

 ?>

 </BODY>

</HTML>

This program will pick up the name entered by the user and display it to us

on the screen.

GNUFDL • PID_00148398 22 Dynamic content

2.8. String functions

PHP has a very interesting series of functions for working with text strings.

Some of the most important of these are:

strlen Returns the length of a string.

explode Divides a string with a separating character and returns an array with

each of the parts of the string.

implode Does the opposite to explode by joining several strings of an array

with a joining character.

strcmp Compares two strings at binary level.

strtolower Converts a string to lower-case.

strtoupper Converts a string to upper-case.

chop Deletes the last character of a string, useful for deleting line breaks or

trailing white spaces.

strpos Searches inside a string for another specified string and returns its

position.

str_replace Replaces an appearance of a substring inside a string with

another substring.

The following example shows how some of these functions work:

<?php

 $string1 = "hello";

 $string2 = "pear,apple,strawberry";

 $length = str_len($string1); //length=4

 $parts = explode(",",$string2);

 //generates the array $parts with $parts[0]="pear",

 //$parts[1]="apple"; and $parts[2]="strawberry";

 $chop = chop($string); // chop deletes the "a"

 $string3 = str_replace(",",";",$otherstring);

 //$string3 contains: pear-apple-strawberry

 //We change the , for -

?>

GNUFDL • PID_00148398 23 Dynamic content

2.9. File access

PHP offers a wide range of methods for accessing files. Here, we will look at the

most practical and straightforward of these, ideal if the files we are accessing

are small.

The code we will use is:

<?php

 $file = file("input.txt");

 $linnum = count($file);

 for($i=0; $i < $linnum; $i++)

 {

 echo $file[$i];

 }

?>

In this example, we read a file called input.txt and display it as output. The

first step is to declare the file variable, which will generate an array in which

PHP will place all of the lines in the file. For this we will use the library called

file. The next step involves finding out how many elements are in file.

To do this, we will use the count function, which returns the size of an array

- in this case, the array we generated on reading the file. Lastly, we can write

a loop that will run the array, processing each line of the file.

PHP offers many more file-processing functions. For example, we have the

fopen function, which allows us to open files or resources without fully

reading them in memory. It can open files as follows:

 <?php

 $resource = fopen ("input.txt", "r");

 $resource = fopen ("output.gif", "wb");

 $resource = fopen ("http://www.uoc.edu/", "r");

 $resource = fopen ("ftp://user:password@uoc.edu/output.txt", "w");

?>

Here we can see how to open a file for reading (''r''), writing in binary

(''wb''), a web page to read it as though it were a file and a file via FTP to

write it, respectively.

2.10. Database access

PHP offers methods for accessing a large number of database systems (mySQL,

PostgreSQL, Oracle, ODBC, etc). This feature is essential in the development

of complex web applications.

GNUFDL • PID_00148398 24 Dynamic content

2.10.1. Access to mySQL from PHP

mySQL is one of the most popular database systems for the development of

light web applications because of its high performance when working with

simple databases. Many query web applications, etc. are developed with the

PHP-mySQL tandem. Hence, PHP's mySQL access API is highly developed.

We will now look at an example of access to the database from PHP to show

how easily we can use databases in our web applications:

<?php

 $connection=mysql_connect($server,$user,$password);

 if(!$connection).

 {

 exit();

 }

 if(!(mysql_select_db($database,$connection)))

 {

 exit();

 }

 $query=mysql_query(

 "selectname,telephonefromcontactsorderbyname",

 $connection);

 while($row = mysql_fetch_array($query))

 {

 $name = $row["name"];

 $telephone = $row["telephone"];

 echo "$name: $telephone\n
";

 }

 mysql_free_result($query);

 mysql_close($connection);

?>

We can see that the first step in accessing the database is to open a connection

with it. For this we will need the address of the computer containing the

database, the user with whom we will connect and the word to access the

database. Once connected to the mySQL server, we will need to select one

of the multiple databases that the server we want to work with can have.

Following this connection sequence, we will have the mySQL connection data

in the connection variable. We must pass this variable to all PHP functions that

access the database. This means that we can have a number of connections

to different databases open at the same time and work simultaneously with

them.

GNUFDL • PID_00148398 25 Dynamic content

The next step will be to execute a database query statement in our database

language, SQL in this case. For this we will use the PHP function called

mysql_query, which will return the result of the query, which we will then

save in the query variable. This specific query enumerates the content of a

table in the database called agenda, which contains two columns called name

and telephone.

We can then execute a loop that will run through all of the records to return

our query to the database, accessing them one by one in order to display the

results.

After completing access to the database, we need to free up the memory and

resources used in the query. To do this, we will use the mysql_free_result

function and then close the connection to mySQL.

2.10.2. Access to PostgreSQL from PHP

We can access databases on PostgreSQL servers in much the same way as we

access mySQL. As in the previous section, we will use a code to enumerate the

content of our table called agenda.

<?php

 //connecting to the database

 //$connection = pg_connect("dbname=".$database);

 // connecting to the server database port "5432"

 //$connection = pg_connect(

 // "host=$port server=5432 dbname=$database");

 // connecting to the server database port "5432"

 //with user and password

 $connection = pg_connect("host=$port server=5432 ".

 "dbname=$userdatabase=$userpassword=$password")

 or die "Does not connect";

 $result = pg_query($connection,

 "select name, telephone from contacts order by name");

 while($row = pg_fetch_array($result))

 {

 $name = $row["name"];

 $telephone = $row["telephone"];

 echo "$name: $telephone\n
";

 }

 pg_close($dbconn);

?>

GNUFDL • PID_00148398 26 Dynamic content

As we can see if we compare this example with the mySQL one above, the two

codes are very similar. Yet, despite the similarities, PostgreSQL's API for PHP

has some differences with regards mySQL. On the one hand, it offers greater

flexibility for connections and, on the other, it provides support for working

with large objects, etc., demonstrating that PostgreSQL is more powerful than

mySQL. A controversial point of PostgreSQL's API is that it totally isolates us

from the PostgreSQL system of transactions, which is perfectly acceptable in

most situations but we may sometimes want greater control over these.

2.11. More information

One of the strong points and, indeed, keys to the success of PHP as a web

application programming language are the many libraries, modules, etc.,

that have been developed for it. PHP is offering an increasing number of

APIs, functions, modules, classes (remember that PHP is gradually becoming

an object-oriented programming language), allowing us to operate with the

increasing complexity of web applications. This diversity of support includes:

• Session control.

• User identity control.

• HTML templates.

• Shopping carts.

• Dynamic HTML creation.

• Dynamic creation of images.

• Handling of cookies.

• File transfer.

• Handling of XML, XSLT, etc.

• Multiple communication protocols: HTTP, FTP, etc.

• Creation of PDF files.

• Access to LDAP directories.

• Interfaces with a wide range of databases: Oracle, Sybase, etc.

• Regular expressions.

• Network equipment handling: SNMP.

• Web services: XMLRPC, SOAP.

• Handling of Flash content.

Besides its usefulness as a web application programming language, PHP is

being increasingly employed as a general purpose programming language,

including in its arsenal of functions interfaces with the libraries of more

common graphic interfaces (Win32 or GTK, among others), direct access to

operating system functions, etc.

Hence, if you want to use PHP to develop a project, we strongly recommend

you to visit the project's website (http://www.php.net), since you may well

find a number of tools to make the job a whole lot easier. We also have PEAR,

a PHP repository that will provide us with most of the tools we could need.

GNUFDL • PID_00148398 27 Dynamic content

3. Java servlets and JSP

3.1. Introduction to Java servlets

Java servlets are the Java technology proposal for the development of web

applications. A servlet is a program that runs on a web server and builds a

web page that is returned to the user. This page is built dynamically and may

contain information from databases, be a response to data entered by the user,

etc.

Java servlets offer a series of advantages over CGIs, the traditional method of

web application development. These are more portable, more powerful, much

more efficient, more user-friendly, more scalable, etc.

3.1.1. Efficiency

With the traditional CGI model, each request that reaches the server triggers

the execution of a new process. If the lifetime of the CGI (the time it takes

to be executed) is short, the instantiation time (the time taken to launch a

process) can exceed that of execution. With the servlets model, the Virtual Java

Machine, the environment from which they are run, starts up when the server

starts and remains in operation throughout execution of the same. To deal

with each request, instead of launching a new process, a thread, a light-weight

Java process, is started which is much faster (it is actually instantaneous).

Moreover, if we have x simultaneous requests from a CGI, we will have x

simultaneous processes in memory, thus consuming x times the space of a CGI

(which, if interpreted, is usually the case, consumes x times the interpreter).

With servlets, there is a certain number of threads, but there is only one copy

of the Virtual Machine and its classes.

The servlets standard offers additional alternatives to CGIs for optimisation:

caches of previous calculations, pools of database connections, etc.

3.1.2. Ease of use

The servlets standard provides a wonderful web application development

infrastructure, with methods for the automatic analysis and decoding of

HTML form data, access to HTTP request headers, handling of cookies,

monitoring, control and management of sessions, among many other

features.

GNUFDL • PID_00148398 28 Dynamic content

3.1.3. Power

Java servlets can be used for many things that are difficult or impossible to do

with traditional CGIs. Servlets can share data with each other, which means

that they can share data, database connections etc. They can also maintain

information request after request, facilitating tasks such as the monitoring of

user sessions, etc.

3.1.4. Portability

Servlets are written in Java and use a well documented, standard API. As a

result, servlets can be run on all platforms with Java servlet support without

the need for recompilation, modification etc., regardless of the platform

(Apache, iPlanet, IIS, etc.) and operating system, architecture hardware, etc.

3.2. Introduction to Java Server Pages or JSP

Java Server Pages (JSP) are a technology that allows us to mix static HTML with

HTML generated dynamically using Java code embedded on pages. When we

program web applications with CGIs, the bulk of the page generated by the

CGIs is static and does not vary from execution to execution. The variable part

of the page is truly dynamic and very small. Both CGIs and servlets require

us to generate the page fully from our program code, which makes it more

difficult for maintenance, graphic design, code comprehension, etc. With JSP,

however, we can easily create pages.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

 <HTML>

 <HEAD>

 <TITLE>Store. Welcome.</TITLE>

 </HEAD>

 <BODY>

 <H1>Welcome to our store</H1>

 <SMALL>Welcome,

 < % out.println(Tools.readNameOfCookie(request)); %>

 </SMALL>

 </BODY>

</HTML>

As this example shows, a JSP page is nothing more than a HTML page where

the special tags < % and %> allow us to include Java code.

This gives us a series of obvious advantages: firstly, we have practically the

same advantages as we do when using Java servlets; in fact, JSP servers

"translate" these to servlets before executing them. Secondly, JSPs offer

Example

The parts of the page that do
not vary from execution to
execution are headers, menus,
decorations, etc.

GNUFDL • PID_00148398 29 Dynamic content

considerable simplicity and ease of development. It is much easier to write

the example page than to write a servlet or CGI that prints each of the lines

in the above page.

However, this simplicity is also one of the disadvantages of JSP. With complex

applications containing numerous calculations, database accesses, etc., JSP

syntax embedded inside HTML becomes tedious. Thus, JSPs and servlets do

not usually compete, but rather they complement one another since the

standards include capabilities for communication between them.

3.3. The servlets/JSP server

To use both servlets and JSP on our web server, we generally need to

complement it with a servlets/JSP server (usually called a servlets container).

There are many free software and proprietary containers. Sun, the inventors

of Java, keep an updated list of servlet containers at:

http://java.sun.com/products/servlet/industry.html

• Apache Tomcat. Tomcat is the official implementation of reference for

servlet and JSP specifications after versions 2.2 and 1.1, respectively.

Tomcat is a very robust, highly efficient product and one of the

most powerful servlet containers available. Its only weakness is that

it is complicated to configure because there are many options to

choose from. For more details, visit the official Tomcat website:

http://jakarta.apache.org/.

• JavaServer Web Development Kit (JSWDK). JSWDK was the official

reference implementation for specifications Servlet 2.1 and JSP 1.0. It

was used as a small server to test servlets and JSP pages in development.

However, it has now been abandoned in favour of Tomcat. Its website is:

http://java.sun.com/products/servlet/download.html.

• Enhydra. Enhydra is an applications server whose many

functionalities include a very powerful servlet/JSP container. Enhydra

(http://www.enhydra.org) is a very powerful tool for developing web

services and applications, including tools for the control of databases,

templates, etc.

• Jetty. This is a very lightweight web server/servlet container

written entirely in Java that supports the Servlet 2.3 and JSP

1.2 specifications. It is the ideal server for development because

it is small and takes up little memory. Its web page is:

http://jetty.mortbay.org/jetty/index.html.

GNUFDL • PID_00148398 30 Dynamic content

3.4. A simple servlet

The following example shows the basic structure of a simple servlet that

handles HTTP GET requests (servlets can also handle POST requests).

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BasicServlet extends HttpServlet

{

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // We can use request to access the data of the

 // HTTP request.

 // We can use response to modify the HTTP response

 // that the servlet will generate.

 PrintWriter out = response.getWriter();

 // We can use out to return data to the user

 out.println("¡Hello!\n");

 }

}

To write a servlet, we must write a Java class that extends (by inheritance)

the HttpServlet class (or the most generic servlet class) and overwrites

the service method or one of the more specific request methods (doGet,

doPost etc).

Service methods (service, doPost, doGet, etc.) have two arguments: a

HttpServletRequest and a HttpServletResponse.

The HttpServletRequest gives us the methods for reading incoming

information such as the data from a HTML form (FORM), HTTP request

headers or the cookies of the request, etc. In contrast, HttpServletResponse

has methods for specifying the HTTP response codes (200, 404, etc.), response

headers (Content-Type, Set-Cookie etc). Most importantly, they allow us

to obtain a PrintWriter (a Java class representing an output "file") used to

generate the output data that will be returned to the client. For simple servlets,

the bulk of the code is used to work with this PrintWriter in println

statements that generate the desired page.

GNUFDL • PID_00148398 31 Dynamic content

3.5. Compiling and executing servlets

The servlet compilation process is very similar regardless of the web server

or servlet container used. If using Sun's Java development programming, the

official JDK, we need to make sure that our CLASSPATH, the list of libraries and

directories where the classes we use in our programs are searched, contains

the Java servlets API libraries. The name of this library varies from version

to version of the Java API but it is usually: servlet-version.jar. Once

the servlets library is in our CLASSPATH, the servlet compilation process is as

follows:

javac BasicServlet.java

We must locate the resulting class file in the directory that our servlet

container requires to execute the servlet. To then test it, we need to direct the

browser to the URL of our servlet, formed, on the one hand, by the directory

where our servlet container displays the servlets (for example, /servlets)

and, on the other, by the name of the servlet.

For example, in JWS, Sun's test server, servlets are located in a servlets

subdirectory of the JWS installation directory and the URL is formed thus:

http://server/servlet/BasicServlet

In Tomcat, servlets are located in a directory indicating the web application

under development, in the WEB-INF subdirectory, inside the subdirectory

classes. Then, if the web application were called test for example, the

resulting URL would be:

http://server/test/servlets/BasicServlet

3.6. Generating content from servlets

As we have seen, the API gives us a class called PrintWriter to which we

can send all of our results. However, this is not enough to make our servlet

return HTML to the client.

The first step for building a servlet that returns HTML to the client is to tell the

servlet container that the return of our servlet is HTML. Remember that HTTP

includes the transfer of multiple data types by sending the MIME type marker

tag: Content-Type. To do this, we have a method for indicating the type

returned, setContentType. So, before any interaction with the response, we

need to mark the content type.

 import java.io.*;

 import javax.servlet.*;

 import javax.servlet.http.*;

GNUFDL • PID_00148398 32 Dynamic content

public class Helloweb extends HttpServlet

{

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println(

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n" +

 "<HTML>\n" +

 "<HEAD><TITLE>Hello</TITLE></HEAD>\n" +

 "<BODY>\n" +

 "<H1>Hello web</H1>\n" +

 "</BODY></HTML>");

 }

}

As we can see, generating the result in HTML is a very tedious task, especially

if we consider that part of this HTML does not change from servlet to servlet

or execution to execution. The solution to this type of problem is to use JSP

instead of servlets. However, if you really must use servlets, there are a number

of time-saving tricks. The main solution is to declare methods that really

return these common HTML parts: the DOCTYPE line, t e header and even a

common header and footer for the company's whole website.

To do this, we need to build a class containing a series of utilities that we can

use in our web application project.

public class Utilities

{

 public static final String DOCTYPE =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD"+

 " HTML 4.0 Transitional//EN\">";

 public static String titleHeader(Title string) {

 return(DOCTYPE + "\n" +

 "<HTML>\n" +

 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

 }

 // Here, we will add some utilities

}

GNUFDL • PID_00148398 33 Dynamic content

3.7. Handling form data

Obtaining data sent by a user from a form is one of the most complex and

monotonous tasks of CGI programming. Since we have two methods for

passing values, GET and POST, which behave differently, we need to develop

two methods to read these values. We must also analyse, parse and decode the

strings containing coded values and variables.

One of the advantages of using servlets is that the servlets API solves

all of these problems. This task is automatic and the values are made

available to the servlet through the getParameter method of the class called

HttpServletRequest. This parameter passing system is independent of the

method used by the form to pass parameters to the servlet (GET or POST).

There are also other methods to help us collect the parameters sent by the

form. Firstly, we have a version of getParameter called getParameters that

we need to use if the parameter we are looking for can have more than one

value. We also have getParameterNames, which returns the name of the

parameters passed.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class BasicServlet extends HttpServlet

{

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String tit= "Reading 2 Parameters";

 out.println(Utilities.titleHeader(tit) +

 "<BODY>\n" +

 "<H1 ALIGN=CENTER>" + tit + "</H1>\n" +

 "\n" +

 " param1: "

 + request.getParameter("param1") + "\n" +

 " param2: "

 + request.getParameter("param2") + "\n" +

 "\n" +

 "</BODY></HTML>");

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

GNUFDL • PID_00148398 34 Dynamic content

 {

 doGet(request, response);

 }

}

This example of a servlet reads two parameters called param1, param2 and

displays their values in a HTML list. We can see how getParameter is used

and how, by making doPost call doGet, the application is made to respond

to the two methods. If required, we have methods for reading the standard

input, as in CGI programming.

We will now look at a more complex example to illustrate the full potential

of the servlets API. This example receives data from a form, searches for the

names of the parameters and prints them, indicating those with the value of

zero and those with multiple values.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class Parameters extends HttpServlet

{

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String tit= "Reading Parameters";

 out.println(Utilities.titleHeader(tit) +

 "<body BGCOLOR=\"#FDF5E6\">\n" +

 "<H1 ALIGN=CENTER>" + tit + "</H1>\n" +

 "<TABLE BORDER=1 ALIGN=CENTER>\n" +

 "<TR BGCOLOR=\"#FFAD00\">\n" +

 "<TH>Parameter Name<TH>Parameter(s) Value");

 // Reading the names of the parameters

 Enumeration params = request.getParameterNames();

 // Going through the names array

 while(params.hasMoreElements())

 {

 // Reading the name

 String param = (String)params.nextElement();

GNUFDL • PID_00148398 35 Dynamic content

 // Printing the name

 out.println("<TR><TD>" + paramName + "\n<TD>");

 // Reading the values array of the parameter

 String[] values = request.getParameterValues(param);

 if (values.length == 1)

 {

 // Only one empty value

 String value = values[0];

 // Empty value.

 if (value.length() == 0)

 out.print("Empty");

 else

 out.print(value);

 }

 else

 {

 // Multiple values

 out.println("");

 for(int i=0; i<values.length; i++)

 {

 out.println("" + values[i]);

 }

 out.println("");

 }

 }

 out.println("</TABLE>\n</BODY>\n</HTML>");

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 doGet(request, response);

 }

}

We first look for the names of all parameters using the method

getParameterNames. This returns an enumeration. We then use the

standard method to run enumeration (using hasMoreElements to

determine when to stop and nextElement to obtain each input). Since

nextElement returns an object object, we convert the result to String and

we use them with getParameterValues to obtain a String. If this array

only has one entry and contains only one empty String, the parameter has

GNUFDL • PID_00148398 36 Dynamic content

no values and the servlet will generate an "empty" entry in italics. If the array

contains more than one entry, the parameter has multiple values, which are

displayed in an unsorted list. Otherwise, the only value is displayed.

This is an HTML form that will be used to test the servlet, as it sends a group

of parameters to it. Since the form contains a PASSWORD type field, we will use

the POST method to send the values.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML> <HEAD>

 <TITLE>Form with POST</TITLE>

</head>

<BODY BGCOLOR="#FDF5E6">

 <H1 ALIGN="CENTER">Form with POST</H1>

 <FORM ACTION="/examples/servlets/Parameters" METHOD="POST">

 Code: <INPUT TYPE="TEXT" NAME="code">

 Quantity: <INPUT TYPE="TEXT" NAME="quantity">

 Price: <INPUT TYPE="TEXT" NAME="price" VALUE="\$">

 <HR>

 Name:

 <INPUT TYPE="TEXT" NAME="Name">

 Surname:

 <INPUT TYPE="TEXT" NAME="Surname">

 Address:

 <TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

 Credit card:

 <INPUT TYPE="RADIO" NAME="cred"

 VALUE="Visa">Visa

 <INPUT TYPE="RADIO" NAME="cred"

 VALUE="MasterCard">MasterCard

 <INPUT TYPE="RADIO" NAME="cred"

 VALUE="Amex">American Express

 <INPUT TYPE="RADIO" NAME="cred"

 VALUE="Maestro">Maestro

Card number:

<INPUT TYPE="PASSWORD" NAME="cardno">

 Re-enter card number:

 <INPUT TYPE="PASSWORD" NAME="cardno">

 <CENTER>

 <INPUT TYPE="SUBMIT" VALUE="Place order">

 </CENTER>

</FORM>

GNUFDL • PID_00148398 37 Dynamic content

</BODY>

</HTML>

3.8. The HTTP request: HttpRequest

When an HTTP client (the browser) sends a request, it can send a specific

number of optional headers, except for Content-Length, which is required

in POST requests. These headers provide additional information to the web

server, which can use them to adapt its response to suit the browser request.

Some of the most common and useful headers are:

• Accept. The MIME types preferred by the browser.

• Accept-Charset. The character set accepted by the browser.

• Accept-Encoding. The types of data encoding accepted by the browser. For

example, it can indicate that the browser accepts compressed pages, etc.

• Accept-Language. The language preferred by the browser.

• Authorization. Authorisation information, usually in response to a server

request.

• Cookie. XML cookies stored in the browser that correspond to the server.

• Host. Server and port of the original request.

• If-Modified-Since. Send only if it has been modified since the specified

date.

• Referrer. The URL of the page containing the link followed by the user to

obtain the current page.

• User-Agent. Type and brand of browser, useful for adapting the response

to specific browsers.

To read the headers, we simply need to call the method getHeader of

HttpServletRequest. This will return a String, if the indicated header

was sent in the request, and null if it was not.

Some header fields are used so often that they have their own methods.

The getCookies method is used to access cookies sent with the HTTP

request, analysing and storing them in a cookie. The getAuthType and

getRemoteUser methods allow access to each of the components of the

GNUFDL • PID_00148398 38 Dynamic content

Authorization field in the header. The getDateHeader and getIntHeader

methods read the specific header and convert it to the values Date and int,

respectively.

Instead of searching for a specific header, we can use getHeaderNames to

obtain an enumeration of all the header names of a specific request. If this

is the case, we can run through this list of headers, etc.

Lastly, as well as accessing the header fields of the request, we can obtain

information about the request itself. The getMethod returns the method

used for the request (usually GET or POST, but HTTP has other, less common

methods, such as HEAD, PUT and DELETE). The getRequestURI method

returns the URI (the part of the URL that appears after the name of the

server and port but before the form data). The getRequestProtocol method

returns the protocol used, generally "HTTP/1.0" or "HTTP/1.1".

3.9. Additional request information

Besides the headers of the HTTP request, we can obtain a series of values that

will provide us with further information about the request. Some of these

values are available for CGI programming as environment variables. They are

all available as HttpRequest.

getAuthType (). If an Authorization header s supplied, this is the specified

schema (basic or digest). CGI variable: AUTH_TYPE.

getContentLength (). Only for POST requests, the number of bytes sent.

getContentType (). The MIME type of the attached data, if specified. CGI

variable: CONTENT_TYPE.

getPathInfo (). Information on the path attached to the URL. CGI variable:

PATH_INFO.

getQueryString (). For GET requests; these are the data sent as a single string

with encoded values. They are not generally used in servlets, since direct access

to the decoded parameters is available. CGI variable: QUERY_STRING.

getRemoteAddr (). The IP address of the client. CGI variable: REMOTE_ ADDR.

getRemoteUser (). If an Authorization header is supplied, the user part. CGI

variable: REMOTE_USER.

getMethod (). The request type is normally GET or POST, but it can also be

HEAD, PUT, DELETE, OPTIONS or TRACE. CGI variable: REQUEST_METHOD.

GNUFDL • PID_00148398 39 Dynamic content

3.10. Status and response codes

When a browser's web request is processed, the response usually contains a

numerical code that tells the browser whether the request has been fulfilled

and, where applicable, the reasons why this is not the case. It also includes

some headers to give the browser further information about the response.

Servlets can be used to indicate the HTTP return code and the value of some

of these headers. This means that we can redirect the user to another page,

indicate the type of response content, request a password from the user, etc.

3.10.1. Status codes

To return a specific status code, our servlets can use the setStatus. which

tells the web server and servlet container the status that they should return

to the client. In the HttpServletResponse class, the servlets API provides a

table of constants to facilitate the use of response codes. These constants have

names that are easy to remember and use.

For example, the constant for code 404 (qualified in standard HTTP as not found), is
SC_NOT_FOUND.

If the code we return is not the default one (200, SC OK), we will need

to call setStatus before using PrintWriter to return the client content.

We can also use setStatus to return error codes for two more specialised

methods: sendError to return errors (code 404), which allows us to add a

HTML message to the numerical code, and sendRedirect (code 302), which

is used to specify the address to which the client is redirected.

3.10.2. Return headers

Besides including a numerical code when responding to the http request, the

server can add a series of values in response headers. These headers tell the

browser about the expiry of the information sent (Expires), that it must

refresh the information after a specific time (Refresh), etc. We can modify

the value of these headers or add new ones from our servlets. To do so, we

can use the setHeader method of the class called HttpServletResponse

class, hich allows us to assign random values to the headers we return to

the client. As with return codes, we must select the headers before sending a

value to the client. There are two auxiliary methods for setHeader for times

when we want to send headers containing dates or integers. These methods,

setDateHeader and setIntHeader, do not rule out the need for converting

dates and integers to String, the parameter accepted by setHeader.

There are also specialised methods for some of the more common headers:

GNUFDL • PID_00148398 40 Dynamic content

SetContentType. Provides a value for the Content-Type header and must

be used in most servlets.

SetContentLength. Allows us to assign a value to the Content-Length.

AddCookie. Assigns a cookie to the response.

SendRedirect. As well as assigning status code 302, as we saw, it assigns the

address to which the user is redirected in the header Location.

3.11. Session monitoring

HTTP is a stateless protocol, which means that each request is totally

independent of the previous one. This means that we cannot link two

consecutive requests, which is disastrous if we want to use the web for

something more than simply viewing documents. If we are developing an

e-commerce application such as an on-line store, we need control over the

products that our client has selected to ensure that we have the correct

shopping list when the client reaches the order page. How can we obtain the

list of objects selected for purchase when this screen is reached?

There are three possible solutions to this problem:

1) Use cookies. Cookies are small pieces of information sent by the server to

the browser, which the latter resends every time it accesses the website.

Despite excellent support from cookies, using this technique to monitor a

session is still an arduous task:

• Control the cookie containing the session identifier.

• Control expiry of the latter.

• Associate the contents of the cookie with information from a session.

2) Rewrite the URL. We can use the URL to add further information to

identify the session. This solution has the advantage that it works with

browsers that have no cookies support or where it is disabled. However, it

is still a tedious method:

• We need to ensure that all URLs reaching the user have the right

session information.

• It causes problems for users trying to add addresses to their bookmarks,

because these contain expired session information.

3) Hidden fields in forms. We can use the HIDDEN fields of HTML forms

to spread information in our interest. Clearly, this suffers from the same

problems as the above solutions.

GNUFDL • PID_00148398 41 Dynamic content

Fortunately, the servlets API has a solution to this problem. Servlets have a

high-level API, HttpSession, for session management, which is carried out

using cookies and URL rewriting. This API isolates the author from the servlets

of the details of session management.

3.11.1. Obtaining the session associated with the request

To obtain the session associated with the HTTP request in course, we can use

a getSession method of the class called HttpServletRequest. If a session

exists, this method will return a HttpSession. If it does not exist, it will

return null. We can call getSession using an additional parameter that will

create the session automatically if it does not exist.

HttpSession session = request.getSession(true);

3.11.2. Accessing the associated information

The HttpSession objects representing the information associated with a

session allow us to store a series of named values inside. To read these values,

we can use getAttribute, and to modify them, we have setAttribute.

One schema for accessing this session data might be:

HttpSession session = request.getSession(true);

 Languagestring=(String)session.getAttribute("language");

 if (language == null)

 {

 language=new String("Spanish");

 response.setAttribute("language",language);

 }

 // we can now display the data in the language

 // preferred by the user

Note

In versions prior to 2.2 of the
servlets API, the functions for
accessing information were:
getValue and setValue.

There are methods for accessing the list of attributes saved in the session,

such as getAttributeNames, which returns an enumeration, similar to the

getHeaders and getParameterNames methods of HttpServletRequest.

There are also some useful functions for accessing session information:

getId returns a unique identifier generated for each session.

isNew returns true if the client has never seen the session because it has just

been created.

Note

In versions prior to 2.2 of
the servlets API, the list of
value names function was
getValueNames.

GNUFDL • PID_00148398 42 Dynamic content

getCreationTime returns the time in milliseconds since 1970, the year in

which the session was created.

getLastAccessedTime returns the time in milliseconds since 1970, the year in

which the session was sent to the client for the last time.

3.12. Java Server Pages: JSP

Java Server Pages, or JSP, are a HTML extension developed by Sun used to

embed Java instructions (scriptlets) in the HTML code. This simplifies matters

when it comes to designing dynamic websites. We can use any of the many

HTML editors to create our web or we can leave this to the designers, focusing

instead on the development of the Java code that will generate the dynamic

parts of the page so that we can subsequently embed this code in the page.

An example of a basic JSP page that will introduce us to some of the main

concepts of the standard is as follows:

<HTML>

 <BODY>

 <H1>Welcome. Date: < %= date %> </h1>

 < % if(name==null)

 out.println("New user");

 else

 out.println("Welcome back");

 %>

 </BODY>

</HTML>

JSP pages normally have the extension .jsp and are located in the same

directory as HTML files. As we can see, a .jsp page is simply a HTML page in

which we embed pieces of Java code, delimited by < % and %>. Constructions

delimited by < % and %> can be of three types:

• Script elements allowing us to enter a code that will form part of servlet

resulting from translation of the page.

• Directives, used to tell the servlet container how we want the servlet to

be generated.

• Actions allow us to specify components that should be used.

When the server/servlet container processes a JSP page, it converts this into a

servlet in which all of the HTML that we have entered in the JSP page is printed

on output and subsequently used for compiling this servlet and passing the

GNUFDL • PID_00148398 43 Dynamic content

request to it. This conversion/compilation step is generally only carried out

the first time we access the page or if the JSP file has been modified since the

last time it was compiled.

3.12.1. Script elements

Script elements allow us to insert Java code inside a servlet produced by

the compilation of our JSP page. There are three options when it comes to

inserting code:

• Expressions of the type < %= expression %> which are evaluated and

inserted in the output.

• Scriptlets of the type < % code %> that are inserted within the servlet's

Service method.

• Declarations of the type < %! code %> that are inserted in the body of

the servlet class, outside any existing method.

Expressions

JSP expressions are used to insert a Java value directly in the output. Their

syntax is:

< %= expression %>

The expression is evaluated and produces a result that is converted into a

string, which is inserted in the resulting page. The evaluation is carried out

in execution time, when the page is requested. Hence, expressions can access

HTTP request data. For example,

< %= request.getRemoteUser() > logged on on

< %= new java.util.Date() >

This code will display the remote user (if authenticated) and the date on which

the page was requested.

We can see in our example that we are using a variable, request, which

represents the HTTP request. This predefined variable belongs to a series of

predefined variables that we can use:

• request: the HttpServletRequest

• response: the HttpServletResponse

• session: the HttpSession associated with request (if it exists)

GNUFDL • PID_00148398 44 Dynamic content

• out: the PrintWriter used to send the output to the client

There is an alternative syntax for entering expressions. This syntax was

introduced to make JSP compatible with XML editors, parsers, etc. It is based

on the concept of tagActions. The syntax for an expression is:

<jsp:expression> expression</jsp:expression>

Scriptlets

XML scriptlets are used to insert random Java code in the servlet that will result

from compilation of the JSP page. A scriptlet looks like this:

< % code %>

In a scriptlet we can access the same predefined variables as in an expression.

For example:

< %

 String user = request.getRemoteUser();

 out.println("User: " + user);

%>

XML scriptlets are inserted in the resulting servlet as they are written, while

the HTML code entered is converted into println. This means that we can

create constructions such as:

<% if (obtainTemperature() < 20) { %>

 Wrap up! It's cold!

<% } else { %>

 Have a nice day!

< % } %>

In this example, we see that the Java code blocks can affect and include the

HTML defined on the JSP pages. Once the page has been compiled and the

servlet generated, the above code will look something like this:

if (obtainTemperature() < 20) {

 out.println("Wrap up! It's cold! ");

} else {

 out.println("Have a nice day!");

}

The XML equivalent for scriptlets is:

<jsp:scriptlet> code </jsp:scriptlet>

GNUFDL • PID_00148398 45 Dynamic content

JSP declarations

Declarations are used to define methods or fields that are subsequently

inserted in the servlet outside the service. They look similar to this:

< %! code %>

Declarations do not generate output. As a result, they are usually used to define

global variables, etc. For example, the following code adds a counter to our

page:

< %! private int visits = 1; %>

Visits to the page while server is running:

< %= visits++ %>

This counter is restored to one each time the servlet container is restarted or

each time we modify the servlet or JSP file (which requires the server to reload

it). The equivalent to declarations for XML is:

<jsp:declaration> code </jsp:declaration>

3.12.2. JSP directives

Directives affect the general structure of the servlet class. They look like this:

< %@ attribute directive1="value1"

 attribute2="value2"

 ...

 %>

There are three main directives:

page allowing us to modify compilation of the JSP page to the servlet.

include which allows us to insert another file in the resulting servlet (this is

inserted when translating JSP to servlet).

taglib which is used to indicate which tag libraries we wish to use. JSP allows

us to define our own tag libraries.

The page directive

We can define the following attributes using the page directive, which will

modify translation of JSP to servlet:

• import="package.class" or import="package.class1, ...

,package.classN". Import allows us to specify the packets and classes

Example

For example, we can import
classes, modify the servlet
class, etc.

GNUFDL • PID_00148398 46 Dynamic content

that need to be imported by Java to compile the resulting servlet. This

attribute can appear several times in each JSP. For example:

< %@ page import="java.util.*" %>

< %@ page import="edu.uoc.campus.*" %>

• contentType="MIME-Type" or contentType="MIME-Type;

charset=Character-Set" This directive is used to specify the resulting

MIME type of the page. The default value is text/html. For example:

< %@ page contentType="text/plain" %>

This is equivalent to using the scriptlet:

< % response.setContentType("text/plain"); %>

• isThreadSafe="true|false". A true value (the default value)

indicates that the resulting servlet will be a normal servlet, in which

multiple requests can be processed simultaneously, assuming that the

instance variables shared between threads will be synchronised by the

author. A false value indicates that the servlet must implement a

SingleThreadModel.

• session="true|false". A true value (the default value) indicates that

there must be a predefined session variable (of the type Httpsession)

with the session or, if there is no session, one must be created. A false

value indicates that sessions will not be used and attempts to access them

will result in errors when it comes to translating to servlet.

• extends="package.class". This indicates that the servlet generated

must extend a different superclass. It must be used with extreme caution,

since the servlet container we use may require the use of a specific

superclass.

• errorPage="URL". Specifies which JSP will be processed if an exception

is launched (an object of the type Throwable) and it is not captured on

the current page.

• isErrorPage="true|false". Indicates whether the current page is an

error processing page.

The equivalent XML syntax is:

<jsp:directive.Directive attribute=value />

For example, the following two lines are equivalents:

GNUFDL • PID_00148398 47 Dynamic content

< %@ page import="java.util.*" %>

<jsp:directive.page import="java.util.*" />

The include directive

The include directive is used to include files in the JSP page when translated

to servlet. The syntax is as follows:

< %@ include file="file to be included" %>

The file to be included can be relative to the position of the JSP on the

server, for example, examples/example1.jsp or absolute, for example,

/general/header.jsp. and it can contain any JSP construction: html,

scriptlets, directives, actions, etc.

The include directive can save us a lot of work because it allows us to write

elements like the menus of our website on a single page, which means that

we only need to include them in each JSP we use.

1.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

 <HTML>

 <HEAD>

 <TITLE>Website</TITLE>

 <META NAME="author" CONTENT="carlesm@asic.udl.es">

 <META NAME="keywords" CONTENT="JSP, Servlets">

 <meta NAME="description" CONTENT="One page">

 <LINK REL=STYLESHEET HREF="style.css" TYPE="text/css">

 </HEAD>

 <body>

2.

<HR>

 <CENTER><small>© Web developer, 2003. All

rights reserved</SMALL></center>

</BODY> </html>

3.

< %@ include file="/header.html" %>

 <!-- JSP page -->

 .

 .

< %@ include file="/footer.html" %>

GNUFDL • PID_00148398 48 Dynamic content

In this example, we have three files: header.html, footer.html and a JSP

page of the website, respectively. As we can see, having a fragment of the page

content in separate files considerably simplifies the writing and maintenance

of JSP pages.

One thing to bear in mind is that it is included when the JSP page is translated

to servlet. If we change anything in the files included, we will need to force

re-translation of the entire site. Although this may seem a problem, it is greatly

compensated by the benefits gained by the efficiency of only having to include

the files once.

If we want them to be included in each request, we have an alternative in the

XML version of the directive:

<jsp:include file="/header.html">

 <!-- JSP page -->

 .

 .

<jsp:include file="/header.html">

In this case, the inclusion is made when the page is served. However, we

cannot include any JSPs in the file we are going to include; it can only be in

HTML.

3.12.3. Predefined variables

In JSPs, we have a group of defined variables to make code development easier.

• request. The HttpServletRequest object associated with the request.

This allows access to the request parameters (through getParameter), the

type of request and the HTTP headers (cookies, referrer etc).

• response. This is the HttpServletResponse object associated with the

servlet response. Since the stream output object (the out variable defined

later) has a buffer, we can select the status codes and response headers.

• out. This is the PrintWriter object used to send the output to the client.

• session. This is the HttpSession object associated with the request.

Sessions are created automatically by default. This variable exists even if

there is no reference session. The only exception is if we use the session

attribute of the page directive.

• application. This is the ServletContext object obtained through

getServletConfig().getContext().

GNUFDL • PID_00148398 49 Dynamic content

• config. The ServletConfig object for this page.

3.12.4. Actions

JSP actions use constructions with a valid XML syntax to control the behaviour

of the servlet container. These actions are used to insert files dynamically, use

JavaBeans components, resend another page to the user, etc.

jsp:include

This action is used to insert files into the page being generated. The syntax is:

<jsp:include page="relative URL" flush="true" />

Unlike the include directi e, which inserts the file when the JSP page is being

converted to servlet, this action inserts the file when the page is requested. On

the one hand, this results is less efficiency and means that the included page

cannot contain JSP code. On the other hand, however, it increases flexibility

because we can change the inserted files without having to recompile the

pages.

Here is an example of a page that inserts a news file into a website. Each time we want
to change the news, we simply need to change the file included. This is a job that can
be left with the copywriters without the need to recompile the JSP files.

< %@ include file="/header.html" %>

Latest news:

<jsp:include page="news/news.html" />

< %@ include file="/footer.html" %>

jsp:useBean

This action can be used to load a JavaBean on the JSP page so that we can

use it. It is a very useful capability because it allows us to make use of the

reusability of Java classes. The simplest way of specifying the use of a bean is:

<jsp:useBean id="name" class="package.class" />

The meaning of this code is: it instances an object of the class specified by

class and assigns it to the variable called id. We can also add a scope attribute,

indicating that the Bean must be associated to more than one page.

Once we have the Bean instanced, we can access its properties. It is possible

to do this from a scriptlet or with one of the following two actions:

jsp:setProperty and jsp:getProperty.

Note

Remember�JavaBeans. A
property X of the type Y of
a Bean means: a getX ()
method that returns an object
of the type Y and a setX (Y).

GNUFDL • PID_00148398 50 Dynamic content

We will describe these actions, jsp:setProperty and jsp:getProperty, in

detail later. For now, you simply need to be aware that they have an attribute,

param to specify which property we want.

Here is a small example of how Beans are used on JSP pages:

< %@ include file="/header.html" %>

Latest news:

 <jsp:useBean id="mess" class="MessageBean" />

 <jsp:setProperty name="mess"

 property="text"

 value="Hello" />

 <H1>Message: <I>

 <jsp:getProperty name="mess" property="text" />

 </I></h1>

< %@ include file="/footer.html" %>

The Bean code used for the example is as follows:

public class MessageBean

{

 private String text = "No text";

 public String getText()

 {

 return(text);

 }

 public void setText(String text)

 {

 this.text = text;

 }

}

The jsp:useBean action includes other facilities for working with Beans. If

we wish to execute a specific code when the Bean is instanced (in other words,

when it is first loaded), we can use the following construction:

<jsp:useBean ...>

 code

</jsp:useBean>

Note that Bean can be shared among different pages. However, not all uses of

jsp:useBean result in the instantiation of a new object. For example:

<jsp:useBean id="mess" class="MessageBean" >

 <jsp:setProperty name="mess"

Note

Location�of�beans.
To ensure correct loading of
beans, we need to ensure that
the servlet container will find
them. To do this, check the
documentation to find out
where they should be placed.

GNUFDL • PID_00148398 51 Dynamic content

 property="text"

 value="Hello" />

</jsp:useBean>

Besides those mentioned, useBean has some other, less used attributes. These

are now listed:

• id. Gives a name to the variable to which we will assign the bean. It will

instance a new object if we cannot find one with the same id and scope.

In this case, the existing one will be used.

• class. Designates the full name of the Bean package.

• scope. Indicates the context in which the Bean will be available. There

are four possible scopes:

– page directive: indicates that the Bean will only be available for

the current page. This means that it will be stored in the PageContext

of the current page.

– request: the bean will only be available for the current client request,

stored in ServletRequest.

– session: tells us that the object is available for all pages for the

lifetime of the current HttpSession .

– application: indicates that it is available for all pages that share the

same ServletContext.

The importance of scope lies in the fact that a jsp:useBean entry will

only result in a new object if no previous objects exist with the same id

and scope.

• escribir. Specifies the type of variable to which the object will refer.

This must match the name of the class or superclass or an interface

that implements the class. Remember that the name of the variable is

designated with the attribute id.

• beanName. Gives the name of the Bean as we would supply it in the bn

instantiate method. We can supply a type and BeanName, and ignore the

attribute class.

jsp:getProperty

This action records the value of a ban property, converts it into a string and

inserts this value in the output. It has two required attributes, which are:

• name: the name of a Bean loaded previous with jsp:useBean.

GNUFDL • PID_00148398 52 Dynamic content

• property: the property of the Bean whose value we wish to obtain.

The following code reveals the operation of jsp:getProperty.

<jsp:useBean id="bean" ... />

 Quantity:

 <jsp:getProperty name="bean" property="quantity" />

 Price:

 <jsp:getProperty name="bean" property="price" />

jsp:setProperty

The jsp:setProperty action is used to assign values to Bean properties that

have already been loaded. There are two options for assigning these values:

• At the time of instantiation. We can use jsp:setProperty when we are

instantiating a bean. As a result, the values will only be assigned once

during the lifetime of the Bean:

<jsp:useBean id="mens" class="MessageBean" >

<jsp:setProperty name="mess"

 property="text"

 value="Hello" />

</jsp:useBean>

• At some point in our code, if we use jsp:setProperty outside a

jsp:useBean context, the value will be assigned to the property,

regardless of whether it is the first instantiation or if the Bean had

previously been instantiated.

<jsp:useBean id="mens" class="MessageBean" />

.....

<jsp:setProperty name="mess"

 property="text"

 value="Hello" />

....

<jsp:setProperty name="mess"

 property="text"

 value="Bye" />

The jsp:setProperty action has four possible attributes:

• name. This attribute designates the Bean whose property is to be modified.

GNUFDL • PID_00148398 53 Dynamic content

• property. This attribute indicates the property we wish to operate on.

There is a special case: a value of "*" means that all of the parameters of

the HTTP request whose names match the names of the Bean's properties

will be passed to the appropriate selection methods.

• value. This optional attribute specifies the value for the property. Values

are automatically converted with the standard method valueOf in the

source or enclosing class. We cannot use value and param together, but

we can ignore both.

• param. This optional parameter indicates that a parameter of the HTTP

request will be used to give a value to the property. If the HTTP request does

not have this parameter, the system does not call the setX bean property

method.

Where it exists, the following code passes the value of the numItems

parameter to the Bean for the latter to assign it to its property, numberItems.

<jsp:setProperty name="order"

 property="numberItems"

 param="numItems" />

If in the jsp:setProperty action we ignore value and param, the container

will assign the value of the HTTP request parameter with an identical

name to the specified property. Using the capability of not specifying the

property being assigned (by using "*"), we can easily assign all properties

corresponding to HTTP request parameters to a Bean.

<jsp:setProperty name="order"

 property="*" />

jsp:forward

This action is used to resend the request made to another page. It has only one

parameter, page, which will contain the target URL. We can use static values

or use a value generated dynamically.

<jsp:forward page="/underconstruction.jsp" />

<jsp:forward page="< %= urlDestination %>" />

jsp:plugin

This action is used to insert a specific OBJECT or EMBED element of the

browser to specify that the browser must execute an applet using the Java

plug-in.

GNUFDL • PID_00148398 54 Dynamic content

4. Other dynamic content options

In addition to the technologies we have seen so far, there are other systems,

technologies and languages designed for the development of dynamic web

content.

One of the preferred systems, as an alternative to the ones we have seen, is

mod_perl, an Apache server module that can be used to write web pages in

Perl programming language in a similar way to how PHP is used. This module

offers a series of obvious advantages over writing CGIs in Perl:

• Enhanced memory use. It behaves in a similar way to PHP, since the Perl

module is only launched once when the web server is booted and remains

in the memory from this point on. This avoids the problem of having to

start Perl for each CGI.

• Faster response. When a module is preloaded, the response is more agile,

which is the case of precompiled Perl programs (Perl precompiles the code

to an intermediate code which then interprets it).

• It gives programs more direct access to server information. The module

provides a richer and more efficient gateway than that facilitated by the

CGI environment variables.

• It allows server extensions to be written entirely in Perl.

Two of the main advantages of mod_perl are the substantial increase in

program performance and speed on the one hand, and the fact that a CGI

program written in Perl needs only minimal attention to convert it into one

in mod_perl. These two advantages make it a very valid option in situations

where we already have several CGI programs written in Perl. One of the

disadvantages of mod_perl is that it is only available for Apache servers, so it

will not be a valid alternative if we cannot use Apache for our work.

Many web servers, including some of the ones we have seen, like Roxen,

offer programming mechanisms with a similar philosophy to JSP. Roxen

in particular, perhaps one of those with the greatest wealth of options for

application development, offers us the possibility of extending our HTML

pages with:

• RXML code, a Roxen HTML extension that incorporates all the elements

of a programming language: conditionals, loops etc., and a rich

GNUFDL • PID_00148398 55 Dynamic content

function library that includes elements like access to databases, LDAP,

communications, graphics, string handling, etc.

• Code written in Pike, the object-oriented language in which Roxen was

developed.

• PHP code, equalling the features of Apache in this case.

• Perl code, which does not offer the same features as mod_perl, but does

have a wide range of options.

Like Roxen, both AOLServer and Apache can be used to develop server

extension modules that would allow the handling of new HTML tags, new

requests or communication protocols etc. Some of these systems can be used to

develop programming extensions, such as template languages, with a similar

philosophy to JSP. This is the case of Mason, DTL, etc.

Other options include the use of a "complex" server incorporating extension

mechanisms (with an own language and another for general use), mechanisms

for developing dynamic content and dynamic pages, all in a single product.

One of the best known of these is Zope, based on Python programming

language, which is a free software applications server for building portals,

web applications, content managers, etc. It offers programmers a wide range

of development features with a rich and powerful API for processing HTTP

requests, database access, etc.

Lastly, there are some top-level options, many based on one of the above

products and designed for the development of complex web applications.

Some of these, like Enhydra (http://www.enhydra.org), are based on

JSP/Servlets (Enhydra is also an excellent servlet container). Others, like

OpenACS, are applications very much oriented to a specific type of website.

One of the weaknesses of OpenACS is that it depends on AOLServer and TCL.

This is a common feature of very high level packages, which are usually very

closely linked to a specific web server. On the other hand, OpenACS offers a

wide range of modules and features for creating websites.

It also has a wide variety of CMS (Content Management Systems) products

for most free software web servers and servlet containers, with sufficient

features for modifying, adapting and programming some of the more complex

projects. In this cases, the complexity linked to the full development of a web

application is not needed.

Example

OpenACS, for example, was
designed to develop websites
for communities, portals, etc.

GNUFDL • PID_00148398 56 Dynamic content

5. Practical: creation of a simple application with the
techniques described

We are going to create a form that collects greetings and displays them on

the screen. To do this, we will use two of the techniques described: CGI and

servlets.

5.1. CGI

We have chosen Perl programming language to write our CGI program. The

program code is:

#!/usr/bin/perl

print "Content-type: text/html\n\n\n";

print "<html>\n";

print "<body>\n";

$QS=$ENV{"QUERY_STRING"};

if ($QS ne "")

{

 @params=split /&/,$QS;

 foreach $param (@params)

 {

 ($nom,$val)=split /=/,$param;

 $val=˜s/\+/ /g;

 $val =˜ s/ %([0-9a-fA-F]{2})/chr(hex($1))/ge;

 if($nam eq "greeting")

 {

 open FIT,">>list";

 print FIT "$val\n";

 close FIT;

 }

 }

}

 open FIT,"<list";

 while(<FIT>)

 {

 print "$_\n<HR>\n";

 }

 close FIT;

print << "EOF";

GNUFDL • PID_00148398 57 Dynamic content

<FORM METHOD=GET ACTION="visit.cgi">

Greeting: <INPUT TYPE=Text NAME="greeting" SIZE=40>

<INPUT TYPE="submit" NAME="SEND" VALUE="SEND">

</FORM>

</BODY>

</HTML>

EOF

As we can see, in this case, we need to manually process the environment

variable containing the parameters.

5.2. Java Servlet

We will now look at an equivalent implementation using Java Servlets:

import java.io.*; import java.text.*; import java.util.*; import

javax.servlet.*; import javax.servlet.http.*;

/**

 * Form processing

 *

 * @author Carles Mateu

 */

 public class Form extends HttpServlet {

 Greetings vector;

 public void init(ServletConfig sc)

 throws ServletException

 {

 greetings=new Vector();

 }

 void listGreetings(PrintWriter out)

 {

 for (Enumeration e = greetings.elements() ; e.hasMoreElements() ;)

 {

 out.println(e.nextElement()+"<HR>");

)

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String greeting=request.getParameter("greeting");

GNUFDL • PID_00148398 58 Dynamic content

 if(greeting!=null)

 {

 greetings.add(greeting);

 }

 out.println("<html>");

 out.println("<body bgcolor=\"white\">");

 listGreetings(out);

 out.println("<FORM METHOD=GET ACTION=\"Form\">\n"+

 "Greeting: <INPUT TYPE=Text NAME=\"greeting\" SIZE=40>\n"+

 "
 <INPUT TYPE=\"submit\" "+

 "NAME=\"SEND\" VALUE=\"SEND\">\n"+

 "</FORM> </BODY> </HTML>\n");

 out.println("</body>");

 out.println("</html>");

 }

}

In this case, the persistence of the data is only for the servlet, since the data

are saved to the memory.

Database access:
JDBC

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148405

GNUFDL • PID_00148405 Database access: JDBC

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148405 Database access: JDBC

Index

Introduction... 5

1. Introduction to databases... 7

1.1. PostgreSQL ... 7

1.2. MySQL ... 8

1.3. SAP DB ... 8

1.4. FirebirdSQL .. 9

2. Controllers and addresses.. 10

2.1. JDBC controllers .. 10

2.2. Loading the Java driver .. 11

2.3. Database addresses .. 11

2.4. Connecting to the database .. 12

3. Basic database access.. 13

3.1. Basic statements .. 13

3.1.1. Multiple results .. 14

3.2. Results .. 15

3.2.1. Processing null... 17

3.2.2. Large data types ... 17

3.3. Bug management .. 18

3.3.1. SQL warnings... 19

4. Prepared statements and stored procedures.............................. 20

4.1. Prepared statements .. 20

4.2. Stored procedures .. 21

5. Transactions... 23

6. Metadata... 25

6.1. Database metadata .. 25

6.1.1. Information on the DBMS .. 25

6.1.2. Information on the JDBC driver used 26

6.1.3. Information on the operating limits of the DBMS 26

6.1.4. Information on the database schema 27

6.2. Results metadata ... 27

7. Practical: database access.. 28

GNUFDL • PID_00148405 5 Database access: JDBC

Introduction

One of the most basic needs we face when developing applications for the

Internet with Java, and for many other applications, is to have a powerful,

robust, fast and easily accessible data store. There are several free software

database management systems (DBMS). We will look at some of these in

the following sections before introducing a technology from Java for DBMS

access, particularly relational databases, called JDBC (sometimes incorrectly

expanded as Java database connectivity).

GNUFDL • PID_00148405 7 Database access: JDBC

1. Introduction to databases

One of the keys to the development of web applications is the choice of DBMS

to use. There are currently several free software DBMS available, many of a

similar quality to the more well-known commercial DBMS.

Most free software DBMS come from two main sources: either from projects

that started out as free software projects (research projects, etc.) or DBMS that

belonged to proprietary software companies whose main business was not

DBMS. These companies subsequently opted to release the product under a

free software licence, thus opening up its development to the community. We

will now look at some of the most emblematic free software DBMS.

1.1. PostgreSQL

PostgreSQL (or Postgres) is one of the most well-known and long-standing

DBMS in the free software community. It was launched in the mid-1980s at

the University of Berkeley with the name Postgres following research on the

group of Berkeley databases (particularly by Michael Stonebraker). Postgres

continued to evolve until Postgres 4.2 in 1994. Postgres did not use SQL as

a query language; it had its own language called Postquel. In 1995, Andrew

Yu and Jolly Chen added an SQL interpreter to Postgres 4.2, giving rise to

the birth of Postgres95, a product released under a free software licence that

left the confines of Berkeley to become an Internet development. In 1996, a

new name was chosen that would withstand the passing of time and reflect

the project's relationship with the original Postgres (still available) and new

differences (basically the use of SQL). Hence, PostgreSQL was born.

PostgreSQL has since become one of the databases of choice in numerous

projects, offering users features of the level of commercial database

management systems such as Informix and Oracle.

The most significant features of PostgreSQL are:

• Transaction support.

• Subqueries.

• Viewing support.

• Referential integrity.

• Table inheritance.

• User-defined types.

• Columns as arrays that can store more than one value.

• Addition of fields to tables at runtime.

• User-definable aggregation functions (like sum() and count()).

• Triggers, SQL commands that need to be executed when acting on a table.

GNUFDL • PID_00148405 8 Database access: JDBC

• System tables that can be queried to obtain information on tables, the

database and the database engine.

• Support for large binary objects (over 64 KB).

1.2. MySQL

MySQL and PostgreSQL are currently fighting it out for the title of most

well-known and widely-used free software DBMS. MySQL is a DBMS developed

by MySQL AB, a Swedish company that develops it under a free software

licence (specifically GPL), although it can also be purchased with a commercial

licence if required, to be included in projects that are not free software.

MySQL is an extremely fast database management system. While lacking the

capabilities and features of many other databases, it offsets this lack of features

with an excellent performance that makes it the database of choice when we

only need basic capabilities.

The most significant functionalities of MySQL are:

• Transaction support (new in MySQL 4.0 if InnoDB is used as the storage

engine).

• Replication support (with a master updating multiple slaves).

• Library for embedded use.

• Text search.

• Search cache (for enhanced performance).

1.3. SAP DB

SAP DB is nothing more than the DBMS of the business management software

giant SAP (authors of the famous SAP/R3). For a long time, this company's

product portfolio included a relational DBMS called SAP DB. In April 2001, the

company decided to make it available to the world under a new licence, GPL.

From this point on, SAP DB has been developed under a free software licence.

SAP DB is a very powerful database which originated from a very specialised

environment, SAP applications, and has thus not spread very well among

the free software community. Nonetheless, SAP DB has some very powerful

features which, combined with the prestige of the company that created it,

make it a serious candidate to become the database of choice for some of our

free software projects.

• Support for outer joins.

• Support for user roles.

• Updatable views.

• Implicit transactions and locks.

• Scrollable cursors.

GNUFDL • PID_00148405 9 Database access: JDBC

• Stored procedures.

1.4. FirebirdSQL

FirebirdSQL is a free software database originating from the free software

version of Interbase that Borland/Inprise released in the summer of 2000.

Since the licence used to release this version and the way that Borland planned

to work were not very clear, a group of developers started their own version

of Interbase, which they called FirebirdSQL.

The first aim of the developers of FirebirdSQL was to stabilise the code and

eliminate the many bugs as well as to increase the number of platforms on

which the database could work. Since then, both the features of the database

and the number and quality of the functions it offers have been gradually

developed. Some of its most important functionalities currently include:

• Version architecture to avoid readers/writers locks.

• Events alert to react to database changes.

• Very rich data types (BLOBS etc).

• Stored procedures and triggers.

• ANSI SQL-92 compatibility.

• Referential integrity.

• Transactions.

• Support for multiple interconnected databases.

GNUFDL • PID_00148405 10 Database access: JDBC

2. Controllers and addresses

2.1. JDBC controllers

Despite the many similarities between the different DBMS, their languages,

features, etc., the communication protocols that need to be used to access

them vary substantially from one to the next. Hence, to communicate with

the different DBMS from JDBC, we need to use a driver to isolate the specific

features of the DBMS and its communication protocol.

There are several different types of JDBC drivers, which we can classify as

follows:

• Type 1 drivers. Bridging drivers. These drivers translate JDBC calls to calls

from another DBMS access language (such as ODBC). They are used

when there is no more appropriate JDBC driver. It involves installing the

driver on the client machine in order to translate JDBC calls. The most

well-known is the JDBC-ODBC driver, which acts as a bridge between JDBC

and ODBC.

• Type 2 drivers. Native API Partly Java Drivers. These drivers use the Java

JNI (Java native interface) API to present a Java interface to a native binary

DBMS driver. As with type 1 drivers, these require the native driver to be

installed on the client machine. Their performance is usually superior to

drivers written entirely in Java, although an operating error in the native

part of the driver can cause problems in the Java Virtual Machine.

• Type 3 drivers. Net-protocol All-Java Drivers. Controllers written in Java

defining a communication protocol that interacts with a middleware

program that, in turn, interacts with a DBMS. The communication

protocol with the middleware is a network protocol independent of the

DBMS and the middleware program must be able to communicate the

clients with the diverse databases. The disadvantage of this option is

that we need another level of communication and another program (the

middleware).

• Type 4 drivers. Native-protocol All-Java Drivers. These are the most

widely-used drivers in intranet accesses (those generally used in web

applications). They are written entirely in Java and translate JDBC calls

to the DBMS's own communication protocol. They do not require further

installation or extra programs.

GNUFDL • PID_00148405 11 Database access: JDBC

Almost all modern DBMS already have a JDBC driver (especially type 4).

2.2. Loading the Java driver

To use a JDBC driver, we must first register it in the JDBC DriverManager.

This is usually done by loading the driver class using the forName method of

the class called Class. The usual construction is:

try

{

Class.forName("org.postgresql.Driver");

}

catch(ClassNotFoundException e)

{

....

}

2.3. Database addresses

To identify a given connection to a database, DBMS use a URL (Universal

Resource Locator) address format. This address usually takes the form:

jdbc:driver:database

In actual fact, the format is very flexible as manufacturers have complete

freedom to define it.

Some of the most common formats are:

Table 10. Formats

PostgreSQL jdbc:postgresql://127.0.0.1:5432/database

Oracle jdbc:oracle:oci8:@DBHOST

JDBC-ODBC jdbc:odbc:dsn;optionsodbc

MySQL jdbc:mysql://localhost/database?user=joseph&password=joe

SAP DB jdbc:sapdb://localhost/database

We can see that PostgreSQL specifies the IP address of the server and the port

(5432) and the name of the database. Oracle, on the other hand, specifies

a subdriver (oci8) and a database name base in the line of those defined by

Oracle TNS. The examples of connection addresses reveal that, while different,

they all follow a very similar pattern (particularly PostgreSQL, MySQL and SAP

DB).

Note

For a list of existing drivers,
visit http://java.sun.com/
products/jdbc/
jdbc.drivers.html

GNUFDL • PID_00148405 12 Database access: JDBC

2.4. Connecting to the database

The simple method of connecting to a database will provide us with a

Connection type object that will encapsulate a simple connection. In each

application, we can have as many connections as system resources will allow

(especially those of the DBMS) and maintain connections to different DBMS.

To obtain a Connection we will use the

DriverManager.getConnection(). Never instantiate a Connection type

object directly.

Connection with =

 DriverManager.getConnection ("url","user","password");

We pass three parameters to getConnection: the address of the database in

the format seen above, the user and the password. For databases that do not

require a user and password, leave these blank. When we call this method

JDBC will ask each registered driver if it supports the URL we have passed and,

if so, it returns a Connection.

When a Connection is no longer going to be used, we must close it explicitly

with close() so as not to use up resources. It is particularly important to free

database connections as they are a very costly resource.

Version 2.0 onwards of JDBC also has a mechanism for pooling connections,

allowing us to use a block of preset connections that are used again and again.

GNUFDL • PID_00148405 13 Database access: JDBC

3. Basic database access

Once we have a Connection object, we can start to use it to execute SQL

commands in the database. There are three basic types of SQL statement in

JDBC:

Statements. This is a basic SQL statement, whether for querying (SELECT)

or handling data (INSERT, UPDATE etc).

PreparedStatement. Represents a precompiled SQL statement with better

features than basic statements.

CallableStatement. Represents a call to a stored SQL procedure.

3.1. Basic statements

To obtain a Statement object, we use the createStatement method of the

Connection:

Statement sent=con.createStatement();

Once we have created the Statement object, we can use it to execute SQL

commands in the database. SQL commands may or may not return results.

If they return results in table form (for example, with a SELECT type SQL

command) we use the executeQuery method of Statement to execute them:

ResultSet rs=sent.executeQuery("SELECT * FROM CLIENTS");

We will study ResultSet in detail later. In this code, we have used

executeQuery to execute a data query. There is another method,

executeUpdate, for executing statements that do not return results, such

as UPDATE or DELETE. executeUpdate returns an integer that tells us the

number of rows affected by the SQL command sent.

int columns=sent.executeUpdate("UPDATE CLIENTS SET BALANCE=0");

Where we do not know a priori if a statement will return a table of results

(like executeQuery) or a number of rows affected (like executeUpdate), we

have a more generic method, execute. execute returns true if there is a

ResultSet associated with a statement and false if this statement returns

an integer. In the first case, we can record the resulting ResultSet with

getResultSet, while in the second, using getUpdateCount we can record

the number of rows affected.

GNUFDL • PID_00148405 14 Database access: JDBC

Statement sent=con.createStatement();

if(sent.execute(SQLstatement))

{

 ResultSet rs=sent.getResultSet();

 // show results

}

else

{

 int affected=sent.getUpdateCount();

}

Note that a Statement represents a single SQL statement, so if we make a call

to execute, executeQuery or executeUpdate the ResultSet associated

with this Statement will be closed and released. It is therefore very important

to have finished processing the ResultSet before launching any other SQL

command.

To close a Statement, we can use the close. Although when we close the

Connection we also close the Statement associated with it, it is much better

to close them explicitly in order to free up occupied resources first.

3.1.1. Multiple results

It is possible for a Statement to return more than one ResultSet or more

than one number of affected rows. Statement supports multiple returns

with the getMoreResults. This method returns true if there are more

ResultSet waiting. The method returns false if the next return is a number

of affected rows, even though there could be more ResultSet after the

number. In this case, we will know whether we have processed all of the results

if getUpdateCount returns -1.

Thus, we can modify the above code to support multiple results:

Statement sent=con.createStatement();

sent.execute(SQLstatement);

while(true)

{

 rs=sent.getResultSet();

 if(rs!=null)

 {

 // show results

 }

 else

 {

 // show number

 }

 // Next or last

Note

Whether or not an SQL
statement can return more
than one result or modified
column count will depend on
the DBMS, generally as a result
of stored procedures.

GNUFDL • PID_00148405 15 Database access: JDBC

 if((sent.getMoreResults()==false) &&

 (sent.getUpdateCount()==-1))

 break;

}

3.2. Results

The execution of any SQL query statement (SELECT) produces a table (a

pseudo-table, in fact) containing the data that meet the established criteria.

JDBC uses a ResultSet class to encapsulate these results and offer methods

for accessing them.

We can imagine ResultSet as a series of data reaching us from the DBMS. We

cannot go backwards in it, so we need to process them as we move through

the series. In JDBC 2.0, scrollable cursors allow us to move freely through the

results.

The following is an example of code that will allow us to process the results

of a ResultSet is:

Statement sent=con.createStatement();

ResultSet rs=sent.executeQuery("SELECT * FROM CLIENTS");

while(rs.next())

{

 System.out.println("Name:"+rs.getString("NAME");

 System.out.println("City:"+rs.getString("CITY");

}

rs.close();

 sent.close();

This code runs through the series of (ResultSet) results, iterating through

each row with the next. Initially, once ResultSet has bee obtained, JBDC

positions us before the first element of the list. Hence, to access the first

element, we need to call next. To read the second row, we need to call next.

If there are no more rows to read, next returns false.

Once we are positioned in the row we wish to read, we can use the getXXXX

methods to obtain the specific column we wish to display. There are several

getXXXX methods one for each data type that we can read from the DBMS.

The getXXXX methods take as their parameter a string that must be the name

of the field or a numerical parameter that indicates the column by position,

bearing in mind that numbering begins at 1, not 0, as is usually the case in

arrays, etc.

Another useful method is getObject, which returns a Java object.

GNUFDL • PID_00148405 16 Database access: JDBC

For example, if we use getObject with an entire column, it will return an Integer
object ype, whereas if we use getInt, it will return an int.

The table below contains SQL data types together with the object types

returned by JDBC and the specific method for the type. If the type returned

by the method is different to the Java object, this type will be displayed in

parentheses.

A useful option in a number of situations is getString which can be used for

all types, since JDBC converts most SQL type characters to strings. As many

web applications display data in a simple way, this is a very interesting option.

Table 11. SQL data types and JDBC returns

SQL type Java type getXXXX method

CHAR String getString()

VARCHAR String getString()

NUMERIC java.math.BigDecimal getBigDecimal()

DECIMAL java.math.BigDecimal getBigDecimal()

BIT Boolean (boolean) getBoolean()

TINYINT Integer (byte) getByte()

SMALLINT Integer (short) getShort()

INTEGER Integer (int) getInt()

BIGINT Long (long) getLong()

REAL Float (float) getFloat()

FLOAT Double (double) getDouble()

DOUBLE Double (double) getDouble()

BINARY byte[] getBytes()

VARBINARY byte[] getBytes()

LONGVARBINARY byte[] getBytes()

DATE java.sql.Date getDate()

TIME java.sql.Time getTime()

TIMESTAMP java.sql.Timestamp getTimestamp()

GNUFDL • PID_00148405 17 Database access: JDBC

3.2.1. Processing null

In some databases, certain columns can have null). The processing of these

columns in JDBC is complicated because some drivers do not do it correctly.

Some methods that return objects return null in this case, but those that are

particularly vulnerable to error are those that do not return objects such as

getInt.getInt.

For example, if -1 is returned when a null value is found in a column, we obviously
cannot tell whether -1 was the value or whether the column was null.

There is a method for working out whether the last result obtained was null:

wasNull.

int quantity=rs.getInt("QUANTITY");

if(rs.wasNull())

 System.out.println("The result was null");

else

 System.out.println("Balance: "+quantity);

Remember that wasNull refers to the last column read.

3.2.2. Large data types

We can obtain Java streams to access columns containing large data types,

such as images, text, documents, etc. The JDBC methods for this are

getAsciiStream, getBinaryStream and getCharacterStream. These

methods return an object of the type InputStream. The following example

reads an object of this type from the database and writes it in an

OutputStream that could correspond to the output of a servlet for displaying

an image.

ResultSet res=

 sent.executeQuery("SELECT PHOTO FROM PEOPLE"+

 " WHERE ID NO. ='"+id+"'");

if(res.next())

{

 BufferedInputStream image=

 new BufferedInputStream

 (res.getBinaryStream("PHOTO"));

 byte[] buf=new byte[4096]; // Buffer of 4 kbytes

 int lengt;

 while((lengt=image.read(buf,0,buf.length))!=-1)

 {

 outstream.write(buf,0,len);

 }

GNUFDL • PID_00148405 18 Database access: JDBC

}

JDBC 2.0 also has two specific objects for processing large objects (BLOB,

Binary Large Objects and CLOB, Character Large Objects), called Blob and Clob,

respectively.

We can access these two objects as streams or directly, with methods such as

getBytes. There are also methods for passing Blobs and Clobs to prepared

statements.

3.3. Bug management

If a serious error is found during execution of a JDBC object preventing it from

continuing, an exception is usually launched, specifically SQLException.

SQLException extends Exception and defines several additional methods.

One of these is getNextException. This method strings several exceptions

into one if JDBC finds more than one serious error.

SQLException also defines other methods for obtaining more information

on the type and nature of the error: getSQLState and getErrorCode.

GetSQLState returns a status/error code from the database in line with the

table of codes defined by ANSI-92 SQL. getErrorCode returns an error code

from the DBMS manufacturer.

An example of complete code of a catch managing all possible exceptions

might be:

try

{

 // actions on the database

}

catch(SQLException e)

{

 while(e!=null)

 {

 System.out.println(

 "Exception: "+e.getMessage());

 System.out.println(

 "ANSI-92 SQL code: "+e.getSQLState());

 System.out.println(

 "Manufacturer's code:"+e.getErrorCode());

 e=e.getNextException();

 }

}

Example

These can be caused by wrong
URLs, security problems, etc.

GNUFDL • PID_00148405 19 Database access: JDBC

3.3.1. SQL warnings

Besides being able to launch exceptions in the event of errors, JDBC can

generate a series of warnings about conditions that are wrong but not serious

(allowing it to continue). The types of error generating a warning rather

than an error are decided by the database manufacturer and vary. To access

these warnings, we can use the SQLWarning object, used in a similar way

to SQLException with the difference that we cannot use it in a try-catch

block; nstead, we must interrogate JDBC if there are SQLWarnings after each

operation.

During debugging � or operation � we can use the following trick to capture

all SQLWarnings:

void impWarnings(SQLWarning w)

{

 while(w!=null)

 {

 System.out.println("\n SQLWarning: ");

 System.out.println(w.getMessage());

 System.out.println("ANSI-92 SQL State: "

 +w.getSQLState());

 System.out.println("Manufacturer Code: "

 +w.getErrorCode());

 w=w.getNextWarning();

 }

}

We can encompass all JDBC calls with our impWarnings method to capture

all possible SQLWarnings. It can be used as follows:

ResultSet r=sent.executeQuery("SELECT * FROM SUPPLIERS");

impWarnings(sent.getWarnings());

impWarnings(r.getWarnings());

GNUFDL • PID_00148405 20 Database access: JDBC

4. Prepared statements and stored procedures

The statements we have studied thus far can be used to execute all SQL orders

in the database (insertion, query, elimination, etc.), albeit in a primitive way.

To accelerate and enhance performance or to execute procedures that we may

have in the database, we need to use other mechanisms.

4.1. Prepared statements

One of the most difficult steps in the execution of SQL statements is the

compilation and planning of statement execution. In other words, decisions

about which tables to consult first, how to access them, in which order, etc.

A very widespread technique for getting round these difficulties is to use

compiled or prepared statements. Prepared statements are SQL statements sent

to the DBMS for the latter to prepare before executing them, which we will

then use repeatedly, changing certain parameters while reusing the planning

of an execution for the next one.

A PreparedStatement object is created, like Statement, from a database

connection:

PreparedStatement sp=con.prepareStatement(

 "INSERT INTO CLIENTS (ID,NAME) VALUES (?,?)");

As the purpose of the PreparedStatement is to execute a statement

repeatedly, we do not specify the values that need to be inserted. Instead, we

add special markers that we will later replace with the values we actually want

to insert:

sp.clearParameters();

sp.setString(1,"0298392");

sp.setString(2,"JIMINY CRICKET");

sp.executeUpdate();

Before assigning values to the markers, we need to clear the current

assignation. To do so, we have a set of setXXXX calls, imilar to the getXXXX

method of ResultSet, for assigning these values. The values are referenced

positionally, beginning with 1. The setObject call is used to assign Java

objects to markers, while JDBC converts the format. There are three options

for calling setObject:

setObject(int index, Object ob, int SQLtype, int scale);

setObject(int index, Object ob, int SQLtype);

GNUFDL • PID_00148405 21 Database access: JDBC

setObject(int index, Object ob);

In these calls, SQLType is a numerical reference to one of the SQL type

constants defined in the class java.sql.Types.

To insert a null value in the database, we can use the setNull call or we can

use setObject with a null paramet r, specifying the SQL type we want.

4.2. Stored procedures

Many modern databases come with their own programming language for

developing procedures and functions executed by the DBMS itself. There are

several advantages to this. Firstly, we have a code that is independent of

the applications and can be used in many programs developed in numerous

programming languages. Secondly, this code isolates design applications from

the database, providing an interface that is independent of the form of the

tables for certain operations, which means that we can modify these and only

need to modify the stored procedures. Moreover, in some cases, this approach

offers substantial performance improvements because not only do the data

not have to travel through the network for processing, but the entire process

is carried out locally in the DBMS and only the results have to travel.

This is an example of a stored procedure written in PL/PGSQL, one of the PostgreSQL
programming languages; in other DBMS, the language and syntax would be totally
different.

CREATE OR REPLACE FUNCTION proNewClient

 (VARCHAR) RETURNS INTEGER AS '

DECLARE

 name ALIAS FOR $1;

 iden integer;

BEGIN

 SELECT max(id) INTO iden

 FROM CLIENTS;

 iden:=iden+1;

INSERTINTOCLIENTS(ID,NAME)VALUES(iden,name);

 RETURN iden;

END

' LANGUAGE 'plpgsql';

This example receives a parameter, a string with the name of the client. It then

inserts it and returns the identifier assigned to this client.

To call it, JDBC gives us the CallableStatement. Since each DBMS has its

own syntax for calls to functions and stored procedures, JDBC provides a

standard syntax for these.

GNUFDL • PID_00148405 22 Database access: JDBC

If the stored procedure does not return values, the syntax of the call is:

{call procedurename [(?[,?...])]}

If the procedure returns values (as is the case of the function we have defined),

the syntax will then be:

{? = call procedurename [(?[,?...])]}

Parameters are optional and represented by ?, as in prepared statements. The

JDBC driver will translate these calls to those corresponding to the DBMS. The

Java code that would call the function we have defined here would be:

CallableStatement proc=

 con.prepareCall("{?=call proNewClient(?)}");

proc.registerOutParameter(1,Types.INTEGER);

proc.setInt(2,"Name");

proc.execute();

System.out.println("Result:"+proc.getInteger(1));

It is only necessary to use CallableStatement with stored procedures that

return values. We can call the stored procedures that do not return values

through the previous statement objects.

GNUFDL • PID_00148405 23 Database access: JDBC

5. Transactions

One of the most important aspects and functionalities of modern DBMS is the

possibility of carrying out transactions.

A transaction is a series of database operations carried out atomically,

that is, as if they were an indivisible operation. This allows us to

combine several SQL statements to perform operations to take us to a

specific point.

For example, if inserting a student in an academic database requires inserting him or her
in the students table, creating an academic record entry, creating an e-mail entry, etc., it
is a good idea to ensure that these operations are executed as a single, atomic whole.

The steps for working with transactions are: begin the transaction, execute

the operations and, lastly, if the transaction is correct, validate it and save

the changes in the database; if it is not correct or a problem has occurred, we

need to undo the changes. This ability to undo changes is key to the operation

of transactions, meaning that if any of the operations in the transaction is

incorrect, we can undo all changes and leave the database as if none of the

operations had taken place. Thus, in our case, it will be impossible for us to

end up in a situation where we have an entry in the student table but do not

have the corresponding academic record or e-mail address entry.

Another feature of transactions is the possibility of choosing when the

transaction data are visible to the rest of the applications. For example, we

can choose to make the student data visible only when the transaction is

completely finished, so the academic record cannot be read until the entire

transaction has been performed.

In JDBC, transactions are managed by the Connection object. By default,

JDBC operates in auto-transaction mode, in other words, each SQL operation

is within a transaction that is immediately validated. To perform multiple

operations in a transaction, we must first disable automatic validation. To

do so, we can use setAutoCommit. Transactions can now be validated with

commit and invalidated with rollback.

try

 {

 // Disable automatic validation

 con.setAutoCommit(false);

 sent.executeUpdate("INSERT

GNUFDL • PID_00148405 24 Database access: JDBC

 ...

 sent.executeUpdate("INSERT");

 con.commit();

}

catch(SQLException e)

{

 // If an error occurs, invalidate

con.rollback();

}

JDBC also supports several transaction isolation modes, used to control how

the database resolves conflicts between transactions. JDBC has five transaction

resolution modes, which may not be supported by the DBMS. The default

mode, which will be enabled if we do not specify another, will depend on the

DBMS. As we increase the level of transaction isolation, performance drops.

The five modes defined in Connection are:

• TRANSACTION_NONE. Transactions disabled or not supported.

• TRANSACTION_READ_UNCOMMITTED. Minimum transactions allowing

dirty reads. The other transactions can see the results of the operations

of transactions in progress. If these transactions subsequently invalidate

operations, the other transactions would end up as invalid data.

• TRANSACTION_READ_COMMITTED. The other transactions cannot see the

non-validated data (dirty reads not allowed).

• TRANSACTION_REPEATABLE_READ. Allows repeatable reads. If a

transaction reads data that is subsequently altered by another (and the

modification is validated), if the first transaction reads the data again,

the result obtained will be no different to the first one. Only when the

transaction is validated and we start it again will we obtain different data.

• TRANSACTION_SERIALIZABLE. Adds insertion protection to the

behaviour of TRANSACTION_REPEATABLE_READ. If a transaction reads

from a table and another transaction adds (and validates) data in the table,

the first transaction will obtain the same data if they are re-read. This forces

the DBMS to treat the transactions as if they were a series.

GNUFDL • PID_00148405 25 Database access: JDBC

6. Metadata

Until now, we have accessed data inside the database. But we can also access

another type of data, metadata, which are simply data on data. These metadata

will provide us with information on the form of the data we are working with

and information on the features of the database.

6.1. Database metadata

The metadata of the database will provide us with information on the basic

features of the DBMS we are using, together with information on certain

features of the JDBC driver we are using. To give us this access, Java offers a

class (DatabaseMetaData) that will encompass all of this information.

We will obtain a DatabaseMetaData object type from a Connection.

This means that, to obtain these metadata, we need to have established a

connection to the database.

DatabaseMetaData dbmd= con.getMetaData();

Once we have obtained the DatabaseMetaData instance that will represent the

metadata of the database, we can use the methods provided by the latter to

access diverse types of information on the database, the DBMS and the JDBC

driver. We can divide the information provided by JDBC into the following

categories:

• Those that obtain information on the DBMS.

• Those that obtain information on the JDBC driver used.

• Those that obtain information on the operating limits of the DBMS.

• Those that obtain information on the database schema.

6.1.1. Information on the DBMS

There are methods that provide certain informative data on the data engine

(versions, manufacturer, etc.), and certain information that can be useful for

making our programs react better to possible changes in the DBMS.

These methods include:

Table 12. Methods

Name Description

getDatabaseProductName Name of the DBMS

GNUFDL • PID_00148405 26 Database access: JDBC

Name Description

getDatabaseProductVersion Version of the DBMS

supportsANSI92SQLEntryLevelSQL EL-ANSI-92 support

supportsANSI92FullSQL ANSI-92 support

supportsGroupBy GROUP BY support

supportsMultipleResultSets Support for multiple results

supportsStoredProcedures Support for stored procedures

supportsTransactions Transaction support

For a full list, see the documentation on JDK (Java Development Kit).

6.1.2. Information on the JDBC driver used

Just as we can obtain information on the DBMS, we can also obtain certain

information on the JDBC driver. The basic information we can obtain are

name and version number.

Table 13.

Name Description

getDriverName Driver name

getDriverVersion Driver version

getDriverMajorVersion Major part of the driver version

getDriverMinorVersion Minor part of the driver version

6.1.3. Information on the operating limits of the DBMS

These provide information on the limits of the specific DBMS, the maximum

field measurement, etc. They are very useful for adapting the application to

operate independently of the DBMS. Some of the most important of these are:

Table 14.

Name Description

getMaxColumnsInSelectMaximum number of columns in a query

getMaxRowSize Maximum measurement in a row permitted by the DBMS

getMaxTablesInSelect Maximum number of tables in a query.

Note

Some DatabaseMetaData
methods that accept strings
as parameters accept special
characters for queries, % to
represent any character group
and to represent a character.

GNUFDL • PID_00148405 27 Database access: JDBC

6.1.4. Information on the database schema

We can obtain information on the schema (tables, indexes, columns, etc.)

from the database. This allows us to "explore" databases to reveal the database

structure. Some of these methods include:

Table 15.

Name Description

getColumns Provides the columns of a table

getPrimaryKeys Provides the keys of a table

getTables Provides the tables of a database

getSchemas Provides the schemas of the database

6.2. Results metadata

Not only can we obtain data on the DBMS (DatabaseMetaData), it is also

possible to obtain data on the results of a query, which means that we can

obtain information on the structure of a ResultSet. Thus, we can find out

the number of columns, the type of column and its name, as well as additional

information (whether nulls are supported etc). Some of the most relevant

methods of ResultSetMetaData are:

Table 16. Methods ResultSet MetaData

Name Description

getColumnCount Number of columns of ResultSet

getColumnLabel Name of a column

getColumnTypeName Name of a column type

isNullable Supports nulls

isReadOnly Is modifiable

The following is an example of code displaying the form of a table:

ResultSetrs=sent.executeQuery("SELECT*FROM"+table=);

ResultSetMetaData mdr=rs.getMetaData();

int numcolumns=mdr=getColumnCount();

for(int col=1;col<numcolumns;col++)

{

 System.out.print(mdr.getColumnLabel(col)+":");

 System.out.println(mdr.getColumnTypeName(col));

}

GNUFDL • PID_00148405 28 Database access: JDBC

7. Practical: database access

We will now create some simple programs allowing us to access databases from

Java.

The first will perform the simplest function, a query:

// Simple example of JDBC.

// Selects the database

//

//

import java.sql.*;

public class SelectSimple {

 public static void main(java.lang.String[] args)

 {

 // Initial driver loading

 try

 {

 // Choose the appropriate driver for

 // your database

 Class.forName("org.postgresql.Driver");

 }

 catch (ClassNotFoundException e)

 {

 System.out.println("Driver not loaded");

 return;

 }

// All JDBC operations must process SQL

// exceptions.

try

 {

 // Connect

 Connection with = DriverManager.getConnection

 ("jdbc:postgresql:test", "user", "password");

 // Create and execute an SQL statement

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery

 ("SELECT * FROM students");

 // Display results

 while(rs.next()) {

 System.out.println(

GNUFDL • PID_00148405 29 Database access: JDBC

 rs.getString("name") + " "+

 rs.getString("surname1"));

 }

 // Close database resources

 rs.close();

 stmt.close();

 con.close();

 }

 catch (SQLException se)

 {

 // Print errors

 System.out.println("SQL Exception: " + se.getMessage());

 se.printStackTrace(System.out);

 }

 }

}

The second program makes an insertion in the database:

//

// Example of updating

//

import java.sql.*;

public class UpdateSimple {

 public static void main(String args[])

 {

 Connection con=null;

 // driver loading.

 try

 {

 // Choose the appropriate driver

 Class.forName("org.postgresql.Driver");

 }

 catch (ClassNotFoundException e)

 {

 System.out.println("Error in driver");

 return;

 }

 try

 {

 // Connect to the database

 with = DriverManager.getConnection

 ("jdbc:postgresql:test", "user", "password");

 Statement s = con.createStatement();

GNUFDL • PID_00148405 30 Database access: JDBC

 String ID no= new String("00000000");

 String name= new String("Carles");

 String sur1= new String("Mateu");

 int update_count = s.executeUpdate

 ("INSERT INTO students (ID no,name, sur1) " +

 "VALUES('" + ID no+ "','" + name+ "','" + sur1+ "')");

 System.out.println(update_count + " inserted columns.");

 s.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 finally

 {

 if(con != null)

 try { con.close(); }

 catch(SQLException e) { e.printStackTrace(); }

 }

 }

}

And finally, a program that makes the query using prepared statements:

// Example of a prepared statement

//

//

import java.sql.*;

public class SelectPrepared {

 public static void main(java.lang.String[] args)

 {

 if(args.length!=1)

 {

 System.err.println("Argument: ID no of student");

 System.exit(1);

 }

 // Driver loading

 try

 {

 Class.forName("org.postgresql.Driver");

 }

 catch (ClassNotFoundException e)

 {

 System.out.println("Problems with driver");

 return;

GNUFDL • PID_00148405 31 Database access: JDBC

 }

 try

 {

 // Connect to the database.

 Connection with = DriverManager.getConnection

 ("jdbc:postgresql:test", "user", "password");

 // Create statement

 PreparedStatement pstmt;

 String selec="SELECT * FROM students WHERE ID no=?";

 pstmt=con.prepareStatement(selec);

 // Assign arguments

 pstmt.setString(1, args[0]);

 ResultSet rs=pstmt.executeQuery();

 // Print results

 while(rs.next()) {

 System.out.println(

 rs.getString("name") + " "+

 rs.getString("sur1"));

 }

 // Close database resources

 rs.close();

 pstmt.close();

 con.close();

 }

 catch (SQLException se)

 {

 // Print errors

 System.out.println("SQL Exception: " + se.getMessage());

 se.printStackTrace(System.out);

 }

 }

}

Web services

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148399

GNUFDL • PID_00148399 Web services

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148399 Web services

Index

1. Introduction to web services.. 5

2. XML-RPC... 6

2.1. XML-RPC request format .. 6

2.2. XML-RPC response format .. 8

2.3. Development of applications with XML-RPC 10

3. SOAP... 12

3.1. SOAP messages .. 12

3.2. Development of SOAP applications .. 14

4. WSDL and UDDI... 18

4.1. Structure of a WSDL document .. 18

4.1.1. WSDL ports .. 19

4.1.2. WSDL messages ... 19

4.1.3. Data types in WSDL .. 19

4.1.4. Links in WSDL ... 19

4.2. Ports ... 20

4.2.1. Operation types ... 20

4.2.2. One-way operations ... 20

4.2.3. Request-response operations ... 21

4.3. Links .. 21

4.4. UDDI .. 22

4.4.1. Using UDDI ... 23

4.4.2. Programming in UDDI .. 23

5. Security... 26

5.1. Incorporating security mechanisms in XML 26

5.1.1. Digital signature .. 27

5.1.2. Data encryption ... 29

GNUFDL • PID_00148399 5 Web services

1. Introduction to web services

Web services are software components that have the following distinctive

features for programmers:

• They are accessible via SOAP (Simple Object Access Protocol).

• Their interface is described with a WSDL (Web Services Description

Language).

We will now look in detail at the meaning of these protocol names

and formats. SOAP is a communication protocol using XML messages

that is the basis for web services. SOAP allows applications to send XML

messages to other applications. SOAP messages are unidirectional, although

all applications can participate indiscriminately as senders or receivers. SOAP

messages can serve for a number of purposes: request/response, asynchronous

messaging, notification, etc.

SOAP is a high-level protocol that only defines the message structure

and some basic processing rules for this. It is completely independent

of the transport protocol. This means that SOAP messages can be

exchanged through HTTP, SMTP, JMS, etc., although HTTP is the most

common at present.

WSDL is a web services description standard based on an XML document.

This document provides applications with all of the necessary information

for accessing a web service. The document describes the purpose of the web

service, its communication mechanisms, where it is located etc.

Another web services component is UDDI (Universal Description, Discovery and

Integration). This is a web services registry service that stores the latter by their

name, the URL of their WSDL, a text description of the service, etc. Interested

applications can use SOAP to see which services are registered in UDDI, look

up a service, etc.

GNUFDL • PID_00148399 6 Web services

2. XML-RPC

XML-RPC is a remote procedure call protocol that runs on the Internet. It

is a much more straightforward protocol than SOAP and much easier to

implement. XML-RPC works through the exchange of messages between the

client of the service and the server, using HTTP to carry these messages. More

specifically, XML-RPC uses HTTP POST requests to send a message in XML

format, indicating:

• Procedure to be executed on the server

• Parameters

The server will return the result in XML format.

2.1. XML-RPC request format

We will now look at the format of an XML-RPC request. To do so, we will use

an example request such as this:

POST /RPC2 HTTP/1.1

User-Agent: Frontier/5.1.2

Host: carlesm.com

Content-Type: text/xml

Content-Length: 186

<?xml version="1.0"?>

<methodCall>

 <methodName>example.Method</methodName>

 <params>

 <param>

 <value><i4>51</i4></value>

 </param>

 </params>

</methodCall>

We will now analyse this request line by line. First, the message header:

• The URI we first observe, RPC2, is not defined by the standard. This means

that if the server responds to diverse types of request, we can use this URI

to route them.

• The fields User-Agent and host are compulsory and the value must be

valid.

GNUFDL • PID_00148399 7 Web services

• The Content-Type field will always be text/xml.

• The value of Content-Length must always be present and must be a

correct value.

Then comes the body:

• The message contains a single element <methodCall> containing the

sub-elements

• <methodName> which contains the string with the name of the method

to invoke.

• If the method has parameters, it must have a <params>.

• With as many <param> as the method has parameters.

• Each of which has a <value>.

To specify the possible values of the parameters, we can use the following

marks, which allow us to specify scalars:

Table 17. Marks

mark type

<i4> or <int> 4-byte integer with sign

<boolean> 0 (false) or 1(true)

<string> string ASCII

<double> floating point with sign and double precision

<dateTime.iso8601> date/time format iso8601

<base64> binary encoded in base-64

If no type is specified, a <string> type will be assigned by default.

We can also use complex types. To do so, we can use a <struct>type, whose

structure is as follows:

• It contains a series of <member>.

• Each of these has a <name> and <value> of one of the basic types.

For example, a <struct> type parameter would be:

<struct>

 <member>

GNUFDL • PID_00148399 8 Web services

 <name>name</name>

 <value><string>Juan Manuel</string></value>

 </member>

 <member>

 <name>Passport</name>

 <value><i4>67821456</i4></value>

 </member>

</struct>

There is also a mechanism for passing list type values (arrays) to the methods

called:

• It contains a single <data>.

• This can contain any number of <value> subelements.

For example:

<array>

 <data>

 <value><int>15</int></value>

 <value><string>Hello</string></value>

 <value><boolean>1</boolean></value>

 <value><int>56</int></value>

 </data>

<array>

2.2. XML-RPC response format

The XML-RPC response will be a 200 type HTTP response (OK) provided that

there have been no low-level errors. XML-RPC errors are returned as correct

HTTP messages and the errors are reported in the message contents.

The format of the response is as follows:

1) The Content-Type must be text/xml.

2) The Content-Length field is compulsory and must be correct.

3) The body of the response must contain a single <methodResponse> in

the following format:

a) If the process is correct:

– It will contain a single <params>, which

– will contain a single <param> field, which, in turn,

GNUFDL • PID_00148399 9 Web services

– will contain a single <value> field.

b) If an error occurs,

• it will contain a single <fault>, which

• will contain a single <value> which is a <struct> with the fields

– faultCode which is <int> and

– faultString which is <string>.

The following is an example of a correct response:

HTTP/1.1 200 OK

Connection: close

Content-Length: 172

Content-Type: text/xml

Date: Fri, 24 Jul 1998 17:26:42 GMT

Server: UserLand Frontier/5.1.2

<?xml version="1.0"?> <methodResponse>

 <params>

 <param>

 <value><string>Hello<string></value>

 </param>

 </params>

</methodResponse>

While an incorrect response would look something like this:

HTTP/1.1 200 OK

Connection: close

Content-Length: 444

Content-Type: text/xml

Date: Fri, 24 Jul 1998 17:26:42 GMT

Server: UserLand Frontier/5.1.2

<?xml version="1.0"?> <methodResponse>

 <fault>

 <value>

 <struct>

 <member>

 <name>FaultCode</name>

 <value><int>4</int></value>

 </member>

 <member>

 <name>FaultString</name>

 <value><int>Too many parameters</int></value>

GNUFDL • PID_00148399 10 Web services

 </member>

 </struct>

 </value>

 </fault>

</methodResponse>

2.3. Development of applications with XML-RPC

In the java development kit (JDK) version 1.4.2, there is no support for

the development of XML-RPC applications. We therefore need to use an

additional class library. In this example, we will use the class library of the

Apache project, available from: http://ws.apache.org/xmlrpc/.

This is our example server code:

import java.util.Hashtable;

import org.apache.xmlrpc.WebServer;

public class JavaServer {

 public Hashtable sumAndDifference(int x, int y) {

 Hashtable result = new Hashtable();

 result.put("sum", new Integer(x + y));

 result.put("difference", new Integer(x - y));

 return result;

 }

 public static void main(String[] args) {

 try {

 WebServer server =new WebServer(9090);

 server.addHandler("sample", new JavaServer());

 } catch (Exception exception) {

 System.err.println("JavaServer:" + exception.toString());

 }

 }

}

As we can see, this server provides us with a method called:

sample.sumAndDifference.

The client code for the previous service would be:

XmlRpcClient server = new XmlRpcClient("192.168.100.1", 9090);

 Vector params = new Vector();

 params.addElement(new Integer(5));

 params.addElement(new Integer(3));

GNUFDL • PID_00148399 11 Web services

 Hashtable result =

 (Hashtable) server.execute(

 "sample.sumAndDifference",

 params);

 int sum = ((Integer) result.get("sum")).intValue();

 int difference = ((Integer) result.get("difference")).intValue();

 System.out.println(

 "Sum: "

 + Integer.toString(sum)

 + ", Difference: "

 + Integer.toString(difference));

GNUFDL • PID_00148399 12 Web services

3. SOAP

SOAP standardises the exchange of messages between applications. Hence, the

basic function of SOAP is to define a standard message format (based on XML)

that will encapsulate communication between applications.

3.1. SOAP messages

The general form of a SOAP message is:

<ENVELOPE atribs>

 <HEADER atribs>

 <directives />

 </HEADER>

 <BODY attribs>

 <body />

 </BODY>

 <FAULT attribs>

 <errors />

 </FAULT>

</ENVELOPE>

The meaning of each part is:

• Envelope: this is the root element of the SOAP format.

• Header: this is an optional element, used to extend the basic

functionalities of SOAP (security etc).

• Body: this is the element containing the message data. It is compulsory.

• Fault: in the event of error, this section will contain information on the

nature of the error.

There is an extended SOAP specification called SwA (SOAP with Attachments)

that uses MIME encoding to transport binary information.

SOAP messages have the following form, as we can see in this message of a

call to a weather information web service:

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

GNUFDL • PID_00148399 13 Web services

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>.

 <ns1:getWeather

 xmlns:ns1="http://www.uoc.edu/soap-weather"

 SOAP-ENV:encodingStyle

 =" http://www.w3.org/2001/09/soap-encoding"

 <postcode xsi:type="xsd:string">

 25001

 </postcode>

 </ns1:getWeather>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In this case, the message is a service request (the example uses a JavaBeans

method called getWeather). In the message, we can distinguish a part called

ENVELOPE, which contains a part called Body.

If we look closely at the message, we can see that we are defining a call to a

method, called getWeather. By studying the format of the call:

<ns1:getWeather

 xmlns:ns1="http://www.uoc.edu/soap-weather"

 SOAP-ENV:encodingStyle=

 "http://www.w3.org/2001/09/soap-encoding"

 <postcode xsi:type="xsd:string">

 25001

 </postcode>

</ns1:getWeather>

We can see that the method receives a parameter called postcode which is a

string type. SOAP allows us to define parameters for all of the types defined

by XSchema and provides some of its own (such as SOAP:Array) as well as

allowing us to define new types.

Similarly, the getWeather method will respond with a message, also encoded

in SOAP. The response message will look something like this:

<?xml version='1.0' encoding='UTF-8'?>

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getWeatherResponse

 xmlns:ns1="http://www.uoc.edu/soap-weather"

 SOAP-ENV:encodingStyle=" http://www.w3.org/2001/09/soap-encoding

 <weatherResponse xsi:type="xsd:string">10</weatherResponse>

GNUFDL • PID_00148399 14 Web services

 </ns1:getWeatherResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

We can see in:

<ns1:getWeatherResponse

 xmlns:ns1="http://www.uoc.edu/soap-weather"

 SOAP-ENV:encodingStyle=" http://www.w3.org/2001/09/soap-encoding

 <weatherResponse xsi:type="xsd:string">10</weatherResponse>

</ns1:getWeatherResponse>

The service is responding to our weather request with the temperature value.

It is common, in fact, it is a de facto standard that the structure containing

the response is called the same as the structure containing the call, with the

addition of the response In our case, getWeather the response comes in a

getWeatherResponse. Besides the message in XML format, SOAP defines a

HTTP extension consisting of a new header for the service request. This header

will be optional from version 1.2 of SOAP.

3.2. Development of SOAP applications

SOAP does not define a standard library allowing us to program applications;

in fact, it only defines the message format that the applications must use,

together with certain directives for communication. To demonstrate the

development of a small web service, we will use one of the available SOAP

libraries, Apache AXIS.

The Apache AXIS library started life as IBM's Alphaworks product. Once the

work and library list were completed, IBM donated it to Apache Foundation,

which continued its development under the Apache licence. To use the

Apache AXIS library, you will also need Tomcat (Apache's servlet container)

and Xerces (Apache's XML analyser).

We will now develop a small web service using Apache AXIS. We will use

names of methods and parameters that match those of a real method that

XMethods (http://www.xmethods.com) hosts on its server and can be freely

accessed.

We will first define a Java interface:

public interface IExchange

{

 float getRate(String country1, String country2);

}

GNUFDL • PID_00148399 15 Web services

As we can see, the interface (IExchange) is used to calculate the exchange rate

between the two currencies of two countries. It is not necessary to implement

the interface with AXIS, but the use of interfaces may be necessary for other

SOAP APIs.

We will now look at a "fictitious" implementation of this interface:

public class Exchange implements IExchange

 {

 publicfloatgetRate(Stringcountry1,String country2)

 {

 System.out.println("getRate("+ country1 +

 ", "+ country2 + ")");

 return 0.8551F;

 }

}

We can now deploy the service on Apache AXIS, which we are running. The

form of deployment will depend on the libraries we use, so we need to query

these. Generally, no further steps are required as these libraries are usually

charged with generating the WSDL file, directory publishing, etc.

We will now look at the code required to invoke this service:

import java.net.*;

import java.util.*;

// Classes related to the message

import org.apache.soap.*;

// Classes related to the calls

import org.apache.soap.rpc.*;

public class Client

 {

 public static void main(String[] args) throws Exception

 {

 // Address of Apache SOAP service

 URL url = new URL(

 "http://myserver:8080/soap/servlet/rpcrouter");

 // Service identifier. We have given it

 // on deploying this

 String urn = "urn:demo:change";

 // Prepare service invocation

 Call call = new Call();

 call.setTargetObjectURI(urn);

GNUFDL • PID_00148399 16 Web services

 call.setMethodName("getRate");

 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

 // Parameters

 Vector params = new Vector();

 params.addElement(

 new Parameter("country1",

 String.class, "USA", null));

 params.addElement(

 new Parameter("country2",

 String.class, "EUR", null));

 call.setParams(params);

 try

 {

 System.out.println(

 "invoke service\n"

 + " URL= " + url

 + "\n URN ="

 + urn);

 // invoke

 Response response = call.invoke(url, "");

 // Fault?

 if(!response.generatedFault())

 {

 // NO FAULT

 Parameter result = response.getReturnValue();

 System.out.println("Result= " + result.getValue());

 }

 else

 {

 // FAULT

 Fault f = response.getFault();

 System.err.println("Fault= "

 + f.getFaultCode() + ", "

 + f.getFaultString());

 }

 }

// The call has had problems

catch(SOAPException e)

 {

 System.err.println(

 "SOAPException= " + e.getFaultCode()

 + ", " + e.getMessage());

 }

 }

GNUFDL • PID_00148399 17 Web services

}

We will now change our program to connect to an existing web service. If

we visit the Xmethods web, we will see a service called Currency Exchange

Rate. We note down the connection details:

Figure 19.

We will now modify the URL and URN appropriately in our code. We will now

be able to use the web service, which is being executed on the computers of

XMethods. If we wish to carry out more tests on the Xmethods web, we can

use a list of services made public by the Internet community.

GNUFDL • PID_00148399 18 Web services

4. WSDL and UDDI

WSDL is an acronym of Web Services Description Language, a language

based on XML that lets us describe the web services we deploy. WSDL is also

used to locate these web services on the Internet.

A WSDL document is actually an XML document that describes some features

of a web service, its location and the methods and parameters it supports.

4.1. Structure of a WSDL document

A WSDL document defines a web service using the following XML elements:

Table 18. XML elements

The Meaning

<portType> Operations provided by the web service

<message> Messages used by the web service

<types> The data types used by the web service

<binding> The communication protocols used by the web service

A WSDL document therefore has a similar structure to this:

<definitions>

 <types>

 data types...

 </types>

 <message>

 message definitions...

 </message>

 <portType>

 operation definitions...

 </portType>

 <binding>

 protocol definitions...

 </binding>

</definitions>

A WSDL document can also contain other elements, such as extensions, and a

service element that makes it possible to group different definitions of various

web services in a single WSDL document.

GNUFDL • PID_00148399 19 Web services

4.1.1. WSDL ports

The <portType> is the XML element of WSDL that defines a web service,

the operations that can be performed through this service and the messages

involved. The <portType> element is similar to a library function in classical

programming (or to an object-oriented programming class).

4.1.2. WSDL messages

The message element defines the data that take part in each operation.

Each message can consist of one or more parts and each part can

be considered similar to the parameters of a method or function call

in traditional programming languages or object-oriented programming

language, respectively.

4.1.3. Data types in WSDL

WSDL uses the <types> element to define the data types we will use in the

web service. WSDL uses XML Schema for these definitions.

4.1.4. Links in WSDL

The <binding> element defines the message format and protocol details for

each port.

This is a schematic example of what a WSDL document looks like:

<message name="obtReqTerm">

 <part name="param" type="xs:string"/>

</message>

<message name="obtReqTerm">

 <part name="value" type="xs:string"/>

</message>

<portType name="dictionaryTerms">

 <operation name="obtTerm">

 <input message="obtReqTerm"/>

 <output message="obtReqTerm"/>

 </operation>

</portType>

In this example, the portType element defines dictionaryTerms as the

name of a port and obtTerm as the name of an operation. This operation

has an incoming message (parameter) called obtTermReq and an outgoing

message (result) called obtTermResp. The two message elements define the

data types associated with the messages.

GNUFDL • PID_00148399 20 Web services

dictionaryTerms is the equivalent in classical programming of a function

library, obtTerm is the equivalent of a function and obtTermReq and

obtTermResp are equivalent to the incoming and outgoing parameters,

respectively.

4.2. Ports

The port defines the point of connection to a web service. It can be defined

as a function library or a class in classical or object-oriented programming.

Each operation defined for a port can be compared to a function in traditional

programming language.

4.2.1. Operation types

There are several types of operation in WSDL. The most common is

request-response, though we also have:

Table 19. Types of operation in WSDL

Type Description

One-way The operation receives messages but does not return responses

Request-response The operation receives a request and returns a response

Request-response The operation can send a request and will wait for the response

Notification The operation can send a message but does not expect a response

4.2.2. One-way operations

Here is an example of a one-way operation:

<message name="newValue">

 <part name="term" type="xs:string"/>

 <part name="value" type="xs:string"/>

</message>

<portType name="dictionaryTerms">

 <operation name="newTerm">

 <input name="newTerm" message="newValue"/>

 </operation>

</portType >

As we can see, a one-way operation has been defined in this example called

newTerm. This operation can be used to enter new terms in our dictionary. To

do this, we use an incoming message called newValue with the parameters

term and value. However, we have not defined an output for the operation.

GNUFDL • PID_00148399 21 Web services

4.2.3. Request-response operations

We will now look at an example of a request-response operation:

<message name="obtReqTerm">

 <part name="param" type="xs:string"/>

</message>

<message name="obtReqTerm">

 <part name="value" type="xs:string"/>

</message>

<portType name="dictionaryTerms">

 <operation name="obtTerm">

 <input message="obtReqTerm"/>

 <output message="obtReqTerm"/>

 </operation>

</portType>

In this example, as we saw earlier, we can see that two messages are defined,

one incoming and one outgoing, for the obtTerm.

4.3. Links

WSDL links (bindings) allow us to define message and protocol formats for

web services. An example of a link for a request-response operation for SOAP

might be:

<message name="obtReqTerm">

 <part name="param" type="xs:string"/>

</message>

<message name="obtReqTerm">

 <part name="value" type="xs:string"/>

</message>

<portType name="dictionaryTerms">

 <operation name="obtTerm">

 <input message="obtReqTerm"/>

 <output message="obtReqTerm"/>

 </operation>

</portType>

<binding type="dictionaryTerms" name="tD">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

<operation>

 <soap:operation

 soapAction="http://uoc.edu/obtTerm"/>

GNUFDL • PID_00148399 22 Web services

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

</binding>

The <binding> has two attributes: the attribute name and the attribute type.

With the name attribute (we can use any name, it does not necessarily need to

have anything to do with the name used in the definition of port), we define

the name of the link and the attribute type indicates the port of the link; in

this case, the port is dictionaryTerms.

The soap:binding element has two attributes style and transport.

The style attribute can be rpc or document. Our example used document.

The transport attribute defines which protocol SOAP to use; in this case,

HTTP.

The operation element defines each of the operations provided by the port.

For each one, we need to specify the corresponding SOAP action. We must

also specify how to encode the input and output). In our case, the encoding

is "literal".

4.4. UDDI

UDDI is the acronym of Universal Description, Discovery and Integration, a

directory service where companies and users can publish and search for web

services. UDDI is a standard and independent platform structure for describing

these web services, searching services, etc.

UDDI is built on the Internet standards of the W3C and the IETF (Internet

Engineering Task Force), like XML, HTTP, etc. To describe the interfaces to

the web services, it uses the WSDL language described above and for its

cross-platform programming needs, it uses SOAP, which allows for full

interoperability.

UDDI is a major breakthrough for the development of the Internet as a

platform for information technology business. Before its development, there

was no standard that allowed the location or publicising of information

processing services. Nor was there a method that could integrate the diverse

information systems of companies.

Some of the benefits of using UDDI are:

GNUFDL • PID_00148399 23 Web services

• It allows us to discover the right business (or service) from the thousands

currently registered on some servers via the Internet.

• It defines how to interact with the chosen service, once located.

• It allows us to reach new customers and facilitates and simplifies access

to existing customers.

• It extends the potential market of users of our business methods and

services.

• It automatically describes the services and components or business

methods (or it is automatable) in a secure, open and simple environment.

4.4.1. Using UDDI

We will look at a possible example of how UDDI could be used to solve a

hypothetical case that will clearly demonstrate the advantages of UDDI.

If the hotel industry published an UDDI standard for room booking, the different hotel
chains could register their services in an UDDI directory. Travel agencies could then
search the UDDI directory to find the reservations interface of the hotel chain. Once it
found the interface, the travel agency could then make the booking, since this interface
would be described in a known standard.

4.4.2. Programming in UDDI

There are two APIs for developing applications with

UDDI. Most existing implementations for developing in

UDDI are commercial but there are two free software

implementations: pUDDing (http://www.opensorcerer.org/) and jUDDI

(http://ws.apache.org/juddi/). The two APIs mentioned are the query

API (inquiry) and the publication API (publish). The inquiry API searches for

information on the services offered by a company, the specification of the

latter and information on what to do in the event of an error. All read accesses

to UDDI records use API inquiry. This does not require authentication, so HTTP

is used for access.

The other API, publication, is used for the creation, registration, updating,

etc., of information located in an UDDI record. All of the functions in this

API require authenticated access to an UDDI record, so HTTPS is used instead

of HTTP.

Both APIs were designed to be straightforward. All operations are synchronous

and stateless.

To aid understanding of the structure of APIs, the following schema

demonstrates the relationship between the diverse UDDI data structures.

We can see a simple example of how a client might send an UDDI request to

find a business.

GNUFDL • PID_00148399 24 Web services

Figure 20.

The request we would send to search for the business would be:

<uddi:find_business generic="2.0" maxRows="10">

 <uddi:name>

 Software company

 </uddi:name>

</uddi:find_business>

As we can see, the message we send is very simple and only indicates the name

of the business. The response we would receive to such a request would be:

Note

UUID.

The instances of data structures are identified by a universally unique identifier known
as UUID. UUIDs are assigned the first time that the structure is inserted in the record.
They are hex strings structured according to the ISO/IEC 11578:1996 standard, meaning
that their uniqueness is guaranteed.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <businessList xmlns="urn:uddi-org:api_v2"

 generic="2.0" operator="SYSTINET">

 <businessInfos>

 <businessInfo

 businessKey="132befd0-d09a-b788-ad82-987878dead98">

 <name xml:lang="en">

 Software company

 </name>

 <description xml:lang="en">

 A company that develops web services software

GNUFDL • PID_00148399 25 Web services

 </description>

 <serviceInfos>

 <serviceInfo

 serviceKey="23846ac0-dd99-22e3-80a9-801eef988989"

 businessKey="9a26b6e0-c15f-11d5-85a3-801eef208714">

 <name xml:lang="en">

 It sends

 </name>

 </serviceInfo>

 </serviceInfos>

 </businessInfo>

 </businessInfos>

 </businessList>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

GNUFDL • PID_00148399 26 Web services

5. Security

The emergence of web services has given rise to certain issues that

had previously not been taken into consideration. The high degree of

interoperability and ease of connection and data exchange have meant that

web services have encouraged the appearance of new data security risks that

had not previously existed:

• The clarity of XML encoding (allowing it to be easily understood) makes

light work of hacking, etc.

• We now need a standard for interoperability, since the various participants

in a transaction using web services may not all use the same software.

• The very nature of SOAP/WS, which facilitates the appearance of sporadic

connections between machines, the appearance of intermediaries (proxies,

etc.), makes it difficult to control who has access to the data sent.

• Applications are now available to everybody; with common protocols like

http, we have universalised access to our applications. Even with standards

such as WSDL and UDDI, there are application directories where anybody

can discover the applications published, their methods, etc.

As a result, the definition of security mechanisms designed specifically for

web services that go beyond SSL is becoming increasingly important in the

definition of web services.

5.1. Incorporating security mechanisms in XML

Current standards, still in development at the time of writing, afford some

basic security features:

• Digital signature, used to check the identity of the sender of a message

and the integrity of the latter.

• Authentication, allowing us to check identities.

• No repudiation, used to prevent a sender from denying that it is the origin

of the message.

For this, we will need to have an operative public key infrastructure (PKI).

GNUFDL • PID_00148399 27 Web services

5.1.1. Digital signature

A digital signature is the mathematical equivalent of a handwritten signature.

It consists of a code added to a block of information that can be used to check

the origin and integrity of the latter.

The XML digital signature specification defines an optional element that

facilitates the inclusion of a digital signature in an XML document.

An example of a document signed with XML is:

<Grades xmlns="urn:uocedu">

 <student id="1293">

 <name>Joan Oro</name>

 <city>Lleida</city>

 </student>

 <grades>

 <grade id="MOLBIO">

 <subject>Molecular Biology</subject>

 <score>9.56</score>

 <comment>Excellent work</comment>

 </grade>

 </grades>

 <Signature Id="EnvelopedSig"

 xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo Id="EnvelopedSig.SigInfo">

 <CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <Reference Id="EnvelopedSig.Ref" URI="">

 <Transforms>

 <Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 </Transforms>

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>

 yHIsORnxE3nAObbjMKVo1qEbToQ=

 </DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue Id="EnvelopedSig.SigValue">

GqWAmNzBCXrogn0BlC2VJYA8CS7gu9xH/XVWFa08eY9HqVnr

fU6Eh5Ig6wlcvj4RrpxnNklBnOuvvJCKqllQy4e76Tduvq/N

8kVd0SkYf2QZAC+j1IqUPFQe8CNA0CfUrHZdiS4TDDVv4sf0

V1c6UBj7zT7leCQxAdgpOg/2Cxc=

GNUFDL • PID_00148399 28 Web services

 </SignatureValue>

 <KeyInfo Id="EnvelopedSig.KeyInfo">

 <KeyValue>

 <RSAKeyValue>

 <Modulus>

AIvPY8i2eRs9C5FRc61PAOtQ5fM+g3R1Yr6mJVd5zFrRRrJz B/

awFLXb73kSlWqHao+3nxuF38rRkqiQ0HmqgsoKgWChXmLu

Q5RqKJi1qxOG+WoTvdYY/KB2q9mTDj0X8+OGlkSCZPRTkGIK

jD7rw4Vvml7nKlqWg/NhCLWCQFWZ

 </Modulus>

 <Exponent>

 AQAB

 </Exponent>

 </RSAKeyValue>

 </KeyValue>

 </KeyInfo>

 </Signature>

</Notas>

As this example illustrates, the digital signature is applied by encrypting a

digest of the XML message with a private key. The digest is usually the result of

applying a mathematical function called hash to the XML document we wish

to sign. This encrypted digest is included along with a key to be able to verify

the operation with the XML message. As we are the only ones with the key to

encrypt it, we are clearly the only senders of the message. Moreover, since the

result of the digest depends on every single byte composing the message, it is

clear that the latter cannot have been altered on its way.

With XML, given its particular nature and the processing usually undergone

by a web service message during its existence and taking into account the

parsing, etc., that can alter its form (changing a single space can produce a

different digest), implementation of the digest needs to take into account

these valid alterations. Therefore, before calculating the digest we need to

perform a process to ensure that none of the possible changes that our

XML may undergo, which do not really affect the content (deleting spaces,

summarising tags without content, etc.) do not cause non-validation of the

digest. This process, called W3C-XML-Canonicalization (xml-c14n), includes

the following rules, which a document must comply with before the digest:

• Encoding must be UTF-8.

• Standardisation of line breaks (to ASCII 10).

• Standardisation of attributes.

• Empty elements converted into start-end pairs.

• Standardisation of meaningless spaces.

• Elimination of superfluous namespace declarations.

• Default attributes are listed.

GNUFDL • PID_00148399 29 Web services

• Lexicographic reordering of declarations and attributes.

5.1.2. Data encryption

Besides their digital signature capabilities, the new security standards of XML

have encrypting features that can be used to hide parts or all of the XML

document from the elements of the intermediate process.

An example will illustrate how the previous document would look if we

encrypted the data on student grades as well as signing it.

<Grades xmlns="urn:uocedu">

 <student id="1293">

 <name>Joan Oro</name>

 <city>Lleida</city>

 </student>

 <grades>

 <EncryptedData Id="ED" Nonce="16"

 Type=http://www.w3.org/2001/04/xmlenc#Content

 xmlns="http://www.w3.org/2001/04/xmlenc#"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <EncryptionMethod

 Algorithm ="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

 <ds:KeyInfo>

 <ds:KeyName>uoc</ds:KeyName>

 </ds:KeyInfo>

 <CipherData>

 <CipherValue>

dRDdYjYs11jW5EDy0lucPkWsBB3NmK0AFNxvFjfeUKxP75

cx7KP0PB3BjXPg14kJv74i7F00XZ5WhqOISswIkdN/pIVe

qRZWqOVjFA8izR6wqOb7UCpH+weoGt0UFOEkIDGbemm23e

u812Ob5eYVL8n/DtO81OhYeCXksSMGUZiUNj/tfBCAjvqG

2jlslQM6n4jJ3QNaR4+B2RisOD6Ln+x2UtNu2J7wIYmlUe

7mSgZiJ5eHym8EpkE4vjmr2oCWwTUu91xcayZtbEpOFVFs

6A==

 </CipherValue>

 </CipherData>

 </EncryptedData>

 </grades>

 <Signature Id="EnvelopedSig"

 xmlns="http://www.w3.org/2000/09/xmldsig#">

 </Signature>

</Notas>

Use and
maintenance

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148403

GNUFDL • PID_00148403 Use and maintenance

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148403 Use and maintenance

Index

1. Configuring security options.. 5

1.1. User authentication ... 5

1.1.1. Other authentication modules 6

1.2. Communications security ... 6

2. Configuring load balancing.. 8

2.1. DNS balancing ... 8

2.2. Proxy balancing .. 9

2.3. mod_backhand balancing ... 10

2.4. Balancing with LVS ... 11

2.5. Other load balancing solutions .. 13

2.5.1. OpenMOSIX or balancing and migration of

processes ... 14

2.5.2. Handling URLs and links .. 14

2.5.3. Manual load distribution .. 15

3. Configuring a caching proxy with Apache.................................. 16

3.1. Introduction to the proxy... 16

3.1.1. The forward proxy.. 16

3.1.2. The reverse proxy.. 17

3.2. Configuring a forward proxy... 17

3.3. Configuring a reverse proxy... 19

3.4. Other configuration directives .. 19

3.4.1. ProxyRemote/ProxyRemoteMatch directive 19

3.4.2. ProxyPreserveHost directive .. 20

3.4.3. NoProxy directive .. 20

4. Other Apache modules... 21

4.1. mod_actions .. 21

4.2. mod_alias ... 21

4.3. mod_auth, mod_auth_dbm, mod_auth_digest,

mod_auth_ldap .. 21

4.4. mod_autoindex ... 22

4.5. mod_cgi ... 22

4.6. mod_dav y mod_dav_fs .. 22

4.7. mod_deflate ... 22

4.8. mod_dir ... 22

4.9. mod_env .. 23

4.10. mod_expires .. 23

4.11. mod_ldap ... 23

4.12. mod_mime .. 23

4.13. mod_speling .. 23

GNUFDL • PID_00148403 Use and maintenance

4.14. mod_status ... 24

4.15. mod_unique-id .. 25

4.16. mod_userdir ... 25

4.17. mod_usertrack ... 26

GNUFDL • PID_00148403 5 Use and maintenance

1. Configuring security options

1.1. User authentication

User authentication is used in Apache to ensure that the people viewing

or accessing certain resources are the people we want them to be or who

know a certain access "key". In Apache, we can define which resources require

authentication of the user accessing them and we can identify the mechanism

used to authenticate this user.

The names of user authentication modules usually begin with mod_auth_

followed by an abbreviation of the search mechanism and user verification,

such as ldap, md5, etc.

We will now explain how to configure Apache to require user authentication

for accessing a given directory:

<Directory /web/www.uoc.edu/docs/secret>

 AuthType Basic

 AuthName "Restricted"

 AuthUserFile /home/carlesm/apache/passwd/passwords

 Require user carlesm

</Directory>

With this configuration, we are telling Apache to only display the specified

content to the user carlesm after verifying his identity with a password. The

file containing the usernames and passwords is specified with AuthUserFile.

This configuration uses the mod_auth module, which provides basic

authentication based on the use of a plain text file in which we will store a list

of users and encrypted access words (passwords). Apache also has a tool for

administrating this password file (htpasswd). To create a file like this, which

will give a password to our user, we need to execute:

htpasswd -c /home/carlesm/apache/passwd/passwords carlesm

New password: <password>

Re-type new password: <password>

Adding password for user carlesm

Where we see <password> we need to enter our password.

Note

Authentication. The weakness
of authentication is always the
human factor. We commonly
"lend" our usernames and
passwords to friends to make
life easier.

GNUFDL • PID_00148403 6 Use and maintenance

Staying with the configuration we used to illustrate authentication, we can

see that, besides the required password file, we tell Apache the name of the

authentication field; in our case, "Restricted". The client browser will now

always send the password that we provide to requests that are identified (the

identification is known as Realm) as "Restricted". This allows us to share

passwords among several resources, doing away with the need to type in

countless passwords.

1.1.1. Other authentication modules

There are several authentication modules for Apache. These modules are used

to select multiple sources to verify users and passwords. In our example, we

used the basic mod_auth module, which produces a plain text file of users and

their passwords using the directive AuthUserFile to indicate the file.

We also have the following modules:

• mod_auth_dbm: allows the use of Berkeley type databases (DBM) to store

usernames and passwords.

• mod_auth_digest: similar to mod_auth, but it allows the use of

DigestMD5 to encrypt passwords.

• mod_auth_ldap: allows us to use an LDAP directory to store usernames

and passwords.

• mod_auth_samba: allows us to use a Samba domain server (SMB/-CIFS)

for user verification.

• mod_auth_mysql and mod_auth_pgsql: used to store usernames and

passwords in an SQL database such as mysql or postgresql.

• mod_auth_radius: allows us to use a RADIUS server to verify usernames

and passwords.

1.2. Communications security

Another of Apache's features is the use of tight cryptography to encrypt and

sign communications. For this, it has a module called mod_ssl that se ves as

an interface to the cryptographic library OpenSSL, thus providing Apache with

the mechanisms for using secure connections based on the SSL/TLS protocol.

GNUFDL • PID_00148403 7 Use and maintenance

To use the cryptographic module, we need to install mod_ssl (we will need

OpenSSL installed on our system). Once installed, we need to go to the Apache

configuration file to configure the operation of mod_ssl. To do so, we will

specify the SSL requirements on a virtual server or in a directory:

Enable SSL

SSLEngine on

Specify Protocol

SSLProtocol all -SSLv3

Specify cryptographic algorithms

SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

Password files and certificates

SSLCertificateFile /etc/httpd/ssl.key/server.crt

SSLCertificateKeyFile /etc/httpd/ssl.key/server.key

As we can see, to enable a secure server with SSL, we need a pair of

public/private keys and a digital certificate. We can use the programs provided

with the OpenSSL library to create certificates and key pairs.

GNUFDL • PID_00148403 8 Use and maintenance

2. Configuring load balancing

Apache has several options for the use of load balancing solutions. The

complexity of the solutions varies greatly and they have very wide-ranging

features, which means that the situations they are designed for are very

different.

2.1. DNS balancing

The simplest load balancing solution is to install a group of systems with

web servers and ensure that they all have access to the files that make up

our website. We can then programme the name server (the DNS) to return a

different address (from one of the machines) each time it is prompted for the

name of our web server.

We have seven computers to configure our web server (www.uoc.edu). To each, we assign
an IP address and a name (we are showing the data here in BIND format, the most
common DNS software):

www0 IN A 1.2.3.1

www1 IN A 1.2.3.2

www2 IN A 1.2.3.3

www3 IN A 1.2.3.4

www4 IN A 1.2.3.5

www5 IN A 1.2.3.6

www6 IN A 1.2.3.7

We will also add the following entry:

www IN CNAME www0.uoc.edu.

IN CNAME www1.uoc.edu.

IN CNAME www2.uoc.edu.

IN CNAME www3.uoc.edu.

IN CNAME www4.uoc.edu.

IN CNAME www5.uoc.edu.

IN CNAME www6.uoc.edu.

Note

The DNS (Domain Name
Server) is the service that
"resolves" (converts) the
names of servers to IP
addresses at the request of
the clients. For example,
the DNS is in charge of
converting www.uoc.edu to
213.73.40.217.

GNUFDL • PID_00148403 9 Use and maintenance

If we now ask the name server to tell us the address of www.uoc.edu, it will

respond each time with all of the addresses of the seven machines, but in a

different order. This means that the client requests will be alternated between

the different server machines.

However, this balancing schema is not ideal. On the one hand, it does not

take into account whether any of the machines are down. On the other, the

global DNS system requires DNS servers, such as that of our Internet provider,

to create a cache of the addresses, so some DNS servers will "learn" one of the

addresses and always resolve this same address. In the long run, however, this

is not a problem because the total queries are split among the different servers.

There are other DNS server programs that offer more effective solutions for

real load balancing between servers as they use auxiliary tools to check the

status of the different servers.

2.2. Proxy balancing

Another balancing option in Apache is to use a module called mod_rewrite

which redistributes requests among the different servers.

To do this, we must modify the name server so that our website, called

www.uoc.edu, corresponds to just one of the machines (www.uoc.edu).

www IN CNAME www0.uoc.edu.

We will then convert www0.uoc.edu into a dedicated proxy server. This

machine will then resend all of the requests it receives to one of the other five

machines. To do this, we will need to configure the mod_rewrite module

to redirect the balanced requests to the other machines. We use a program

(written in Perl this time) providing mod_rewrite with the server to which

the request needs to be redirected.

RewriteEngine on

RewriteMap lb prg:/programs/lb.pl

RewriteRule ^/(.+)$ ${lb:$1} [P,L]

This program is as follows:

#!/usr/bin/perl

##

lb.pl -- Load balancing

##

$ = 1;

GNUFDL • PID_00148403 10 Use and maintenance

 $name = "www"; # Name base

 $first = 1; # First server (we will begin with www1)

 $last = 5; # Last server (www5).

 $domain = "uoc.edu"; # Domain

 $cnt = 0;

 while (<STDIN>)

 {

 $cnt = (($cnt+1) % ($ult+1-$prim));

 $server = sprintf(" %s %d. %s", $name, $qnt+$first, $domain);

 print "http://$server/$_";

 }

This solution has the slight disadvantage that all requests pass through

one machine (www0.uoc.edu). Although this machine does not perform

heavyweight processes (CGI, etc.) and only redirects requests (much faster

and more lightweight), in the event of overloading, the machine can become

saturated. To solve this, we can use hardware solutions that carry out the same

tasks as the option we have described here with mod_rewrite. These hardware

solutions, however, are usually very expensive.

2.3. mod_backhand balancing

When DNS balancing or balancing based on a hardware resource is insufficient,

we can use a much more sophisticated resource allocation mechanism. This

consists of an Apache module called mod_backhand used to redirect requests.

HTTP from one web server to another, depending on the load and use of

resources on the servers.

mod_backhand has a major disadvantage: at the time of writing, the version

for Apache 2 was still unavailable, so it could only be used with Apache 1.2/1.3.

The configuration of mod_backhand is extremely straightforward. The

module needs to be installed on each of the Apache servers in the machine

cluster. We must then configure the different Apache servers to communicate

with one another for synchronising purposes. We will use a multicast address

(239.255.221.20) to communicate. The configuration will be similar to this:

<IfModule mod_backhand.c>

 # Working directory of mod_backhand. Make sure

 # that the permissions allowing us to write.UnixSocketDir /var/backhand/backhand

 # We will use IP Multicast with TTL=1 to report statistics

 # We could use Broadcast.

 MulticastStats 239.255.221.20:4445,1

 # We will accept notifications from our servers:

 AcceptStats 1.2.3.0/24

GNUFDL • PID_00148403 11 Use and maintenance

</IfModule>

We can configure mod_backhand to display the operating status on a page:

<Location "/backhand/">

 SetHandler backhand-handler

</Location>

To enable mod_backhand for a directory, we can configure it inside an Apache

directory module. We must then indicate that the cgi-bin directo y

containing the shared CGI files, those with the biggest system requirements,

is distributed among the cluster machines:

<Directory "/var/backhand/cgi-bin">

 AllowOverride None

 Options None

 Order allow,deny

 Allow from all

 Backhand byAge

 Backhand byRandom

 Backhand byLogWindow

 Backhand byLoad

</Directory>

As we can see, mod_backhand is configured with Backhand directives

that we shall call candidate functions. The operation of mod_backhand

is: when we need to serve a resource from the specified directory,

/var/backhand/cgi-bin, we pass mod_backhand the list of candidate

servers (initially all those configured with mod_backhand). This passes

through each of the specified candidate functions (byAge, byRandom etc).

These functions eliminate the servers they do not consider appropriate from

the list or they rearrange the list using the corresponding criterion.

Then, after evaluating all of the candidate functions, mod_backhand resends

the request to the server that tops the list of candidates.

mod_backhand has numerous default candidate functions and also includes

the tools so that we can build new functions ourselves.

2.4. Balancing with LVS

Linux servers have a high-performance tool for load balancing and high

availability configurations. This tool, or group of tools, is based on the LVS

project (Linux Virtual Server) and uses NAT (Network Address Takeover) and

IP/Port forwarding mechanisms.

Example

Example of a criterion for
re-sorting: by least CPU load.

GNUFDL • PID_00148403 12 Use and maintenance

Configurations based on LVS are usually complex and expensive. They usually

involve several servers because they are normally aimed more at generating

high availability than at facilitating high performance (load balancing) and

require at least a system for load balancing.

The minimum configuration of a system with LVS is similar to this:

Figure 21.

The main difference between this approach and the use of mod_rewrite for

load balancing is that in this case balancing is done at IP level; in other words,

the balancer does not have a copy of Apache running to receive requests and

resend them. Instead, they are resent at IP level, generating a performance

hundreds of times superior.

LVS is very similar, in fact it is virtually identical, to hardware solutions such as

Cisco, etc. The advantage of using LVS is that, because it is based on Linux, we

can use standard (cheaper) computers and even "reuse" obsolete computers,

servers, etc. The performance of a system configured to perform balancing

tasks is so high that a Pentium III 1Ghz computer can be used to saturate links

of 100 Mbps. This allows us to reduce the costs of our clusters and extend the

useful life of our systems.

Solutions based on LVS can also be used in two ways: as load balancing

solutions for increasing the efficiency of our web servers and as systems with

high availability and resistance to failure. A typical configuration of this type

would be:

GNUFDL • PID_00148403 13 Use and maintenance

Figure 22.

In this configuration, the two balancing systems would monitor each other,

so that if the one acting as the primary system failed, the other would adopt

this role. They would also distribute the load among different web servers in

the cluster, monitoring their operation and, if failures were detected in one,

they would divert the requests to the other servers.

Something to take into account when implementing a balancing solution is

session management. If the web servers or a servlet container serving these

web servers has a session management system, database connections, etc., we

need to be very cautious about implementing a load balancing solution. We

need to study our application to ensure that requests from a single client to

our application (an on-line store, for instance) do not become problematic if

these requests are attended alternately by different web servers.

Many of these solutions, like LVS, offer methods for ensuring a minimum

of persistence in connections, i.e. that all requests from the same client

are assigned to the same server for the approximate duration of a session.

These mechanisms, however, are not infallible because they are only network

mechanisms, i.e. mechanisms operating at IP level.

2.5. Other load balancing solutions

There are other approaches to load balancing on Apache servers that are not

general but they may represent the perfect solution for a specific problem.

GNUFDL • PID_00148403 14 Use and maintenance

2.5.1. OpenMOSIX or balancing and migration of processes

For Linux servers, there is a tool called OpenMOSIX, which consists of a series

of modifications in the operating system kernel, allowing us to distribute the

execution of certain processes among several machines in a group configured

for this purpose (to the machine with the least load at this time).

This solution does not really balance the load because the processes are simply

"migrated" rather than being distributed. Moreover, each process is executed

on a single machine. However, it has been shown to be a good solution when

the performance problems of the web application are not caused by Apache

but by the length of time needed to execute a CGI or external program. In

these cases, a solution like OpenMOSIX, which migrates the specific process

taking too long to a machine with a lighter load, thus unloading the main

server, could be a very valid one. Its advantages include the fact that it has

none of the disadvantages of other solutions seen previously (persistence

control etc).

2.5.2. Handling URLs and links

There is an experimental solution, available only for Apache 1.2/1.3, that can

be used for efficiently scaling services between machines.

This solution is based on a hypothesis that is usually verified in most cases,

indicating that users usually enter web servers by means of a set series of entry

points.

The solution, then, can handle the links that appear in the documents,

rewriting them to point to one of the cluster servers. It can also replicate the

document by sending it to the latter.

This module, called DC-Apache (Distributed Cooperative Apache Web Server,

http://www.cs.arizona.edu/dc-apache/), allows us to add to our web server

a series of machines to facilitate the subsequent diversion of most of our

requests to these secondary machines.

In our example, we would configure the main server as follows:

...

DocumentRoot "/web/www.uoc.edu/docs/"

...

 <IfModule mod_dca.c>

 SetHandler DCA-handler

 # Directory to collect replicated documents

 ImportPath "/home/www/˜migrate"

 # Directory with the documents we want

GNUFDL • PID_00148403 15 Use and maintenance

 # to distribute in the cluster

 ExportPath "/web/www.uoc.edu/docs/"

 # Support servers

 Backend 1.2.3.2:80

 Backend 1.2.3.3:80

 Backend 1.2.3.4:80

 Backend 1.2.3.5:80

 Backend 1.2.3.6:80

 Backend 1.2.3.7:80

</IfModule>

For secondary servers, if they do not have a local document to share in the

cluster, the configuration would be:

<IfModule mod_dca.c>

 SetHandler dca-handler

 ImportPath /var/dcamigrated

 # Disk quota available for migrating

 # e.g. 250 MB

 DiskQuota 250000000

</IfModule>

2.5.3. Manual load distribution

There is obviously a manual solution for load balancing which, due to its

simplicity and surprisingly good results, is one of the most used. It consists

of manually dividing the contents of our website among several servers and

adapting the URLs of our website to match.

For example, we can put all of the web images on a separate server to the one with the
documents and CGIs, and use the following on all pages like IMG_SRC :

This will divert the required traffic for logos, etc., to a specific server, releasing

the main server from these tasks.

GNUFDL • PID_00148403 16 Use and maintenance

3. Configuring a caching proxy with Apache

One of the possible uses of Apache is to operate it as a caching proxy. The server

can operate both as a forward proxy and a reverse proxy, with proxy capabilities

for both HTTP (protocol versions 0.9, 1.0 and 1.1) and for FTP and CONNECT

(necessary for SSL). The module that implements the proxy functionalities for

Apache is very straightforward because it offloads part of its capabilities on

other modules.

For example, the storage capacity (the cache) is delegated to the mod_cache, etc.

3.1. Introduction to the proxy

A proxy is a representative server located between the client making the request

and the server that must resolve it. There are countless situations advising the

use of proxy servers between our clients and the servers that need to attend

the requests.

For example, the use of proxy is recommended to speed up browsing (this is the case of
forward proxy caches) to control which addresses are accessed (forward proxy) to accelerate
the response of a web server (reverse proxy), etc.

3.1.1. The forward proxy

A forward proxy is an intermediate server that sits between the client and the

servers that need to attend to the request.

For a client to receive content from a server, it must make the request to the

proxy server, telling it that it wants to obtain the content and the request that

it wants to be met. Then, the proxy makes the request on behalf of the client

and, once resolved, delivers the results to the latter. In the case of forward

proxy, clients must generally be specifically configured to use the services of

the proxy.

A typical use of forward proxy is to provide Internet access to the clients of an

internal network isolated from the latter for security reasons and only allowing

access through the proxy, which is easier to secure. Another very common use

is to cache pages. This time, the proxy server builds up the pages visited by

clients locally. If a client requests a visited page, the proxy server can serve it

directly from its local store, thus saving on bandwidth and reducing the time

to access pages that are visited frequently (clearly, caching proxy must have an

information storage/discarding policy).

GNUFDL • PID_00148403 17 Use and maintenance

One effect of the use of a proxy is that, for the servers, access to resources

will appear to come from our proxy system rather than from the client's real

address. It is therefore essential to configure proxy servers very securely before

connecting them to the Internet, as they could be used as a hiding system by

malicious users.

3.1.2. The reverse proxy

A reverse proxy, unlike forward proxy, are located in front of a server and only

control access to this server. For clients, the reverse proxy will look like a normal

web server and will not require any specific configuration.

The client makes its requests to the reverse proxy server, which decides where

to redirect these requests and, once resolved, returns the result as if the reverse

proxy had been the source of the content.

One typical use of a reverse proxy is to filter and control access by Internet users

to a server that we want to remain very isolated. Other uses of reverse proxy

include balancing loads between servers and providing cache mechanisms for

slower servers. They can also be used to unify the URL addresses of different

servers under a single URL namespace: that of the proxy server.

3.2. Configuring a forward proxy

To configure a forward proxy we must first tell Apache that it needs to use

certain modules. These are:

• mod_proxy: the module that will provide the proxy.

• mod_proxy_http: services for HTTP protocols proxy.

• mod_proxy_ftp: services for FTP protocol proxy.

• mod_proxy_connect: services for SSL proxy.

• mod_cache: cache module.

• mod_disk_cache: auxiliary disk cache module.

• mod_mem_cache: auxiliary memory cache module.

• mod_ssl: auxiliary SSL connections module.

After loading the necessary modules, we will configure the proxy. The first

configuration requires us to indicate that Apache will act as a forward proxy.

LoadModule proxy_module modules/mod_proxy.so

GNUFDL • PID_00148403 18 Use and maintenance

<IfModule mod_proxy.c>

 LoadModule http_proxy_module modules/mod_proxy_http.so

 ProxyRequests On

 ProxyVía On

 <Proxy *>

 Order deny,allow

 Deny from all

 Allow from 172.16.0.0/16

 </Proxy>

</IfModule>

This example shows how easy it is to configure the mod_proxy. We must

first enable the handling of proxy requests by Apache. The ProxyRequests

directive, when enabled, indicates that Apache must act as a forward proxy. The

second directive, ProxyVia tells the module that it must mark the requests

made with the field Via: aimed at controlling the flow of requests in a chain

of proxies.

The Proxy block is used to configure the security restrictions of the proxy. In

this case, we only allow use of the proxy server by all of the machines in our

internal network (172.16.0.0). Here, we can use all of Apache's access control

directives.

After configuring the proxy server, we will need to configure the Apache cache

module. To do so, we need to define a disk storage of 256 Mbytes:

Sample httpd.conf

#

Sample cache Configuration

#

LoadModule cache_module modules/mod_cache.so

<IfModule mod_cache.c>

 LoadModule disk_cache_module modules/mod_disk_cache.so

 <IfModule mod_disk_cache.c>

 CacheRoot /var/cache

 CacheSize 256

 CacheEnable disk /

 CacheDirLevels 5

 CacheDirLength 3

 </IfModule>

</IfModule>

GNUFDL • PID_00148403 19 Use and maintenance

3.3. Configuring a reverse proxy

To configure Apache as a reverse proxy, we need to load the same modules as

for when we use it as a forward proxy. One difference, however, will be that the

configuration of the security directives will be much less critical, as we will

explicitly tell the proxy which servers it can access.

The configuration of a reverse proxy for accessing an internal server we have on

another TCP port and mapping it to a subdirectory of our web space would be:

ProxyRequests Off

 <Proxy *>

 Order deny,allow

 Allow from all

 </Proxy>

ProxyPass /internal http://internal.uoc.edu:8181/

ProxyPassReverse /internal http://internal.uoc.edu:8181/

The ProxyPass directive tells Apache that all of the requests addressed to

the specified URL (/internal) must be converted internally into requests to

the specified target server. The ProxyPassReverse directive also indicates

that the response received from the specified target server will be rewritten

as coming from the reverse proxies server and originating from the URL space

indicated (/internal).

As part of the configuration of reverse proxies, we can add the features of

mod_cache to store requests locally, just as we would for a forward proxy.

3.4. Other configuration directives

The mod_proxy module also has other configuration directives that we can

use to adapt the server operation.

3.4.1. ProxyRemote/ProxyRemoteMatch directive

The ProxyRemote directive is used to take received requests and redirect them

to other proxy servers, such as

ProxyRemote http://www.uoc.edu/manuals/ http://manuals.uoc.edu:8000

ProxyRemote * http://fastserver.com

These two configurations will redirect all requests matching

http://www.uoc.edu/manuals/ to another server and all other requests to

a specific server.

GNUFDL • PID_00148403 20 Use and maintenance

There is a variant of ProxyRemote called ProxyRemoteMatch that allows the

use of regular expressions to indicate the URL to be checked.

3.4.2. ProxyPreserveHost directive

This directive is used to tell Apache that the requests must maintain the

host field instead of replacing it with that indicated in the configuration of

ProxyPass. This is only necessary when the server hidden by a reverse proxy

is a name-based virtual host .

3.4.3. NoProxy directive

This directive is used to exclude from mod_proxy processing any computer,

domain, address, etc., we do not require.

GNUFDL • PID_00148403 21 Use and maintenance

4. Other Apache modules

Apache has many additional modules that can be included on our server.

Some of these modules are distributed with the official Apache package. To

use them, simply check that they are on the server and enable them in the

configuration files. Other modules contributed by hundreds of developers are

not supplied officially and will need to be downloaded separately and installed

on the server.

4.1. mod_actions

This module incorporates methods for executing actions based on the file type

requested. A simple configuration for this is:

Action image/gif/cgi-bin/images.cgi

Bear in mind that the URL and file name requested are passed to the program

that provides the actions through environment variables: CGI PATH_INFO

and PATH_TRANSLATED.

4.2. mod_alias

This is used to define URL areas that are located on the server disk outside the

area defined by DocumentRoot. It provides a number of directives, including

Alias, for defining new directories, Redirect for defining redirections and

ScriptAlias for defining new directories containing CGIs.

Alias /images /web/images

<Directory /web/images>

 Order allow,deny

 Allow from all

</Directory>

Redirect permanent /manuals http://manuals.uoc.edu/

Redirect 303 /document http://www.uoc.edu/underway.html.

4.3. mod_auth, mod_auth_dbm, mod_auth_digest,

mod_auth_ldap

Together with other modules not distributed as standard, these allow us to use

different sources of data to authenticate our users.

GNUFDL • PID_00148403 22 Use and maintenance

4.4. mod_autoindex

This allows us to control how Apache will generate file lists for directories

without an index file, how to define formats, columns, orders, whether all

files will be visible, etc.

4.5. mod_cgi

This is the main driver allowing Apache to serve CGI type files.

4.6. mod_dav y mod_dav_fs

This provides the functionalities of classes 1 and 2 of the WebDAV standard,

a system that allows web content handling way beyond that specified by the

HTTP standard. WebDAV converts the web server into a virtual disk server with

the same features as a normal disk server: copying, reading, moving, deleting,

etc.

4.7. mod_deflate

This is used to compress contents before sending them to the client, thus

increasing the capacity of our communication lines. Note that not all browsers

support compression, so it is a good idea to check the documentation of

this module as you will obtain some very useful tips for detecting and

avoiding problems with certain browsers. One configuration that avoids

certain problems is:

<Location />

 # Enable filter

 SetOutputFilter DEFLATE

 # Problem: Netscape 4.x

 BrowserMatch ˆMozilla/4 gzip-only-text/html

 # Problem: Netscape 4.06-4.08

 BrowserMatch ˆMozilla/4\.0[678] no-gzip

MSIE

 BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

 # Do not compress images

 SetEnvIfNoCase Request_URI.(?:gif jpe?g png)$ no-gzip dont-vary.

 # Avoid modifications by proxies

 Header append Vary User-Agent env=!dont-vary

</Location>

4.8. mod_dir

Provides the necessary support for serving directories such as URLs by

performing the right redirects and serving the index files.

Note

WebDAV is a HTTP extension
for advanced content handling
and authoring features.

GNUFDL • PID_00148403 23 Use and maintenance

4.9. mod_env

This is used to define new environment variables to pass to the CGI programs.

It provides two directives: SetEnv and UnsetEnv.

SetEnv SPECIAL_VARIABLE value

UnsetEnv LD_LIBRARY_PATH

4.10. mod_expires

This allows us to generate HTTP headers indicating the expiry of content in

line with a criterion defined by us:

Enable the module

ExpiresActive On

expire images GIF 1 months after modification

ExpiresByType image/gif "modification plus 1 month"

HTML documents 1 week after modification

ExpiresByType text/html "modification plus 1 week"

The rest 1 month after the last access

ExpiresDefault "access plus 1 month"

4.11. mod_ldap

Provides a pool of LDAP connections and makes a cache of the results for use

in other modules requiring LDAP. It is essential when using LDAP as a source

of authentication, etc., as it ensures that this does not cause a bottleneck.

4.12. mod_mime

This decides which type of MIME file (the standard that marks content types

on the web) is associated with each file served by Apache. Based on the file

extension, it can decide which Content-type to associate with it and it can

even decide to take actions or send the file to special modules for processing.

It includes a mod_mime_magic module complementing mod_mime for files

where mod_mime has been unable to determine their type.

4.13. mod_speling

This offers a mechanism for correcting addresses (URL) that users may have

entered incorrectly. If the requested resource is not found, Apache will try to

correct the error. For example, upper-case may have been mistakenly used, etc.

If more than one possible page is found, a list will be displayed to the user

from which to choose.

GNUFDL • PID_00148403 24 Use and maintenance

Note that this module has a substantial impact on performance.

4.14. mod_status

Displays information on server status, how busy it is and its activity level. The

information provided is:

• The number of child processes.

• The number of unoccupied child processes.

• The status of each child, the number of requests and bytes served by each

child.

• Number of total accesses and bytes served.

• When the server was booted and the time it has been running for.

• Average requests per second, bytes per second and bytes per request.

• Current CPU use per child and the total for Apache.

• Requests currently being processed.

Some of this information may be disabled during compilation of the server.

The following example shows how to enable this module:

<Location /status>

 SetHandler server-status

 Order Deny,Allow

 Deny from all

 Allow from .uoc.edu

</Location>

We can see part of the result of the module in the figure below:

GNUFDL • PID_00148403 25 Use and maintenance

Figure 23.

4.15. mod_unique-id

This module provides an environment variable with a unique identifier for

each request, guaranteed to be unique to a machine cluster. The module does

not run under Windows. The environment variable provided is: UNIQUE_ID.

For this, it uses a value generated from (ip_server, process pid, time stamp,

counter16). The Counter16 is a 16-bit counter that rotates to 0 every second.

4.16. mod_userdir

This allows us to offer personal pages to the users of our system. This module

has a basic functionality. It maps a subdirectory of the working directory of

our system users to a specific URL, generally: http://www.uoc.edu/ ~user/.

The most common configuration,

GNUFDL • PID_00148403 26 Use and maintenance

UserDir public_html

would resolve requests to http://www.uoc.edu/ ~user/ from the contents of a

subdirectory public_html in the working directory of user.

4.17. mod_usertrack

Provides a module that uses a cookie to monitor user activity over the web.

Monitoring and
analysis

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148401

GNUFDL • PID_00148401 Monitoring and analysis

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148401 Monitoring and analysis

Index

1. Analysis of HTTP server logs.. 5

1.1. Format of the log.. 5

1.1.1. The Extended Common Log Format 6

1.2. Analysing the errors.. 6

1.2.1. Common log interpretation errors.................................. 7

1.3. Log analysis programs ... 8

1.3.1. Webalizer .. 8

1.3.2. Awstats ... 11

1.3.3. Analog .. 15

2. Statistics and counter tools.. 18

2.1. Counters .. 18

2.1.1. Using a CGI to generate the counter 18

2.1.2. Counter services .. 20

2.1.3. Server extension (Roxen) ... 21

2.2. Visitor statistics ... 22

3. Performance analysis.. 27

3.1. Obtaining performance information on Apache 27

3.1.1. mod_status ... 27

3.2. Obtaining information on system performance 28

3.2.1. CPU load .. 28

3.2.2. Memory use ... 30

3.2.3. Disk access ... 31

3.3. Configuration improvements ... 32

3.3.1. DNS queries ... 32

3.3.2. Symbolic links and overrides .. 32

3.3.3. Memory mapping and sendfile 32

3.3.4. Creating processes and threads 33

GNUFDL • PID_00148401 5 Monitoring and analysis

1. Analysis of HTTP server logs

Web servers (and those of FTP, caching proxy, etc.), if configured for the task,

save files to the system where they record all events occurring during normal

operation of the service. These files are called log. Here, we can find the record

of failed operations, sometimes with the cause of the failure. We will also find

the record of anomalous operations and a record of all operations performed

correctly.

1.1. Format of the log

Web servers generally save logs in a format called Common Log Format. Servers

that do not use this format by default generally include an option for using

it. The Common Log Format is:

65.61.162.188 - - [14/Dec/2003:04:10:38 +0100] "GET /exec/rss HTTP/1.1" 200 9356

66.150.40.79 - - [14/Dec/2003:04:18:46 +0100] "HEAD / HTTP/1.1" 302 0

69.28.130.229 - - [14/Dec/2003:04:36:59 +0100] "GET /robots.txt HTTP/1.1" 404 1110

69.28.130.229 - - [14/Dec/2003:04:37:00 +0100] "GET /space/start HTTP/1.1" 200 17327

64.68.82.167 - - [14/Dec/2003:05:23:32 +0100] "GET /robots.txt HTTP/1.0" 404 1110

64.68.82.167 - - [14/Dec/2003:05:23:32 +0100] "GET / HTTP/1.0" 304 0

66.196.90.246 - - [14/Dec/2003:05:36:14 +0100] "GET /robots.txt HTTP/1.0" 404 1110

66.196.90.63 - - [14/Dec/2003:05:36:14 +0100] "GET /exec/authenticate HTTP/1.0" 302 0

66.196.90.63 - - [14/Dec/2003:05:36:19 +0100] "GET /space/start HTTP/1.0" 200 17298

69.28.130.222 - - [14/Dec/2003:05:50:32 +0100] "GET /robots.txt HTTP/1.1" 404 1110

69.28.130.222 - - [14/Dec/2003:05:50:33 +0100] "GET / HTTP/1.1" 302 14

69.28.130.222 - - [14/Dec/2003:05:50:34 +0100] "GET /space/start HTTP/1.1" 200 17327

As we can see, each line of the log file uses the following format:

Table 20.

Name Description

remote client IP address or name of the remote client that made the request

rfc931 Remote user identifier, if defined � if it has not been defined

user User identifier validated against our server � if it has not been defined

date Date of request

request Request (method and URL) sent by the client

status Numerical code of the result

bytes Size of the result in bytes (0 if not applicable)

GNUFDL • PID_00148401 6 Monitoring and analysis

1.1.1. The Extended Common Log Format

There is an extended variant of the Common Log Format called Extended

Common Log Format, more commonly known as the Combined Log Format,

which adds two additional fields to the above format:

65.61.162.188 - - [14/Dec/2003:04:10:38 +0100] "GET /exec/rss HTTP/1.1"

 200 9356 "http://www.google.com" Mozilla/4.5[en]

66.150.40.79 - - [14/Dec/2003:04:18:46 +0100] "HEAD / HTTP/1.1"

 302 0 "http://www.altavista.com" Mozilla/3.1[en]

The fields added by this extension are:

Table 21.

Name Description

referrer The address from which the client comes. If it has not been defined, we will use –

User agent The version of the browser software used by our client. If it cannot be determined, we will use –

1.2. Analysing the errors

The log files will provide us with some very useful information with important

data on the visitors to our website. However, we will be unable to find lots

of relevant data in our log, so we will need to estimate this based on the

information in these files.

The data we can find in log are:

• Number of requests received (hits).

• Total volume in bytes of data and files served.

• Number of requests by file type (e.g. HTML).

• Different client addresses attended and requests for each.

• Number of requests per domain (from the IP address).

• Number of requests per directory or file.

• Number of requests per HTTP return code.

• Source addresses (referrer).

• Browsers and the versions used.

Although we can obtain a lot of information from the analysis of log there are

some things that we cannot find out. Of these, the most important are:

• User identity, except where the user is identified by a server request.

• Number of users. Although we have the number of different IP addresses,

we cannot know for certain the number of users, particularly if we take

into account the existence of caching proxy. An IP address can represent:

GNUFDL • PID_00148401 7 Monitoring and analysis

– A robot, spider or other automated browser program (such as those

used by browsers such as Google).

– An individual user with a browser on their computer.

– A caching proxy server that can be used by hundreds of users.

• Qualitative data: user motivations, reactions to content, use of the data

obtained, etc.

• Unseen files.

• What the user visited after leaving our server. This data will be recorded

in the log of the server where the user went after leaving ours.

Other information is recorded but only partially, so we could interpret this

data incorrectly. Many of these inconsistencies come from the cache made by

browsers from that created by intermediate caching proxy servers, etc.

1.2.1. Common log interpretation errors

The information in log files does not allow us to obtain the following

information, although most programs that analyse log generally do it:

• XML hits are not the same as visits. A page can generate more than one hit,

because it contains images, style sheets, etc., that correspond to another

hit.

• User sessions are easy to isolate and count. If there is no specific

monitoring mechanism for sessions (cookies, etc.), they are normally

obtained by considering all accesses from the same address over a

consecutive period of time to be from the

• Same session. This does not take into account the existence of caching proxy

servers or the possibility that a user may pause for a time (while consulting

other sources of information, etc.).

• Data such as average pages per visit and lists of the most visited pages are

obtained from user sessions. Given the difficulties in calculating these, the

values obtained are not very reliable. Moreover, the existence of caching

proxy servers has a very negative effect on lists of most visited pages.

Precisely because they are the most visited, they are more likely to be

stored on cache.

• It is difficult to gauge the geographical location of users from IP addresses.

We will often locate an entire block of addresses in the city where the

Internet services provider of a user has its head offices, while the user may

be in a completely different place.

GNUFDL • PID_00148401 8 Monitoring and analysis

1.3. Log analysis programs

There are many free software programs available to analyse log that we can

use to obtain information on the logs of visits to our website. Most of these

generate their reports as web pages that can even be published on the site.

1.3.1. Webalizer

Webalizer is no doubt one of the most widespread. So much so that even some

Linux distributions include it preconfigured.

If Webalizer is not installed in our server system, it is not too difficult to

configure from the source code.

We first need to download the program from the website hosting it,

where we can also obtain further documentation and some contributions

(http://www.mrunix.net/webalizer). After downloading, we need to

decompress it:

[carlesm@bofh k]$ tar xvzf webalizer-2.01-10-src.tgz

webalizer-2.01-10/

webalizer-2.01-10/aclocal.m4

webalizer-2.01-10/CHANGES

webalizer-2.01-10/webalizer_lang.h

webalizer-2.01-10/configure

[...]

webalizer-2.01-10/sample.conf

webalizer-2.01-10/webalizer.1

webalizer-2.01-10/webalizer.c

webalizer-2.01-10/webalizer.h

webalizer-2.01-10/webalizer.LSM

webalizer-2.01-10/webalizer.png

After decompressing it, we can configure its compilation in the building

directory:

[carlesm@bofh webalizer-2.01-10]$./configure \

 --with-language=spanish --prefix=/home/carlesm/web

creating cache ./config.cache

checking for gcc... gcc

[...]

creating Makefile

linking ./lang/webalizer_lang.spanish to webalizer_lang.h

[carlesm@bofh webalizer-2.01-10]$

GNUFDL • PID_00148401 9 Monitoring and analysis

There is one important option, with-language, which is used to specify

the language in which we want to build and install Webalizer. To choose the

language, look in the lang subdirectory to see the available languages.

We now build the program as normal in these cases with the make.

[carlesm@bofh webalizer-2.01-10]$ make

gcc -Wall -O2 -DETCDIR=\"/etc\" -DHAVE_GETOPT_H=1

-DHAVE_MATH_H=1 -c webalizer.c

[...]

gcc -o webalizer webalizer.o hashtab.o linklist.o preserve.o

 parser.o output.o dns_resolv.o graphs.o -lgd -lpng -lz -lm

rm -f webazolver

ln -s webalizer webazolver

[carlesm@bofh webalizer-2.01-10]$

And, once built, we install it:

[carlesm@bofh webalizer-2.01-10]$ make install

/usr/bin/install -c webalizer /home/carlesm/web/bin/webalizer

[...]

rm -f /home/carlesm/web/bin/webazolver

ln -s /home/carlesm/web/bin/webalizer \

 /home/carlesm/web/bin/webazolver

[carlesm@bofh webalizer-2.01-10]$

To generate a log report, we can run it by passing a log file as a parameter and

it will leave the files containing the report in the current directory.

[carlesm@bofh log]$ ˜/web/bin/webalizer access_log

Webalizer V2.01-10 (Linux 2.4.20-8) Spanish

Using history access_log (clf)

Creating report in current directory

The machine name in the report is 'bofh'

History file not found...

Generating report on December 2003

Generating report summary

Saving file information...

45 records in 0.03 seconds

[carlesm@bofh log]$ ls

access_log

ctry_usage_200312.png

daily_usage_200312.png

hourly_usage_200312.png

index.html

usage_200312.html

usage.png

GNUFDL • PID_00148401 10 Monitoring and analysis

webalizer.hist

[carlesm@bofh log]$

This will give us a usage report based on the log of our web server:

Figure 24.

GNUFDL • PID_00148401 11 Monitoring and analysis

Figure 25.

1.3.2. Awstats

AWstats is a log statistics and analysis program with a comprehensive list of

features and capabilities. Besides web server statistics, AWstats can generate

statistics on mail servers, file servers, etc.

This log analyser can operate both as a CGI module and from the command

line. The information it provides includes:

• Number of visits and visitors.

• Duration of visits.

• Authenticated users and visits.

• Time and date of the most traffic (pages, hits, bytes etc).

• Domains and countries of origin of the visits.

• Most visited pages and input/output pages.

• Types of files requested.

• Visitor bots (from search engines, etc.).

• Search engines for visitor origin, including the words and phrases used for

the search.

• HTTP return errors and codes.

• Browser features (Java, Flash, etc.) and screen size.

GNUFDL • PID_00148401 12 Monitoring and analysis

• Compression statistics (if used).

• Browsers used to visit us (browser versions, pages served for each browser,

bytes per browser, etc.).

• Operating systems used to visit us.

Note that all of these reports and statistics are obtained from the data in the

log file, for which we have already discussed the problems associated with the

use of proxy caches, etc.

If our system does not come with the program pre-installed, we can

install it so long as we have at least a Perl interpreter. We will begin

installation by downloading the program code from its web server

(http://awstat.sf.net).

• After downloading, decompress as usual with the tar.

[carlesm@bofh aws]$ tar xvzf awstats-5.9.tgz

awstats-5.9/

awstats-5.9/docs/

awstats-5.9/docs/awstats.htm

[....]

awstats-5.9/wwwroot/icon/other/vv.png

awstats-5.9/wwwroot/js/

awstats-5.9/wwwroot/js/awstats_misc_tracker.js

[carlesm@bofh aws]$

• The first step of installation is to configure the web server to use the log

format called NCSA combined/XLF/EL F. In the Apache configuration file,

for example, httpd.conf we need to change:

CustomLog /var/log/httpd/access_log common

to

CustomLog /var/log/httpd/access_log combined

• The next step is to copy the contents of the subdirectory

wwwroot/cgi-bin/, including the subdirectories it contains, to the

directory where our web servers will find the CGI files.

• We must now copy the contents of wwwroot/icon to a subdirectory of

the directory where we store the contents of our web server.

• Copy the file awstats.model.conf to another file that we will call

awstats.servername.conf and locate it in one of the following

GNUFDL • PID_00148401 13 Monitoring and analysis

directories: /etc/awstats, /etc/opt/awstats etc. or in the

directory where we find awstats.pl.

• We will need to configure this file by editing at least the following

variables:

– LogFile: path to the log.

– LogType: type of log: W for web, M for mail, F for FTP, and O for other

cases.

– LogFormat: check that this is 1.

– DirIcons: path to the directory where the icons are located.

– SiteDomain: name of the web server.

• Once the program is configured, we run AWStats from the command line,

from the cgi-bin directo y, with:

awstats.pl -config=servername -update

• We can now allow visits to our statistics from the following URL:

http://servername/cgi-bin/awstats.pl

This will display the statistics generated dynamically. Another option is

to generate statistics as static HTML pages and to access these. To do this,

we need to execute:

awstats.pl-config=servername-output-staticlinks>

awstats.server.html

We should move the file generated (awstats.server.html) to a

directory that can be accessed by the web server and we can now access

it from a browser.

• Although we could use dynamic updating from the browser, we need to

programme the server to regularly update the statistics with the command

used previously to create them. To do so, we can use the cron facilities of

our Linux systems, complementing them with logrotate, if we have it,

so that when the time comes to change log files (to save disk space) these

will be incorporated into the statistics.

We can now see part of what the generated statistics look like:

GNUFDL • PID_00148401 14 Monitoring and analysis

Figure 26.

Figure 27.

GNUFDL • PID_00148401 15 Monitoring and analysis

Figure 28.

1.3.3. Analog

Analog is perhaps the oldest and most widely-used free software log

analysis program. It is usually used in combination with another program,

ReportMagic, which complements the report display features of Analog.

To install it, go to the program website at: http://www.analog.cx. Here, you

will find precompiled versions for most platforms and versions with source

code. Download the source code version and install it.

• Decompress the program code:

[carlesm@bofh l]$ tar vxzf analog-5.91beta1.tar.gz

analog-5.91beta1/

analog-5.91beta1/docs/

analog-5.91beta1/docs/LicBSD.txt

[...]

analog-5.91beta1/anlgform.pl

analog-5.91beta1/logfile.log

[carlesm@bofh l]$

• Now enter the src directory and edit the file called anlghead.h. This file

defines certain configuration variables: server name, etc. We change the

values we require.

• We compile it with make:

[carlesm@bofh src]$ make

gcc -O2 -DUNIX -c alias.c

GNUFDL • PID_00148401 16 Monitoring and analysis

gcc -O2 -DUNIX -c analog.c

[...]

bzip2/huffman.o bzip2/randtable.o -lm

***IMPORTANT: You must read the licence before using analog

[carlesm@bofh src]$

• We can edit the analog.cfg file to define the output format of Analog

and some of its operating parameters.

• When you are finished editing, execute Analog with analog to generate

the statistics file.

The statistics generated will look like this:

Figure 29.

GNUFDL • PID_00148401 17 Monitoring and analysis

Figure 30.

Figure 31.

GNUFDL • PID_00148401 18 Monitoring and analysis

2. Statistics and counter tools

2.1. Counters

Web counters are visual indications to visitors to our page of the number of

visits we have had. They are the visual indicator with the most aesthetic, as

opposed to useful, value, since many of these counters have no value other

than statistical, given that they only count hits (requests from the page to the

server, which do not always correspond to real visits).

There are a number of ways to add a counter to your site:

• Use a CGI or servlet to generate the counter (using images or references

to images).

• Use a counter service displaying the counter or references to the images.

• Use, where available, a server extension for the counter.

2.1.1. Using a CGI to generate the counter

To add a visitor counter to our site, we can use an external program such as a

CGI or servlet, which will count visits and generate the counter. We can use

one of the many counters available: Count.

To start with, we need to download Count from the website:

http://www.muquit.com/muquit/software/Count/Count.html

Once downloaded, we can begin the installation.

• The first step is to decompress the program code. To do so, we need to

use tar:

[carlesm@bofh n]$ tar xvzf wwwcount2.6.tar.gz

./wwwcount2.6/

./wwwcount2.6/DIR/

[...]

./wwwcount2.6/utils/rgbtxt2db/rgb.txt

./wwwcount2.6/utils/rgbtxt2db/rgbtxt2db.c

[carlesm@bofh n]$

• We can now compile the program:

[carlesm@bofh wwwcount2.6]$./build \

GNUFDL • PID_00148401 19 Monitoring and analysis

 --with-cgi-bin-dir=/home/carlesm/apache/cgi-bin/ \

 --prefix=/home/carlesm/apache/counter

The prefix parameter indicates where we want Counter to save its files.

• After compiling, we can install with:

[carlesm@bofh wwwcount2.6]$./build --install

The program will allow us to confirm the installation directories before

copying the files.

• We need to configure Counter. To do this, we will edit the count.cfg

file located in the conf directory of Counter's installation; in our case:

/home/carlesm/apache/counter.

• We can add the following HTML fragment, which references our counter

CGI to use Counter:

The counter will look like this:

Figure 32.

• We can use the many parameters of Counter to modify what and how it

is displayed:

Visits:

Time:

Time since 1/1/2000:

<img

src="/cgi-bin/Count.cgi?cdt=2000;1;1;0;0;0&dd=cd&ft=2&frgb=000000"

alt="Count">

GNUFDL • PID_00148401 20 Monitoring and analysis

This graphic shows how the three counters look:

Figure 33.

2.1.2. Counter services

There are numerous commercial counter services, though many also have free

options that allow us to add a counter to our website without the need to

install additional programs on our server. Many of these counters also offer

statistical analysis of visits.

These services include:

Table 22. Counter services

Name Address

123 Counter http://www.123counter.com/

Admo Free Counters http://www.admo.net/counter/

BeSeen: Hit Counter http://www.beseen.com/hitcounter/

BoingDragon: AnimatedCounters http://www.boingdragon.com/types.html

Dark Counter http://www.lunamorena.net/counter/

Digits.com http://www.digits.com/create.html

Easy Counter http://www.easycounter.com/

i-Depth http://www.i-depth.com/X/guru3#hcnt

LBInet Counters http://www.lbi.net/c50000/

LunaFly: Free Counter http://www.freecount.co.uk/

MyComputer Counter http://counter.mycomputer.com/

Spirit Counters http://www.thesitefights.com/userv/

We will now create a counter. To do so, we will use the service offered by

Digits.com. First, we need to visit their site and fill in the form requesting the

service.

After filling in the form, Digits.com will provide us with a fragment of HTML

code to include on our page. The code will look something like this:

GNUFDL • PID_00148401 21 Monitoring and analysis

<IMG SRC="http://counter.digits.com/wc/-d/4/carlesm"

 ALIGN=middle

WIDTH=60 HEIGHT=20 BORDER=0 HSPACE=4 VSPACE=2>

The counter will look like this:

Figure
34.

Using the parameters passed to the URL, we can change the appearance of the

counter to obtain this:

Figure 35.

with the following HTML code:

<p>

Hits:

<IMG

 SRC="http://counter.digits.com/wc/-d/4/-z/-c/8/carlesm"

 ALIGN=middle

 WIDTH=60 HEIGHT=20 BORDER=0 HSPACE=4 VSPACE=2>

</p>

<p>

Hits:

<IMG

 SRC="http://counter.digits.com/wc/-d/4/-z/-c/26/carlesm"

 ALIGN=middle

 WIDTH=60 HEIGHT=20 BORDER=0 HSPACE=4 VSPACE=2>

</p>

2.1.3. Server extension (Roxen)

The free software web server Roxen has a HTML extension that can be used

to implement a counter easily without the need to install additional software

on our system.

GNUFDL • PID_00148401 22 Monitoring and analysis

To do this, we have two new HTML tags: accessed and gtext, used to

indicate the number of hits obtained by a page and to display text as graphics,

respectively.

An example of the use of this extension is the following code:

Visitas:

 <gtext2bshadow=1bevel=2><accessed/></gtext>

Hits:

<accessed />

which produces the following result:

Figure 36.

2.2. Visitor statistics

Another option for monitoring the number of visitors to our website, where

they come from and other similar data, without using a log analysis program,

is to use one of the statistics and visitor counting services available, some free

of charge, on the Internet.

The following list details some of these services:

Table 23. Visitor counting services

Name Address

Counted http://www.counted.com

Cyber Stats http://www.pagetools.com/cyberstats/

Gold Stats http://www.goldstats.com

Hit Box http://www.websidestory.com

IPSTAT II http://www.ipstat.com

NedStat http://www.nedstat.com

RealTracker http://www.showstat.com

Site-Stats http://www.site-stats.com

Site Tracker http://www.sitetracker.com

Stats 3D http://www.stats3d.com

Stat Trax http://www.stattrax.com

The-Counter.net http://www.the-counter.net

Note

The <counter>. To maintain
compatibility with previous
versions, in which there was
a specific tag for counters,
<counter>, Roxen still
provides this tag, now
implemented as a combination
of accessed and gtext.

GNUFDL • PID_00148401 23 Monitoring and analysis

Name Address

WebStat.com http://www.webstat.com

WebTrends Live http://www.webtrendslive.com/default.htm

WhozOnTop http://world.icdirect.com/icdirect/hitTracker.asp

Most of these services work in much the same way. When we sign up (whether

for free of paid services), we will be given a HTML code to include on our pages.

This code generally references an image from the website of the statistics

service. Some of these services offer an image used as a counter.

An example of this code, in this case, for NedStat, is:

<!-- Begin Nedstat Basic code -->

<!-- Title: Carlesm Homepage -->

<!-- URL: http://carlesm/ -->

<script language="JavaScript"

 src="http://m1.nedstatbasic.net/basic.js">

</script>

<script language="JavaScript">

<!--

nedstatbasic("AA7hmw77L/vVx928ONUhsGLjd6mQ", 0);

// -->

</script>

<noscript>

<a target=_blank

 href="http://v1.nedstatbasic.net/stats?AA7hmw77L/vVx928ONUhsGLjd6mQ">

<img

 src="http://m1.nedstatbasic.net/n?id=AA7hmw77L/vVx928ONUhsGLjd6mQ"

 border=0 nosave width=18 height=18>

</noscript>

<!-- End Nedstat Basic code -->

Once we have included this code in our page, the statistics service will monitor

the times our page is visited. We can then display the statistics for our page,

as in these examples:

GNUFDL • PID_00148401 24 Monitoring and analysis

Figure 37.

Figure 38.

GNUFDL • PID_00148401 25 Monitoring and analysis

Figure 39.

GNUFDL • PID_00148401 26 Monitoring and analysis

Figure 40.

Figure 41.

GNUFDL • PID_00148401 27 Monitoring and analysis

3. Performance analysis

One of the keys to the success of a website is the level of comfort of our users,

that they have a pleasant visiting experience on our site, that they receive

a fluid response to their actions, without delayed responses, etc. Another of

these key points is the performance we obtain from our systems. The greater

the performance, the more we get out of our investment. Moreover, this often

translates into a smoother and more pleasant response for our users, with

reduced access times, etc.

3.1. Obtaining performance information on Apache

The first point offering information on how the web server is running is the

web server itself.

3.1.1. mod_status

As we have seen, Apache has a module called mod_status that di plays a page

of information on the performance of the web server at a given moment. This

page looked like this:

Figure 42.

If we overload the server (we can use specialist programs or Apache's own ab

for this), we will see how the result of mod_status gets complicated:

GNUFDL • PID_00148401 28 Monitoring and analysis

Figure 43.

In the information provided by mod_status, we can see what Apache calls

the scoreboard which represents all of the slots or request processors and their

status. From the information on the screen we can deduce that many of

these slots are busy sending information (those marked with W). In theory,

this indicates that our server is responding well to the requests it receives.

Note that this test was carried out by simultaneously sending a total of one

hundred requests to the server, until 100,000 requests were reached, and the

client machine of these requests was the server itself. We can also see in the

information displayed that the server will has some free slots in it. This tells us

that we can still receive more requests (it does not tell us that we can attend

to them at the desired speed).

3.2. Obtaining information on system performance

Another source of information on server performance is the operating system.

Operating systems generally come with a broad range of tools that we can use

to find out their status at any time. These tools tell us the level of CPU usage,

memory, etc.

For our analysis, we will use the tools usually available in Unix systems. If your

system does not have these tools, many can be found free on the Internet.

Similar tools are available for most operating systems.

3.2.1. CPU load

This term is used to indicate how busy the CPU or central processing unit

of our server system is. Web servers like Apache make considerable use of

the processor for their normal functions, and this increases when we use

dynamically generated pages, etc.

If, as is sometimes the case, the web server system provides services in addition

to web services (mail server, for example), we need to be very careful about

the level of processor used.

GNUFDL • PID_00148401 29 Monitoring and analysis

We can obtain a rough estimate of the use of our system with the command:

vmstat.

[carlesm@bofh carlesm]$ vmstat 2

procs memory swaps io system cpu

r b w swpd free buff cache si so bi bo in cs us sy id

1 0 0 26364 46412 178360 206072 0 0 4 13 29 41 7 0 46

0 0 0 26364 46412 178360 206072 0 0 0 0 107 22 0 0 100

0 0 0 26364 46412 178360 206072 0 0 0 0 108 22 0 0 100

In this example, we can observe the distribution of the CPU load with the

three values to the right, labelled us, sy and id, which correspond to: user,

system and idle respectively. These values indicate the percentage of time that

the processor remains in each of these states:

• user: the processor remains in user space while executing programs.

• system: the processor is in this state while it executes code forming part of

the operating system kernel or while attending calls to the system, such

as those from communications drivers, etc.

• idle: is the time the processor is free, not busy.

A constantly high us value indicates intensive use of the processor. In this

case, the machine is reaching its response limit and we need to find a solution

to ensure that increased load does not result in a loss of responsiveness. These

solutions must be geared towards reducing processor consumption (rewriting

code, optimising code) or increasing processing capacity.

A high sy value indicates that the system is busy for long periods with system

kernel tasks. We should try to find out the causes of this (wrong or faulty

drivers, inadequate hardware, etc.) and solve them.

A high id value (if we have performance problems) would indicate that the

problem does not lie with the processor and that we need to look at other

aspects.

Other important values revealed by vmstat are the two columns:

• in (interrupts): the number of interruptions occurring per second

(including those for the system clock).

GNUFDL • PID_00148401 30 Monitoring and analysis

• Cs (context switches): the number of context switches (for processes or

active threads in the processor) occurring per second.

Too high a cs value usually indicates that there are too many system processes

running. If this excess is caused by the processes generated by the web server,

we need to lower this figure. Another possible cause might be a high and

poorly optimised level of inter-process communications (IPC), which could

lead to excessive context switches.

The first three columns indicate other values that we should also look at:

• r: number of processes ready to execute.

• b: number of blocked processes.

• w: number of processes passed to swaps memory but which are executable.

In load situations, these indicators on the number of processes can give us

an idea as to the contention level to enter in the processor that we need to

execute:

23 0 1 27328 7944 169696 210932 0 0 0 480 116 13715 41 59 0

21 0 0 27336 7576 169624 211376 0 4 0 4 104 13724 43 57 0

17 0 1 27336 7096 169448 211924 0 0 0 474 113 13726 40 60 0

13 0 0 27344 6624 169444 212296 0 4 0 4 105 13753 38 62 0

In this example, obtained at a point of heavy server load, we have a high

number of processes available for execution and a processor availability of

0. Since these data were taken from a uniprocessor machine, and given the

number of context switches made, we can conclude that it is executing too

many processes.

There are other tools, including top, ps, that provide the same or

complementary information. It is very important to know the tools we have

available in our operating system and their capacity.

3.2.2. Memory use

The same command, vmstat also pr vides basic data on memory use. The

following columns contain information on memory use:

The columns swpd, free, buff and cache indicate, respectively:

• swpd: memory use swaps (swap memory).

GNUFDL • PID_00148401 31 Monitoring and analysis

• free: the amount of free physical memory (RAM).

• buff: the amount of memory used as buffers.

• cache: the amount of memory used as cache.

We need to keep a close eye on these values when the web server is under

heavy loads. A very high swpd and a very low free, buff and cache would

suggest that our system does not have enough memory and has to resort to

using the virtual disk memory, which is much slower than RAM.

The two columns si and so tell us the amount of memory sent to the virtual

disk memory or the memory recovered from there in kB/s. Values other than

zero sustained over time would suggest that the system lacks memory and

thus has to continually discard and recover data from the disk.

3.2.3. Disk access

One of the points often overlooked when sizing up equipment for web servers

is disk access. We need to take into account that a web server constantly sends

data that it reads from the disk to remote clients (pages, images etc). Thus,

short disk access times and high transfer speeds could give the web server high

page-serving performance.

For an idea of how our disks are responding to requests, we can use the vmstat

command as well as a more specialised command: iostat. The result of

executing iostat is as follows:

avg-cpu: %user %nice %sys %idle

67.50 0.00 18.50 14.00

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

dev3-0 32.00 208.00 844.00 416 1688

In this result, we can see the number of disk access transactions that have

occurred, the number of blocks (sectors) read and written, and the total blocks

during the time measured.

Very high values would suggest high disk usage. We must therefore make

sure that the system has fast disks with the lowest possible access time, the

highest transfer speed available and sufficient memory to perform disk cache

efficiently or to avoid excessive use of swaps.

Note

disk use can be motivated
either by access to data from
programs or by the use of
swaps. In the second case, the
best...

GNUFDL • PID_00148401 32 Monitoring and analysis

3.3. Configuration improvements

We can make some improvements by adjusting the configuration of the web

server. Different versions of Apache incorporate these adjustments by default.

However, we will need to be clear on the values being used by the web server,

since changing these could have drastic effects on system performance.

3.3.1. DNS queries

One area that usually creates a bottleneck when processing requests is the

fact that, in certain circumstances, Apache sends queries to the DNS for each

access. This behaviour is disabled by default since version 2.0. However, there

is one case in which we should still make DNS queries for each request

received: when we are using access control directives, such as Allow. In this

case, wherever possible, it is advisable to use IP addresses instead of names.

3.3.2. Symbolic links and overrides

If we use the FollowSymLinks or SymLinksIfOwnerMatch options for each

request, Apache must check whether it is a link and if any of the parent

directories in the directory hierarchy is a symbolic link. This takes up a

considerable amount of time for each access. Thus, we need to disable these

options where possible or, if we need them on a specific disk space, limit their

scope using the Apache configuration directives (Directory etc).

Additionally, if we use AllowOverride type di ectives, for each file access,

Apache will look for a .htaccess file in the directory hierarchy preceding

this file. As in the above case, we need to limit the scope of application of this

directive as much as possible.

3.3.3. Memory mapping and sendfile

If our platform allows, we must check that Apache is using the operating

system memory mapping capabilities to access file contents (mmap). This

will generally increase performance considerably. However, you will need to

consult the Apache documentation for your platform, as the performance of

some operating systems is reduced with the use of mmap. Remember also that

files accessible through units shared over a network (NFS for example) should

not be mapped to memory.

Another operating system capability that substantially increases Apache's

performance is use of the sendfile system all, which is a function provided

by some operating systems, characterised by delegating the task of sending a

file over the network to the operating system kernel. If we have this directive,

GNUFDL • PID_00148401 33 Monitoring and analysis

it is a good idea to check that Apache is using it in compilation time. However,

we need to take the same precautions as mmap, that is, check that our platform

is supported and that these files are not accessible from network disk drives.

3.3.4. Creating processes and threads

Another area where we can control performance of Apache is in the creation

and instantiation of processes. On start-up, Apache creates a series of processes

to attend requests. When a process has attended a certain number of requests,

it finalises and another starts in its place. We can adjust this behaviour with:

• MinSpareServers: minimum number of server processes we need to

have running.

• MaxSpareServers: maximum number of server processes not attending

a request that we can have running.

• StartServers: number of server processes we can start.

• MaxRequestsPerChild: maximum requests that a process can attend

before being recycled.

Another feature that can be used to control the operation of Apache is the

processing module (MPM). By default, Apache works with a processing module

based on system processes, called prefork but we an change it for one called

worker, which also launches a series of threads for each system process. The

latter is a good choice for systems with high loads.

This course book starts with an
introduction to the internet,
including a brief history of the TCT/
IP protocol and worldwide web. It
defines the basic concepts for web
servers and studies the case of
Apache, the most used webserver,
while other free software
webservers are not forgotten. The
course continues with webpage
design focussing on HTML and
JavaScript. XML Schemas, their
validation and transformation are
covered as well as dynamic
webpages built with CGI, PHP or JSP
and database access.

Webservices are software
components that are accessible
through SOAP and have their
interface described with WSDL (Web
Service Description Language). In this
section the XML-RPC protocol is
discussed among other things.

The last part of the course deals
with configuration, maintenance,
monitoring and security aspects.

>

With support from the

