
Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 1

Chapter 17

More skills
for securing a website

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 2

Objectives

Applied

1. Develop code that hashes and salts passwords.

2. Develop code that enforces password strength requirements.

Knowledge

1. Name and describe three common types of website attacks.

2. Describe how to prevent social engineering attacks.

3. Distinguish between a one-way hash and reversible encryption.

4. Distinguish between a dictionary attack and a rainbow table attack.

5. Describe the characteristics of a weak password.

6. Describe why it’s a good practice to hash and salt a password before

storing it in a database.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 3

Common website security attacks

 Cross-site scripting (XSS) attacks allow an attacker to inject

Javascript into your page

 SQL injection attacks allow an attacker to run malicious SQL

code on your database.

 In a social engineering attack, an attacker tricks someone into

revealing their username and password.

 Out of date or unpatched software running on your server can

allow an attacker to exploit security vulnerabilities to gain

unauthorized access to your data.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 4

How to prevent social engineering attacks

 Make sure employees, customers, and users are aware that no one

from your website will ever contact them and ask for their

password.

 Be wary of unknown individuals talking to your employees who

claim to be conducting surveys, research, and so on.

 Make sure your employees, customers, and users are aware of the

danger of using passwords made of information attackers can

easily discover about them.

 When seeking help with technical issues online, such as

programming questions, don’t reveal any information that would

be useful to an attacker.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 5

Common cryptographic algorithms

Algorithm Description

md5 Older 128-bit one-way hash algorithm. Known to

be vulnerable to collisions and should not be used.

SHA-1 160-bit one-way hash algorithm. Theoretically

vulnerable to collisions, but none have been found.

SHA-2 SHA-2 supports hash sizes from 224 to 512 bits.

256-bit key is considered uncrackable.

AES-128 Reversible encryption standard with 128-bit key.

Considered suitable for most encryption needs.

AES-256 256-bit version of AES. Generally the minimum

level of encryption required by the U.S.

government for top secret data.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 6

Introduction to cryptography

 A one-way hash algorithm takes a given input string, and hashes it

to a string of a certain length.

 Cannot be reversed.

 Useful for encrypting things such as passwords, where there is

no need for anyone to read the original value.

 Reversible encryption encrypts data against a key.

 The key can be used to decrypt the data later when it needs to

be read by a user.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 7

Common password attacks

Method Description

Social engineering Attacker tricks a user into revealing his

or her login credentials.

Dictionary attacks Attacker tries different passwords until

they find one that works. Typically, done

using an automated program and an

electronic dictionary.

Rainbow table attacks Similar to a dictionary attack, but a

pre-computed lookup table is used that

contains the hashes. An attacker who has

access to the hashed passwords can crack

them much more efficiently and quickly.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 8

A password is weak if it…

 Is made from information that can be easily discovered about the

user.

 Is made only from words that are in the dictionary.

 Is too short.

 Is made of all lowercase letters.

 Doesn’t include numbers or special characters.

Common problems with passwords

 Weak passwords are passwords an attacker can easily guess or

crack.

 Clear-text passwords, or unhashed passwords, aren’t encrypted.

As a result, if an attacker gains access to your database, these

passwords are easy to read.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 9

A utility class for hashing passwords
import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

public class PasswordUtil {

 /* This code uses SHA-256. If this algorithm isn't available to

 you, you can try a weaker level of encryption

 such as SHA-128.

 */

 public static String hashPassword(String password)

 throws NoSuchAlgorithmException {

 MessageDigest md = MessageDigest.getInstance("SHA-256");

 md.update(password.getBytes());

 byte[] mdArray = md.digest();

 StringBuilder sb = new StringBuilder(mdArray.length * 2);

 for (byte b : mdArray) {

 int v = b & 0xff;

 if (v < 16) {

 sb.append('0');

 }

 sb.append(Integer.toHexString(v));

 }

 return sb.toString();

 }

}

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 10

Code that uses this class
try {

 String hashedPassword = PasswordUtil.hashPassword("sesame");

} catch (NoSuchAlgorithmException e) {

 System.out.println(e);

}

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 11

How to hash passwords

 Use the MessageDigest class to compute a fixed-length hash value

for an array of bytes.

 Use the getBytes method of the String class to convert a string

such as a password to an array of bytes.

 Call the update method of the MessageDigest class to specify the

array of bytes that you want to hash.

 Call the digest method of the MessageDigest class to hash the

input and return a fixed-length array of bytes for the hashed input.

 Code a for loop to convert the array of bytes (which are 8 bits) to

a string of characters (which are 16 bits in Java).

 Some versions of Java may not have certain hash algorithms

available. If you attempt to use an algorithm that isn’t available,

the MessageDigest object throws a NoSuchAlgorithmException.

 A collision occurs when two input strings hash to the same value.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 12

The classes used to salt a password
java.security.SecureRandom;

java.util.Random;

java.util.Base64;

A method for producing a salt value
public static String getSalt() {

 Random r = new SecureRandom();

 byte[] saltBytes = new byte[32];

 r.nextBytes(saltBytes);

 return Base64.getEncoder().encodeToString(saltBytes);

}

A method for combining the password and salt
public static String hashAndSaltPassword(String password)

 throws NoSuchAlgorithmException {

 String salt = getSalt();

 return hashPassword(password + salt);

}

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 13

A User table with salted passwords

User

UserId

HashedAndSaltedPassword

Salt

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 14

How to salt passwords

 A salt is a random string appended to a password. To salt a

password, append the salt value to the original password before

hashing it.

 A salt prevents rainbow table attacks.

 The salt value is only created the first time the password is

created. It must be stored in the database so it can be used later to

regenerate the hash.

 SecureRandom class is a subclass of the Random class that

generates random numbers suitable for cryptography purposes.

 Use the nextBytes method of the SecureRandom class to populate

an array with a series of random bytes.

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 15

A class that uses Java 8 classes to hash
and salt passwords
import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.util.Random;

import java.util.Base64;

public class PasswordUtil {

 public static String hashPassword(String password)

 throws NoSuchAlgorithmException {

 MessageDigest md = MessageDigest.getInstance("SHA-256");

 md.reset();

 md.update(password.getBytes());

 byte[] mdArray = md.digest();

 StringBuilder sb = new StringBuilder(mdArray.length * 2);

 for (byte b : mdArray) {

 int v = b & 0xff;

 if (v < 16) {

 sb.append('0');

 }

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 16

A class that uses Java 8 classes to hash
and salt passwords (continued)
 sb.append(Integer.toHexString(v));

 }

 return sb.toString();

 }

 public static String getSalt() {

 Random r = new SecureRandom();

 byte[] saltBytes = new byte[32];

 r.nextBytes(saltBytes);

 return Base64.getEncoder().encodeToString(saltBytes);

 }

 public static String hashAndSaltPassword(String password)

 throws NoSuchAlgorithmException {

 String salt = getSalt();

 return hashPassword(password + salt);

 }

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 17

A class that uses Java 8 classes to hash
and salt passwords (continued)
 /* This code tests the functionality of this class.

 */

 public static void main(String[] args) {

 try {

 System.out.println("Hash for 'sesame' : "

 + hashPassword("sesame"));

 System.out.println("Random salt : "

 + getSalt());

 System.out.println("Salted hash for 'sesame': "

 + hashAndSaltPassword("sesame"));

 } catch (NoSuchAlgorithmException ex) {

 System.out.println(ex);

 }

 }

}

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 18

A method for enforcing password strength
public static void checkPasswordStrength(String password)

throws Exception {

 if (password == null || password.trim().isEmpty()) {

 throw new Exception("Password cannot be empty.");

 } else if (password.length() < 8) {

 throw new Exception("Password is too short. "

 + "Must be at least 8 characters long.");

 }

}

Code that uses this method
try {

 checkPasswordStrength("sesame");

 System.out.println("Password is valid.");

} catch (Exception e) {

 System.out.println(e.getMessage());

}

Murach's Java Servlets/JSP (3rd Ed.), C17 © 2014, Mike Murach & Associates, Inc. Slide 19

A method for enforcing password strength
requirements

 Start by checking to verify that the password isn’t equal to a null

value.

 Use the trim and length methods to verify that the password isn’t

empty.

 Use the length method to verify that the password is a minimum

number of characters.

 If the password doesn’t meet minimum requirements, throw an

exception that contains a message that describes why the

password didn’t meet the requirements.

 Use Java’s regular expression API to enforce requirements such

as minimum length, mandatory special characters, and a

mandatory mix of upper and lowercase characters.

