
A Unified Scheme for Adaptive Stroke-Based Rendering

Hyung W. Kang, Charles K. Chui, and Uday K. Chakraborty

University of Missouri - St. Louis

Department of Mathematics and Computer Science

One University Blvd. St. Louis, MO 63121, USA

Phone: 314-516-5841, Fax: 314-516-5400

{kang,chui,uday}@arch.umsl.edu

Abstract

This paper presents a comprehensive scheme for auto-
matically generating a broad class of artistic illustrations
from photographs. Using strokes as the major building
blocks, our system optimizes the stroke attributes subject to
the desired rendering style. The stroke attributes are com-
puted adaptively to enable importance-based control of the
abstraction level at each pixel. We propose a novel out-
line detection and refinement paradigm called ‘edge paint-
ing’ to construct an outline map, and from which to derive
the pixel-wise importance. We also introduce an ‘adap-
tive bilateral filter’ to adaptively guide the curved stroke
directions based on the importance map. Given the out-
line, importance, and direction maps, the system creates the
illustration via selecting the representative colors, setting
the style parameters, and optimizing the stroke attributes
based on simulated annealing. The experimental results
show that our scheme facilitates automatic production of
artistic illustrations in a wide range of rendering styles.

Keywords: Non-photorealistic rendering, Stroke-based
rendering, Adaptive edge detection, Adaptive bilateral fil-
ter, Simulated annealing

1. Introduction

Automatic generation of artistic illustrations from pho-
tographs is one of the most fundamental and actively stud-
ied problems in the field of non-photorealistic rendering
(NPR). In general, a good illustration depicts the target ob-
jects or scenes in such a way that all the extraneous details
are simplified or removed, while the salient features are pre-
served or emphasized. However, there are diverse ways to
achieve this goal. In fact, a wide variety of illustrations can
be generated even from a single photograph, depending on

the rendering styles, simulated artistic media, types of fea-
tures to preserve, and the desired levels of abstraction.

(c) Stipple drawing

(a) Oil painting (b) Cartoon illustration

(d) Tile mosaic(c) Stipple drawing

(a) Oil painting (b) Cartoon illustration

(d) Tile mosaic

Figure 1. Various styles of illustrations

Fig. 1 shows some example illustrations manually cre-
ated by artists, suggesting that a wide variation of artistic
styles are available in producing illustrations. Notice the ef-
fective use of feature outlines in Fig. 1(b)-(d). Also, these
examples show that ‘less important’ regions may be pur-
posefully abstracted, to communicate ‘important’ features
to the viewers more effectively. Although there have been
numerous NPR approaches for automatic generation of il-
lustrations [24, 2, 21, 15, 22, 26, 5, 27, 16, 13, 11, 4, 14],
none of them is general enough to produce alone all of these
example rendering styles. When we take into account the
comprehensive class of artistic illustrations, the following
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statements can be made in general:

• First, artistic illustrations can widely vary in their ren-
dering styles.

• Second, line drawings of the outlines often play impor-
tant roles such as preserving/emphasizing salient fea-
tures, enabling higher level of abstraction, and provid-
ing more effective communication. Also, line draw-
ings can be easily mixed with other renderings to en-
hance the artistic styles.

• Third, the degree of abstraction may be adaptive
(position-dependent), based on the ‘importance’ of the
area. Here, the importance may be determined by the
inherent complexity of the region, as well as the artist’s
insight or taste. All important features need to be pre-
served by minimizing the abstraction around them.

In this paper, we propose a novel scheme for automatic
generation of artistic illustrations from photographs, which
meets all of the requirements stated above. It is a unified
scheme in that it enables the production of a broad class
of stroke-based illustrations, including traditional oil paint-
ing, watercolor painting, cartoon illustration, line draw-
ing, pen-and-ink illustration, stipple drawing, tile mosaics,
etc. This paper makes several contributions to the study of
stroke-based rendering (and NPR in general). In particu-
lar, we present: (1) a generalized scheme for producing a
wide range of illustrations, (2) a novel technique for adap-
tive outline detection and refinement, (3) an adaptive level-
of-abstraction control method based on pixel-wise impor-
tance, (4) an adaptive bilateral filter for deriving an adap-
tive stroke direction map, (5) a novel automatic color se-
lection algorithm to support a wide range of styles, and (6)
a generalized stroke optimization algorithm based on simu-
lated annealing.

1.1 Related Work

There have been a number of techniques proposed in the
field of NPR, for automatically creating artistic renderings
from arbitrary reference photographs [24, 2, 21, 15, 22, 26,
27, 5, 16, 13, 11, 4, 14]. Each of these techniques is de-
signed to simulate a distinct artistic style and specific artis-
tic medium such as oil painting, pen-and-ink illustration,
watercolor painting, pencil drawing, stipple drawing, en-
graving, mosaics, stylized abstraction, etc. However, the
‘range’ of styles and media supported by each technique
is quite limited. While Hertzmann et al. [18] showed that
texture synthesis can be used to simulate various styles, it
requires sample input and output (filtered) images to be pro-
vided, and the control on the rendering result is indirect and
restrictive. Moreover, texture-synthesis-based approach is

unsuitable for certain types of illustrations where the out-
lines or stroke shapes must remain coherent and accurate,
such as line drawing, cartoon illustration, or mosaics.

Many of the automatic illustration techniques are stroke-
based, in that the basic elements for constructing the picture
are strokes [17]. However, the strokes have been mainly
used to fill the interior of regions, while the outlines (region
boundaries) are often neglected. While there are some ap-
proaches that allow partial use of outlines to enhance their
styles [5, 13, 4], their underlying frameworks are still not
general enough to cover various artistic styles or media. In
our approach, the outline information serves as an essential
ingredient which plays two important roles. First, from the
outline maps we produce line drawings, which may be fur-
ther mixed with other interior stroke renderings, broadening
the range of styles. Second, the outline map is used to de-
rive key stroke attributes (such as width, length, orientation,
etc.) ‘adaptively’, that is, in such a way that all unimpor-
tant regions are abstracted out while important features are
preserved.

Typically, the ‘importance’ of the area is computed based
on the inherent ‘complexity’ of the regional pixel color dis-
tribution [15, 26, 11]. Thus, a noisy or highly textured area
is automatically considered important and assigned small
strokes, although the artist may disagree on the actual im-
portance of that area. For example, when illustrating a bird,
the tiny, complex pattern of individual feathers may not
be considered important by some artists. There are recent
approaches supporting interactive region masking [16, 25],
enabling users to assign the pixel-wise importance in an ar-
bitrary fashion. These masking tools, however, are based on
either manual control or specialized eye-tracking hardware.
In this paper, we propose a novel semiautomatic technique
called edge painting, which enables the selective construc-
tion and refinement of outlines, thus provides an effective
way to control the regional importance (i.e., the level-of-
abstraction) adaptively and arbitrarily.

1.2 Overview
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Figure 2. System overview

Fig. 2 shows the block diagram of our illustration sys-
tem. As a preprocess, we perform automatic edge detection
on the input photograph to construct an outline map, which
may be further refined by our edge painting paradigm. The
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remaining processes are fully automatic. Given the outline
map, we derive an importance map, which is then used to
obtain the stroke direction field. In the next step, the system
selects a certain number of representative colors to comprise
the illustration. The final step is stroke rendering, which is
essentially a process of determining the stroke attributes,
guided by the importance and direction maps. Optionally,
the outline drawing may be merged with the illustration to
enhance the artistic style.

2. Outline Map Construction

We use Canny edge detector [1] to obtain the outline map
(or edge map), denoted E(x), which is a binary map where
E(x) is 0 if x is an edge pixel, and 1 otherwise. Canny’s
method, and other gradient-based variants, typically consist
of three basic steps: (1) gradient estimation, (2) nonmax-
ima suppression, (3) hysteresis thresholding. Step (1) uses
a scale parameter σ for Gaussian smoothing of input image
I , that is, I ∗ Gσ . Step (3) requires two gradient magnitude
values gh and gl for two-level thresholding. These parame-
ters are fine-tuned to construct a desirable outline map.

However, it is known that the global application of fixed
parameters often results in an incomplete outline map with
many missing outlines and/or insignificant edges, which
makes it unsuitable as the source of line drawing or pixel-
wise importance derivation. While it is possible to reduce
missing outlines by computing the parameters for each pixel
adaptively based on local image statistics [8], the resulting
outline map tends to be overly complex, and thus still may
not agree with the viewer’s own interpretation or insight. To
overcome this limitation, we present a novel outline con-
struction paradigm called edge painting, which facilitates
the selective edge detection and refinement via local and
adaptive control of the parameters.

2.1 Edge Painting

Edge painting is essentially a local, incremental Canny
edge detector, employing a user-guided local window in
which the outline map is incrementally updated. Following
the user’s cursor movement, the window sweeps the region
of interest, and Canny edge detection is applied with the
current set of parameters in the current window. This incre-
mentally updates the edge map of the swept area, and thus
the steerable local window operates like a ‘painting brush’
in the painting software. The size of the window, denoted η,
is adjustable, and thus we have four parameters (σ, gh, gl,
η) that may be adjusted between painting operations. We
may add a circular display kernel inscribed in the window,
so that only the contents in this circle are displayed on the
screen, creating smooth ‘painting brush’ effect (see Fig. 3).

(a) Direct application (b) Edge map editing(a) Direct application (b) Edge map editing

Figure 3. Edge painting

Algorithm 1 Edge painting
1: i := 0
2: while mouse button down do
3: if cursor moved or i = 0 then
4: wi := window centered at current cursor location
5: ŵi := wi − Ω(wi)

6: Φ(wi) := Ω(wi) ∩ ⋃i−1
j=0 wj

7: Estimate gradients in wi

8: Find maxima pixels in ŵi

9: Mark maxima pixels x in ŵi, if g(x) > gh

10: Mark maxima pixels x in Φ(wi), if g(x) > gl

11: Mark maxima pixels x in ŵi if g(x) > gl and x is con-
nected to a pixel already marked

12: Display the updated edge map within ŵi

13: i := i + 1
14: end if
15: end while

Algorithm 1 summarizes our incremental edge detection
scheme. When the window is in motion, we perform lo-
cal Canny edge detection in the current window wi (at each
time instance ti). In the incremental approach, however,
the boundary pixels of wi, denoted Ω(wi), need special
care. Let ŵi denote wi ‘eroded’ by one pixel wide, that
is, ŵi = wi − Ω(wi). Since the nonmaxima suppression
requires information from the neighboring pixels, the gra-
dients are estimated in the entire wi, while nonmaxima sup-
pression is done for the pixels in ŵi. To perform hystere-
sis thresholding, we first mark all the maxima pixels x in
ŵi whose gradient magnitude g(x) is higher than gh. The
second-level thresholding with respect to gl is based on the
connectivity to these selected maxima pixels, and the edge
segments surviving this test may extend to the next window.
Thus, we take an incremental approach, and include for the

iw
2−iw

1−iw )( iwΦ
hgg >

hl ggg ≤<

current cursor

iw
2−iw

1−iw )( iwΦ
hgg >

hl ggg ≤<

current cursor

Figure 4. Incremental edge map expansion
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connectivity test not only the maxima pixels in ŵi whose
magnitudes are above gh, but also all the ‘incoming’ edge
pixels from the previous windows whose magnitudes are
above gl. These incoming edge pixels are inspected on the
portion of Ω(wi), denoted Φ(wi), intersecting the previous
window sequence (see Fig. 4). After hysteresis threshold-
ing, the updated outline map E (within ŵi) is displayed.

We provide two basic operation modes, named paint and
tune. The paint mode refers to the user-guided incremen-
tal edge painting mode described above. In tune mode, the
window is fixed, and the user adjusts any of the parame-
ters and the local outline map is updated accordingly. The
parameter values may be tuned up and down in a continu-
ous fashion, until the optimal set of parameters is found for
a given window area. There is an additional mode called
pick, where the user is allowed to pick any specific pixel
from the outline map so that its associated parameters are
used for the subsequent painting operations. This is useful
when the user wishes to achieve similar edge detection re-
sults in different parts of the image, after there have been
some changes in parameter values.

The edge painting often operates like an ‘intelligent
eraser’. For example, with relatively large parameter val-
ues, the weak and extraneous edges are removed while
strong, large-scale edges are preserved in the swept area
(see Fig. 3b). As shown in Fig. 5, edge painting improves
the quality of outline map by minimizing missing outlines
or extraneous edges. Note that the resulting outline map it-
self can be viewed as ‘line-drawing art’ in its own right. Al-
though the edge painting paradigm, compared with global
Canny edge detector, helps obtain a cleaner outline map,
its performance still may be limited in some images where
there are many unclear outlines and/or closely-spaced out-
lines that have similar strengths but need to be separated.
Additional stylization of the outlines is possible, such as
varying the width of the outlines, adding stroke texture [19],
or introducing opacity to each outline [3]. Our incremental
edge detection algorithm works at interactive speed regard-
less of the image size, since the time complexity at each
time ti is strictly bounded by the window, which is typically
much smaller than the image.

(a) Global edge detection (b) Edge painting(a) Global edge detection (b) Edge painting

Figure 5. Advantage of Edge Painting

3. Direction Map Construction

Our stroke-based rendering system uses a curved stroke
model associated with several attributes such as position,
color, opacity, width, length, path, and so on (see Fig. 6).
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Figure 6. Stroke model

To allow for adaptive (pixel-dependent) stroke attribute
computation, we derive an importance map from the out-
line map. Here, we measure the distance from the near-
est edge. That is, the closer a pixel is to the nearby edges,
the more important it is (and needs to be preserved by us-
ing small-scale strokes). Thus, the importance map M(x)
is essentially a distance field, where each pixel records the
minimum distance to the neighboring edges:

M(x) = [d(x, E)/max
y

d(y, E)]n (1)

where d(x, E) denotes the minimum distance from x to the
edges in E. M is normalized to have values in [0, 1], and
the factor n is optionally used to curve the importance. Note
that the lower the M(x), the more important x is. Fig. 7
shows an example importance map.

(a) Input image (b) Importance map(a) Input image (b) Importance map

Figure 7. Importance map

3.1 Adaptive Bilateral Filter

Among various illustration styles, line drawing is the
simplest one to produce, since it is directly obtained from
the outline map. For all other styles, however, guiding the
strokes in regions interior to the outlines is a non-trivial
problem. Typically, artists draw interior strokes following
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the dominant outlines nearby. Previous approaches for con-
structing stroke direction field follow this principle, while
they differ in their underlying techniques to convey the di-
rections from outlines to the interior, which include scat-
tered data interpolation [21, 14], variational calculus [20],
and voronoi diagrams [13]. With these approaches, how-
ever, it is difficult to control the ‘smoothness’ of the direc-
tion path at each pixel adaptively. For example, to abstract
out unimportant regions more severely, the direction paths
in those regions should be smoothed out to a greater degree.

Thus, we propose a novel, effective technique to achieve
this goal, based on adaptive bilateral filter. The bilateral
filter is a powerful feature-preserving filter introduced by
Tomasi and Manduchi [28], which has been mainly used
for data denoising [6, 9, 10]. In our approach, we newly
introduce an ‘adaptive’ version of bilateral filter, and apply
it to the initial tangent map t(x) = (tx, ty) (perpendicular
to gradients) to obtain adaptively computed stroke direction
field d(x) = (dx, dy). The adaptive bilateral filtering is
defined as follows:

d(x) =
∑

y∈ξ(x)

t(y)Wc(x,y)Wd(x,y)∑
z∈ξ(x) Wc(x, z)Wd(x, z)

(2)

where ξ(x) denotes the neighborhood of x. The closeness
weight function Wc is defined as:

Wc(x,y) = e−||x−y||2/2σc(x)2 (3)

Note the parameter σc(x) is not a constant, but a function
of x, implying the size of filter kernel is adaptive at each
pixel. We assign a value proportional to the importance
map, that is, σc(x) = ac + bc · M(x) for some constants
ac, bc ≥ 0. Similarly, the size of ξ(x) is proportional to
σc(x). Thus, less important pixels will have bigger smooth-
ing kernel, searching further away to look for dominant tan-
gent vectors to follow.

Also, the feature-preserving weight function Wd is de-
fined as:

Wd(x,y) = e[g(y)−g(x)]/σ2
d (4)

where g(x) denotes the gradient magnitude at x. Note that
our feature-preserving weight function is monotonically in-
creasing, unlike the original version in [28]. The purpose
of our filtering is to “smooth out the vector field while pre-
serving dominant vectors”. Thus, bigger weights must be
given to neighboring pixels y whose gradient magnitudes
are higher than that of x (which explains why Wd has to be
monotonically increasing).

Fig. 8 shows example adaptive direction maps obtained
by our filter with varying kernel size (from Fig. 7(a)). With
large bc, note that the direction vectors are smoothed out
to a greater degree on pixels with lower importance (i.e.,
higher M ), while the outlines are always preserved regard-
less of the kernel size. Also, a purely non-adaptive direction

map can be obtained by setting bc = 0. Thus, our adaptive
bilateral filtering is by far the most general and versatile
technique for stroke direction map construction. While the
bilateral filtering is basically a non-iterative process, it may
also be applied multiple times to further enhance the filter
response, as pointed out in [7].

(b) High bc(a) Low bc (b) High bc(a) Low bc

Figure 8. Adaptive direction maps

4. Color Selection

Given the three guiding maps (outline map, importance
map, and direction map), we run the stroke rendering algo-
rithm to create an illustration. Our rendering algorithm is
associated with various style parameters, as will be detailed
in the subsequent sections. Among these parameters, the
number of colors, denoted Nc, is particularly important in
providing a wide range of illustration styles. For example,
traditional paintings normally use a large number of colors,
while cartoon illustrations or tile mosaics typically require
just a small number of colors, and pen-and-ink illustrations
use a single, black color (on a white canvas).

Before rendering, Nc representative colors are automati-
cally selected, forming the color palette for the strokes. The
system goes through the following 3 steps to select colors:
Initialization, K-means refinement, Saturation-Value (SV)
adjustment.

Initialization: Nc colors are randomly picked from the
input photograph I , forming the initial palette of colors ci

(1 ≤ i ≤ Nc), which is then iteratively refined by replacing
an old color with a new one sampled from I . Among the
old colors, the closest one to the new sample is picked for
replacement. The replacement occurs only if it increases
the following function:

t ·
∑

i,j

||ci − cj ||2 + (1 − t) · min
i,j

||ci − cj ||2 (5)

where t ∈ [0, 1], 1 ≤ i, j ≤ Nc and i �= j. This formulation
aims at collecting sufficiently distinct colors, by maximiz-
ing the total and minimum color differences in the palette.

5



K-means refinement: The palette is further refined by
an iterative K-means algorithm. At each iteration, we clus-
ter the pixels in I based on the closest sample color in the
palette, which is then replaced with the mean of the corre-
sponding cluster. After a sufficient number of iterations, the
following function is minimized:

Nc∑

i

Ni∑

j

||ci
j − ci||2 (6)

where ci
j denotes the color of the jth member of cluster i,

ci the mean of cluster i, and Ni the cluster size. That is,
Nc representative clusters are formed on I , and their mean
colors are used to comprise the palette.

SV adjustment: The resulting RGB color values in the
palette are converted to HSV colors, to adjust their sat-
uration (S) and the brightness (V) by linear interpolation
with the corresponding maximum possible values, that is,
S ← (1−t)S+t·Smax and V ← (1−t)V +t·Vmax, where
t ∈ [0, 1]. The purpose of this adjustment is to enhance
the liveliness of the colors, as is often done by artists [12].
Fig. 9 shows example illustrations generated by our system,
with different number of colors selected (see Fig. 10 for the
input picture). Note that in Fig. 9(b), the outline map is
overlaid on the illustration to enhance the cartoonish effect.

(b) Cartoon illustration (Nc = 10)(a) Oil painting (Nc = 70) (b) Cartoon illustration (Nc = 10)(a) Oil painting (Nc = 70)

Figure 9. Color selection

5. Stroke Rendering

Our rendering algorithm is summarized in Algorithm 2.
In stroke-based rendering, the output is represented by an
ordered list of strokes, denoted S. Our algorithm is based
on stochastic stroke optimization, to find an optimal S with
respect to the following objective function:

f(S) =
∑

x

||F(I(x)) − IS(x) ∗ Gσ||2 (7)

where I denotes the input image, and IS denotes the ren-
dering of S. We use the Gaussian-blurred rendering for

comparison to cover a wide range of rendering styles, es-
pecially stipple drawing, pen-and-ink illustrations, or mo-
saics, which normally encourage spacings between strokes.
For other rendering styles, σ may be set to zero. Function F
denotes the possible initial filtering of the input image. In
general, we use an adaptive Gaussian smoothing filter for
F . The size of the smoothing kernel at each pixel is pro-
portional to the importance value M , and thus adaptively
affects the noisiness (and smoothness) of the resulting illus-
trations. For black-and-white illustrations (such as pen-and-
ink or stippling), the initial filtering also includes color-to-
gray-scale image conversion.

Our optimization algorithm employs the framework of
simulated annealing based on iterative random stroke oper-
ations, to minimize f in Eq. 7. The optimization process is
associated with an overlap constraint, that is used to main-
tain the required interval between neighboring strokes. This
allows for more sophisticated style control. Its implementa-
tion will be discussed later in this section.

We provide five basic stroke operations, add, move, re-
size, recolor, and delete:

• Add: add a new stroke at a random location.

• Move: move a stroke to a neighboring position.

• Resize: slightly perturb the size of a stroke.

• Recolor: slightly perturb the color of a stroke.

• Delete: delete a stroke.

At each iteration, one of these operations is randomly se-
lected and performed on S, producing a hypothetical update
S′. The five operations may be associated with predefined
probabilities for selection, such as {0.5, 0.3, 0.1, 0.0, 0.1},
depending on the intended rendering style. Basically, only
an operation that reduces f is accepted and allowed to up-
date the rendering, that is, replace S with S′. In simulated
annealing, however, even an operation which increases f
may be accepted with the probability of e−[f(S′)−f(S)]/T ,
where T is called the system temperature. The higher the
temperature, the greater the probability to accept a false
move. After each iteration, T decreases by a cooling fac-
tor γ (0 < γ < 1). The role of T is to reduce the chances
of getting trapped in a local minimum in early stages. The
whole iteration process stops after a sufficient number of
consecutive operations have failed, depending on the style
and the image complexity. In essence, our optimization
framework resembles the random-descent algorithms sug-
gested in [29, 16]. Note, however, our algorithm is “less
greedy” (allowing false moves) and thus improves the possi-
bility of finding a better solution in the long run [23]. Also,
unlike previous approaches, it is designed to support a wide
range of stroke-based illustration styles.
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Algorithm 2 Stroke Optimization
1: S := null, T := T0
2: Randomly put Nb strokes in S
3: repeat
4: Choose a stroke operation O
5: s := a stroke associated with O
6: xs := a pixel location associated with O
7: Produce S′ by applying O on S at xs

8: if Eval(s, xs, S, S′, T ) = true then
9: S := S′

10: end if
11: T := T · γ
12: until convergence

We first put random initial strokes on the canvas suffi-
ciently. The number of initial strokes, denoted Nb, may
depend on the rendering style. At each iteration of the
optimization loop, we perform a (hypothetical) operation
on S to produce S′. For ‘add’, we assign the attributes
of a new stroke s centered at a randomly-picked pixel xs.
The stroke color cs is picked from the palette, as the clos-
est one to the color of pixel xs on I . Random pertur-
bation of the stroke color, denoted pc, is allowed in cer-
tain rendering styles (such as traditional paintings) to in-
crease randomness. That is, cs ← cs + pc. The width
and length of the stroke are randomly assigned within the
ranges between some minimum and maximum values (de-
noted [minw,maxw] and [minl,maxl], respectively), that
are proportional to the importance value, M(xs). Depend-
ing on styles, a non-adaptive stroke size may be used in-
stead. The curved path of the stroke follows the direction
map d(x), elongating from xs in both directions up to the
half of its length. With all of these computed attributes,
the new stroke s is inserted in S to produce S′ (and IS′).
In most cases, s is simply ‘overlaid’ on IS , but for water-
color painting, the alpha blending factor (denoted α, where
0 < α ≤ 1) is applied for smooth blending of IS and s. For
‘move’, we randomly pick a stroke s ∈ S, and assign a new
center location xs from its neighborhood, while preserv-
ing all other attributes. The ‘resize’ and ‘recolor’ operation
slightly perturbs the size (width/length) and the color, re-
spectively, of a randomly selected stroke s, centered at xs.
The amount of perturbation allowed depends on the style.
For ‘delete’, a selected stroke is removed from S.

Algorithm 3 Function Eval(s, xs, S, S′, T )
1: if overlap(s,xs, S

′) returns false then
2: Return false
3: end if
4: if f(S′) < f(S) then
5: Return true
6: else if a random number ∈ (0, 1) < e−[f(S′)−f(S)]/T then
7: Return true
8: end if
9: Return false

The legitimacy of the given operation is evaluated by

Eval routine (see Algorithm 3). Using Eq. 7, we check if
f(S′) is lower than f(S). For computational efficiency, this
test is done only in the bounding box of s, denoted B(s).

The overlap constraint is also tested in Eval. It is per-
formed on S′, between the test stroke s and its neighboring
strokes r: ⋃

r∈B(s)

[D(s, ρ(xs)) ∩ r] = φ (8)

where D(s, ρ) denotes the stroke s dilated by the width of
ρ. If the dilated stroke intersects any of the neighboring
strokes, this operation is canceled. Thus, the bigger value
of ρ will enforce a larger interval. The dilation width may
be adaptively defined proportional to the gray-scale pixel
brightness, denoted IB , that is, ρ(x) = ao + bo · IB(x) for
some constants ao and bo. If bo = 0, it is non-adaptive.
Note ρ can be negative, in which case the operation be-
comes an ‘erosion’, allowing some amount of overlap. If
ρ ≤ −maxw, the system allows unlimited overlapping.
The addition of this constraint is crucial in handling a va-
riety of rendering styles, especially, stipple drawing, pen-
and-ink drawing, or mosaics, where the interval between
strokes plays an important role.

6. Results

Our style parameters include Nc (number of colors),
Nb (number of initial strokes), |pc| (amount of color per-
turbation), minw (minimum width), maxw (maximum
width), minl (minimum length), maxl (maximum length),
α (blending factor), σ (blur factor in Eq. 7), ρ (dilation
width in Eq. 8), γ (cooling factor). These parameters may
be set automatically or manually, and are applied to all ren-
dering styles except line drawing. Note that many of them
can be set either adaptively or non-adaptively. Table. 1 con-
tains some rough parameter value ranges suitable for each
of the possible rendering styles, showing that our scheme is
indeed general enough to cover a wide range of illustration
styles. Note that this table merely provides a general sug-
gestion based on our experiments. In fact, there are no clear
cut lines between styles, and any combination of parameter
values may be used to achieve an intended rendering style.
For example, even within the oil painting framework, while
the standard parameter values are suited to produce impres-
sionist style, increasing |pc| gets it closer to expressionist
style, and setting minl = maxl = minw = maxw results
in pointillist style.

Fig. 11 contains various illustration results generated by
our system, from the sample photographs in Fig. 10. Due to
the page restrictions, we show one example for each style.
Fig. 11(a) shows an oil painting style obtained by using
rough, textured strokes. Fig. 11(c) shows some procedu-
ral hatching patterns created by allowing strokes to form

7



Rendering style Nc Nb |pc| minw maxw minl maxl α σ ρ γ

Oil painting high high high low high low high high 0 −maxw high
Watercolor painting medium high low low high low high low 0 −maxw high
Cartoon illustration low high 0 low high low high 1 0 −maxw medium

Pen-and-ink illustration 1 low 0 1 1 low high 1 high > 0 low
Stipple drawing 1 low 0 1 1 1 1 1 high > 0 low

Tile mosaics low low low c c c c 1 low 0 low

Table 1. Recommended parameter ranges for various rendering styles

Figure 10. Sample photographs

angles with the direction vectors. Fig. 11(f) was obtained
from the original picture with the outlines overlaid on it. As
shown in Fig. 11(b), (c), and (f), we can enforce adaptive
or non-adaptive overlap constraints among strokes. Also,
note that line drawings can be naturally mixed with other
rendering styles (see Fig. 11(b), (e), and (f)). All of these
examples (except stippling) use adaptive stroke sizes fol-
lowing the importance map. Fig. 12 shows how the level-
of-abstraction is adaptively controlled by the outline map.
The outline map in Fig. 12(c) is obtained by applying dif-
ferent edge detection parameters for each face, affecting the
final illustration accordingly (see Fig. 12(e)). In our cur-
rent implementation (on a 3GHz PC), the rendering time
varies widely, ranging from the order of tens of seconds to
tens of minutes, depending on the style, image size, and
the image complexity. In general, stippling (small stroke
size) and mosaics (strong constraints on stroke shape and
overlapping) converge slowly. Possible future extensions to
expedite the process include maintaining a candidate set of
pixels (or strokes) to choose the next move from, and/or in-
corporating some style-specific heuristics.

7. Conclusions

We have presented a comprehensive, and unified frame-
work for automatically generating various styles of stroke-
based illustrations from photographs, which also supports
adaptive control of the abstraction level while preserving
important features. To support a broad class of illustra-
tion styles, the system provides a number of parameters that
can be easily tailored to the target style, either adaptively or
non-adaptively. From technical point of view, we proposed
several new techniques to effectively achieve our goal, in-
cluding edge painting, adaptive bilateral filter, color selec-
tion algorithm, and stroke optimization framework based on
simulated annealing. The experimental results show that
our system successfully produces high-quality illustrations
from arbitrary photographs in a wide range of styles.
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Figure 11. Various illustrations generated by our system
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