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Photo Aesthetics Analysis
via DCNN Feature Encoding

Hui-Jin Lee, Ki-Sang Hong, Henry Kang, and Seungyong Lee

Abstract—We propose an automatic framework for quality
assessment of a photograph as well as analysis of its aesthetic
attributes. In contrast to the previous methods that rely on
manually designed features to account for photo aesthetics, our
method automatically extracts such features using a pre-trained
deep convolutional neural network (DCNN). To make the DCNN-
extracted features more suited to our target tasks of photo quality
assessment and aesthetic attribute analysis, we propose a novel
feature encoding scheme, SVM-driven sparse restricted Boltz-
mann machines (SVM-SRBM), which enhances sparseness of
features and discrimination between target classes. Experimental
results show that our method outperforms the current state-of-
the-art methods in automatic photo quality assessment, and gives
aesthetic attribute ratings that can be used for photo editing. We
demonstrate that our feature encoding scheme can also be applied
to general object classification task to achieve performance gains.

Index Terms—photo aesthetics, aesthetic attributes, deep con-
volutional neural network, feature encoding, restricted Boltz-
mann machines.

I. INTRODUCTION

ITH the rapid advances in digital image acquisition
W and distribution technology, a massive supply of pho-
tographs are now readily available to ordinary users. Creating,
editing, and sharing photographs have never been easier,
which also led people to have increasingly higher expectations
on the quality of images that they routinely use. In order
to obtain aesthetically pleasing photographs, they often turn
to high-quality photo acquisition devices and editing tools.
However, generating such a visually appealing photograph also
requires understanding and applying a set of complex aesthetic
principles in the process of photo acquisition and/or editing.
Unfortunately, it takes ordinary users significant training and
experience to master such knowledge and skills.

In recent years, the research community has addressed
this issue by developing ways to provide automatic photo
quality assessment. As shown in Fig. 1, many of them aim
to automatically classify images into simple binary categories
of high quality and low quality [1]-[9]. These approaches are
common in that they first define a set of image features that
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they assume to affect the aesthetic quality of photographs, then
design some mathematical models to extract them. Such hand-
crafting of features, however, is not only difficult but often
insufficient to account for the full, complex nature of photo
aesthetics and therefore could lead to inaccurate assessments.

In an effort to overcome the limitations of such hand-crafted
features, some suggested using generic image features that are
typically used for general image recognition problems, and
successfully gained enhanced performance for photo quality
assessment [10], [11]. Another notable approach to automate
the process of selecting and modeling image features involves
deep learning, in particular, using the deep convolutional
neural networks (DCNN) that have been trained on a large-
scale image database [12]-[14] to obtain more accurate photo
quality assessment than the conventional approaches listed
above. These techniques based on automated feature modeling
generally perform well in terms of judging whether the given
photograph is aesthetically pleasing or not, but not so much
in terms of explaining why.

In this paper, we build on and extend the deep-learning
based approach, first to further improve on the accuracy of
photo quality assessment, and second to not just stop at
evaluating the photo quality but explain the reasons for such
evaluation (Fig. 1), and thereby provide much more useful
information and guidance for the user in properly selecting
and/or editing target images. Thus, the objective of our system
is two-fold: to classify a given photo into a high or low quality
category at a high rate of accuracy, and also to associate the
photo with a proper set of descriptive aesthetic attributes, such
as Motion Blur, Rule of Thirds, and so on.

Rather than directly using the features extracted from the
pre-trained DCNN, we develop a new encoding scheme to
generate a set of customized features tailored to a specific
photo classification task. In particular, we employ restricted
Boltzmann machines (RBMs) [15] and use the information
obtained from the support vector machines (SVMs) [16] for
discrimination between classes, and the sparsity modeling [17]
for sparseness of features. We call this scheme SVM-driven
sparse RBM (SVM-SRBM). As will be shown via various
experimental results, our method outperforms the state-of-the-
art approaches in terms of both of our photo analysis tasks:
(1) photo quality assessment and (2) analysis of aesthetic
attributes, and can provide valuable guidance in many appli-
cations including photo editing.

The main contributions of our work are summarized as
follows:

o« We propose a novel framework to perform automatic

photo quality assessment as well as analysis of the
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Fig. 1. Example photographs having (Left) “high quality”, (Middle) “low quality”, and (Right) visual attributes of “motion blur” and “rule of thirds”. Our
system classifies photographs into one of the two classes (high and low quality) and also analyzes five visual attributes on each photograph.

aesthetic attributes in a unified fashion.

« We develop a novel feature encoding scheme based on
RBM, called SVM-SRBM, which helps improve the
photo assessment accuracy via enhanced feature sparsity
and class discriminability.

« We show that our system delivers better performance than
the state-of-the-art photo quality assessment techniques in
classification accuracy.

o« We demonstrate that our system provides meaningful
analysis on photo aesthetic attributes to assist photo
selection/editing.

o We demonstrate that our feature encoding scheme has
effectiveness on other classification tasks, such as general
object classification.

II. RELATED WORK
A. Photo Quality Assessment

In the task of photo quality assessment, binary classification
has often been used, that is, determining whether the given
photo is of aesthetically high quality or low quality. Tong
et al. [6] used a combination of low-level features such as
contrast, blurness, etc. to perform such two-fold classification.
However, with the realization of the subjective nature of photo
aesthetics, researchers started to use more high-level semantic
features such as simplicity, familiarity, balance, etc., resulting
in a more accurate classification [2], [5]. Later approaches [3],
[7], [8] further improved the classification accuracy by con-
centrating their analysis on the most important region in the
photograph, which typically contains the subject.

Bhattacharya et al. [1] presented an interactive system to
perform analysis of photographic quality and thereby pro-
vide informed aesthetic suggestions for the task of image
recomposition. Aydin et al. [18] developed a photo aesthetic
analysis system that generates perceptually calibrated ratings
for five aesthetic attributes (sharpness, depth, clarity, tone, and
colorfulness), that can be used to provide aesthetic feedback
in subsequent photo editing. All of these methods described
so far are common in that they select some image features that

are believed to influence the photo aesthetics the most, based
on common photographic rules or intuition, then model them
as some mathematical formulas so they can be extracted and
used as the basis for quality assessment.

A limitation of using such hand-crafted features comes
from the complex nature of photo aesthetics, which makes
it difficult for only a handful of high-level features to fully
describe. Marchesotti et al. [10] thus proposed using generic
image descriptors such as Bag-of-Visual-Words (BOV) and
Fisher Vector (FV) for the aesthetic evaluation of photographs.
More recently, deep convolutional neural network (DCNN)
was used to automatically extract aesthetic features [13], [14],
and achieved improved accuracy of photo quality assessment
over the previous techniques that use hand-crafted features
or generic image descriptors. These methods however do not
provide detailed aesthetic feedback or analysis for the users.

B. Feature Encoding Using RBM

Recently, deep learning based on deep convolutional neural
networks (DCNN) has shown remarkable performance in
image classification tasks [19], [20]. However, learning DCNN
typically requires a large number of annotated image samples
for estimating millions of parameters. The classification tasks
that are needed in our photo aesthetic analysis come with
relatively less amount of training data. Although directly
using features extracted from a pre-trained DCNN on a large
database achieved enough classification accuracy in the task
of photo quality assessment [14], these features might not
necessarily be suited for photo aesthetic analysis. We address
this issue by way of feature encoding based on a novel
Restricted Boltzmann machine (RBM) model designed to
customize those features for our photo aesthetics analysis.

RBM [15] is a generative stochastic neural network, and has
been applied to many tasks including dimensionality reduction,
feature encoding and classification. They can be trained in
an either supervised or unsupervised fashion, and efficiently
via the gradient-based contrastive divergence algorithm [21].
Supervised RBM training [22]-[25] allows for significant
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performance enhancement in classification. These methods
aim to achieve performance gain by focusing on either feature
sparsity or mathematical feasibility. Unlike other supervised
RBMs, our RBM model encodes sparse and discriminative
features in order to improve classification accuracy based
on mathematical feasibility provided with the support vector
machine (SVM).

III. CONSTRUCTION OF AESTHETIC FEATURES

In this paper, we focus on two types of classification tasks:
1) classifying a given image into high or low quality, and 2)
identifying which among possible aesthetic attributes, such as
Motion Blur, Rule of Thirds, and Shallow DOF, should be
associated with the image. Each task requires a proper set
of image features to train its own classifier. Fig. 2 illustrates
the overall process, which consists of extracting features from
pre-trained DCNN (Section III-A) and encoding them for the
target task with the proposed method (Section III-B). Section
III-C describes how to use those encoded features to train the
classifiers which will then be used to predict aesthetic classes
of new images.

A. Feature Extraction from Pre-trained DCNN

We employ as a general feature extractor the deep convolu-
tional neural network (DCNN) trained on a 1.2 million subset
of the ImageNet dataset [26]. Recently, three DCNN archi-
tectures (CNN-F, CNN-M and CNN-S) were proposed [20],
considering the trade-off between accuracy and speed. Their
architectures are similar to the AlexNet [19], and contain five
convolutional layers (C1~C5) and three fully-connected layers
(FC1~FC3). The output of the last layer is followed by a
1,000-way Softmax that produces a distribution over the given
1,000 image categories. However, some factors are different
from the AlexNet, such as the receptive field size and the
convolution stride, etc.

In our work, we adopt the pre-trained CNN-S model (Fig. 2)
which gives better performance than others. For a given
RGB image I;, we remove FC2 and FC3 layers of the
pre-trained CNN-S, and extract 4,096-dimensional activations
from the FC1 layer!. By normalizing those activations as
DCNN features x; for I;, we construct the training set X =
{(x1,91), (x2,Y2), ..., (XN, yn)}, Where y; € {1,2,...,C} is
a class label for C classes of the given classification task.

B. Encoding DCNN Features using SVM-SRBM

Features extracted from the pre-trained DCNN (Sec-
tion III-A) are not necessarily suited to photo aesthetic anal-
ysis, since the DCNN was trained on 1,000 general object
classes. This issue can be addressed by way of feature encod-
ing. The RBM is one of the efficient feature encoding methods,
which allows for both supervised and unsupervised training. In
this paper, we propose a newly designed RBM model named

'We found in our experiments (Section IV) that encoding features of FC1
works better than FC2 for our target tasks. Although FC2 worked well for
the original ImageNet classification as the closest layer to the last layer with
1,000-way Softmax, it could be less suitable than FC1 for other applications.

SVM-driven sparse RBM (SVM-SRBM) (Fig. 3), and use it to
customize DCNN-extracted features for the target classifica-
tion tasks of photo aesthetics analysis in a supervised fashion.
We first review RBM as well as cross-entropy-regularized
RBM, then present the details of SVM-SRBM.

1) Restricted Boltzmann Machines: The RBM [15] is a
bipartite graphical model that represents a joint distribution
over an input vector X = [z1,...,zz]7 and a hidden vector
h = [hy,...,hp]T, where h can be viewed in our work as
an encoded feature vector. The joint probability of the RBM
takes the form

plx ) =  exp(~E(x, b)) n

where E is an energy function, and Z =) __, ., e EG R g
the partition function. The energy function E of x and h is

defined as
E(x,h) = —h"Wx — b’h — ¢Tx, )

where W € RP*L b ¢ RPX1 ¢ € REX! are parameters of
the RBM. The probability of x is defined by the sum over all
possible hidden vectors:

p(x) = 7 3 exp(—E(x, ). G
h

Since the RBM has no intra-layer connections, the input unit
activations are mutually independent given the hidden unit
activations. That is, the conditional probability of the input
vector x, given the hidden vector h, is

L

L
p(xlh) = [[p(aih) = [[ o> waiha + ). )
=1 d

=1
Likewise, the conditional probability of h given x is

D

D
p(hlx) = Hp(hd|x) = H U(Z w4171 + ba), &)
d=1 !

d=1

where o(r) = (1+e")7! is the sigmoid function. The RBM
is trained by minimizing the negative log-likelihood of training
set X with respect to {W, b, c}:

argmin — log p(x). (6)
{W,b,c} XGZX

Although the gradient is intractable to compute, contrastive
divergence (CD) [27] can be used to approximate it. The
algorithm performs Gibbs sampling and a gradient descent
procedure to update parameters. Thus the RBM is efficiently
trained with this CD algorithm, and the parameters are updated
using the following update rules:

Awg o« (xiha)o — (xiha)T,
Abd X <hd>0 — <hd>Ta
Acy o< (m1)o — (w1)7, @)

where (-) is defined as the average over the set of training
examples, and T is the number of the Gibbs sampling.
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Fig. 3. Structure of a SVM-SRBM.

2) Cross-entropy-regularized RBM: RBMs form the latent
structure h of input data by minimizing only the negative
log-likelihood of training set X (Eq. (6)). However, given the
nature of an encoding task, it may not be a desirable approach.
The cross-entropy-regularized RBM [17] is designed to adjust
feature activations of the hidden vector. For this, the cross-
entropy loss regularization is defined to minimize the differ-
ence between the hidden vector h and a target vector f. The
optimization problem with this regularization is as follows:

N

arg min — Z log p(x;)
{W,b,c} i—1

D
) =AY H(fias hia), ®)
d=1

where f; 4 and h; 4 are the d-th target and hidden unit
activations of i-th data, respectively, and H(f; 4,hia) =
—fialogh;q — (1 — fi,a)1log(1l — h; 4) is the cross-entropy
loss between these activations. The update rule of the RBM
in Eq. (7) is modified as follows:

€))

where zg = (1—a)hq+afy is the weighted sum of the hidden
and target activations. When o = 0 or hy = f4, this update

Aw g < (x124)0 — (xiha)T,

rule is the same as the original update rule of the contrastive
divergence.

3) SVM-driven Sparse RBM: Our goal is to encode DCNN
features into suitable features for a target classification task,
such as classifying high/low qualities (binary classes) or
aesthetic attributes (several classes). We aim to learn the RBM
so that it enables encoded features to share the class-wise
properties obtained in a supervised fashion (Fig. 3). We use
the cross-entropy-regularized RBM method [17] that promotes
target properties through regularization. To control hidden
vectors with the class-wise conditions, we rewrite Eq. (8) as
follows:

D
arg min — Zlogp X;) — /\ZH(fg(i)7d,hi7d), (10)
d=1

{W,b,c} i—1

where g(i) € {1,2,...,C} is the class label of the i-th training
data, and our model is manipulated with target vectors for
C classes. It is essential to properly define target vectors
for given classes, as it directly affects the quality of feature
encoding. To design the class-wise target vectors, we consider
two kinds of properties that are important in a classification
task: discrimination and sparseness.

a) Discrimination: Designing features that encourage
proper discrimination (separation) of target classes is crucial
in classification [28], [29]. In order to model target vectors
with good discrimination characteristics, we use the support
vector machine (SVM) which is a discriminative classifier.
We assume that a target vector can be modeled as a linear
combination of sparse bases representing parts of a given
training set. Given a basis matrix A = [ay,ag,...,ax]? €
RDxK consisting of K basis vectors, the class-wise target
vectors f. are modeled by finding the set of coefficients

[Be.1s ey s beic])T that have good discrimination
characteristics for each class c¢. We thus pose the objective
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function as follows:
argmax w. (A®.) + z. — b
e C- c’eC\c

where w, € RP*! and z. are parameters of the SVM classifier
learned to properly classify training data of the c-th class. For
each target vector f, = A®,, the first term is the classification
score for the classifier of the corresponding class, and the
second term is the average classification score for classifiers of
other classes. From this process, we obtain ®. that makes tar-
get vector f, fit for the classifier of the corresponding class but
distant from classifiers of other classes. This objective function
can be easily optimized by the gradient ascent procedure with
respect to the coefficient vector ®..

b) Sparseness: Sparse representations have a number
of theoretical and practical advantages. They are particularly
beneficial for classifiers, because they make classification
easier in higher dimensional spaces [30]. We thus further
transform the target vector f,. to have the sparseness property
by applying the sparsity modeling [17]. Each unit activation
fe,a in a target vector f. is transformed as:

fea = (R(fea,£e) /M1

where R(f.q,f.) assigns a value from O to 1 based on the
rank of f. 4 in f.. That is, it gives a value of O to the smallest
value, and 1 to the largest. The target mean p (0 < p < 1)
creates the power-law relationship. If 1 < 0.5, the distribution
of values obtained from R(f. q4,f.) will be positively skewed.
It means only a few values in a target vector f. are high while
most remain low.

c) Iteration: Our SVM-SRBM model (Eq. (10)) and
target vectors f (Eq. (11) and Eq. (12)) are updated several
times, alternating with each other. When updating the target
vectors f, computing the basis matrix A and SVM parameters
{We,, z.} in Eq. (11) requires the encoded feature (hidden)
vectors h; of all training data x;. At first, these encoded
vectors h; are obtained from a randomly initialized SVM-
SRBM model (using random {W,b,c} values). Given h;,
we learn the SVM parameters {w,, z.} so that h; would find
proper classes, and also construct the basis matrix A using
non-negative matrix factorization (NMF)? [31]. Once the target
vectors are constructed using Eq. (11) and Eq. (12), we update
SVM-SRBM model with these target vectors using Eq. (10),
then obtain new h; from the updated SVM-SRBM model.

d) Class-wise multiple target vectors: So far, we have
assumed a single target vector for each class. However, most
classes have intra-class variations, such as viewpoint, scale,
and light condition changes. To incorporate such intra-class
variations, we model M target vectors for each class, so that
each class can have M clusters of representative features. We
cluster, for each class, the encoded vectors h; of all training
data x; into M groups using K-means clustering, and thereby
obtain a total of G = C x M groups for all C classes.
Accordingly, in Eq. (10), the label g(i) of a corresponding
target vector for each training data x; is extended to one of
G group labels.

12)

2Since NMF produces non-negative sparse bases from given data, the
obtained bases can be used as the part-based representations.

> wh(A®) + 2o, (11)

Fig. 4 illustrates which properties the modeled target vectors
capture for the respective classes. The left of Fig. 4 shows
training photos whose encoded features have the closest dis-
tances to the three target vectors® modeled for the respective
classes. In High Quality class for photo quality assessment,
the target vectors capture three types of properties: geometric
patterns, nature with high dynamic range, and well-focused
persons. In Motion Blur class for aesthetic attribute analysis,
the target vectors capture three types of blur: a blur by a
circle motion, a blur by a moving object and a blur by a fast
movement. To test the robustness of our method, we conducted
the same experiment described above on all the test photos. As
shown on the right of Fig. 4, we observed that most of the test
photos closest to a given target vector were well matched with
those of the training photos. It means feature encoding learned
from the training set was effectively transferred to the test
set, and features of test photos were encoded similarly to the
matching training photos. More examples of the representative
images for different target vectors can be found in the supple-
mentary material. Table I illustrates enhanced classification
performance via using multiple target vectors.

To summarize the overall procedure to develop our SVM-
SRBM including the concept of class-wise multiple target
vectors: (a) Parameters {W,b,c} of the SVM-SRBM are
randomly initialized; (b) The encoded features h; of all
training data x; are obtained from the SVM-SRBM,; (c) All h;
are clustered into G groups; (d) K sparse bases and classifiers
of G groups are constructed using all h;; (e) G target vectors
are modeled using Eq. (11) and Eq. (12); (f) The SVM-SRBM
is trained using Eq. (10). The steps (b) ~ (f) are repeated until
the termination condition (e.g., the number of iterations) is
met.

C. Classifier Training with Encoded Features

Given a 4,096-dimensional DCNN feature x; extracted from
an image [I;, we encode x; into a feature vector h; of the
same dimension using the SVM-SRBM learned as described
in Section III-B3. We use this encoded feature h; as an
aesthetic feature of I;, and construct the training set H =
{(hl, yl), (h27y2), . (thyN)}s where y € {1, 2, ..., C} are
class labels. For photo quality classification (high or low,
C = 2), we train a single SVM classifier on H, which
separates a given training data into proper two classes. For
multi-class classification such as C' aesthetic attributes, we
train a 1-vs-rest SVM classifier for each attribute, and thereby
obtain total C classifiers. To train the classifiers, we use the
L2-regularized L1-loss SVC model in the LIBLINEAR [16].

IV. EXPERIMENTS

We conducted experiments to evaluate the performance
of our SVM-SRBM in photo quality assessment (Section
IV-A) and aesthetic attribute analysis (Section IV-B). We
also analyzed the correlation between photo quality and
aesthetic attributes (Section IV-C), and the effectiveness of

3In Section IV, using three target vectors for each class achieves best
classification performance both in photo quality assessment and aesthetic
attribute analysis.
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Fig. 4. Training and test photos with the closest distances to the three target vectors modeled for the respective classes.

our SVM-SRBM on a different classification task, general
object classification (Section IV-D). We used the pre-trained
DCNN provided in the MATLAB toolbox for Convolutional
Neural Networks (CNNs), called MatConvNet [32]. We set the
parameters of SVM-SRBM as follows: the number of bases
K = 50 and the target mean p = 0.1. Our SVM-SRBM
model and target vectors were updated through five iterations.
Additional discussions of our experiments were presented in
Section IV-E, and more example images can be found in the
supplementary materials.

A. Photo Quality Assessment

The goal of our first classification task, photo quality
assessment, is to determine whether the aesthetic quality of
a given photo is high or low. We used the AVA dataset for
this experiment and compared our classification accuracy with
other related methods.

1) AVA Dataset: Aesthetic Visual Analysis (AVA) [11] is
a large-scale dataset constructed for photo aesthetic analysis,
and contains more than 250 thousand images from DPChal-
lenge.com. Each image is tagged with a distribution of scores
voted by different viewers, which ranges from one to ten. We
computed the average score using the distribution and used it
as the ground truth aesthetic quality scores. We followed the
experimental settings in the previous works [9], [14] that had
used the same dataset for image quality assessment. Using
the quality scores, top 10% and bottom 10% of the photos
were marked as high and low quality classes, respectively,
and the remaining ambiguous photos were excluded in the
experiments. For each class, half of the photos were randomly
selected for the training, and the other half were used for the
test. To address the question on random splitting of training
and test data in AVA, we tested our method 5 times with
randomly split data, and obtained average accuracy.
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2) Classification Accuracy: To check the effectiveness of
our encoding method, we first compared several settings of our
method with the baseline that uses only the features extracted
from the pre-trained DCNN model (CNN-S) without any
encoding (Table I). In the baseline, “FC1” and “FC2” denote
image features extracted from the FC1 and FC2 layers of the
CNN-S, respectively. “FC1 + SVM-SRBM” means features
from the FC1 layer are encoded with our SVM-SRBM. Also,
“T17, “T3”, “TS” and “T10” denote the number of target
vectors for each class. The result shows that feature encoding
with our SVM-SRBM achieves improved accuracy in photo
aesthetics assessment over directly using the DCNN features
(FC1 and FC2). Using multiple target vectors to exploit intra-
class variations in each class gave a better result than using a
single target vector, where three target vectors performed best.

Table I also compares our classification accuracy with other
feature encoding methods. Our SVM-SRBM was developed
on RBM model, thus we tested other RBM-based methods
for comparison purposes: Standard RBM [15], Cross-entropy-
regularized RBM [17], and BBP RBM [23]. As we did
with ours, we applied these encoding methods to DCNN
features extracted from the FCI1 layer. We also tested with
a CNN weight transfer approach (T-CNNW) [33] in which
the pre-trained parameters of C1~C5 and FC1 layers were
fixed, and only the FC2 layer was re-trained for the target
task with back propagation*. The test results show that our
SVM-SRBM performed best among all of these methods. In
particular, the fact that our model was directly learned from
parameters of the SVM classifier, we believe, gives an edge
over others, including T-CNNW that focuses on minimizing
the classification error of the Softmax classifier.

Table II also shows performance comparisons with other
existing photo quality assessment methods [2]-[5], [10], [12]-
[14], [34]°. Note that DCNN-based methods [12]-[14], [34]
deliver higher accuracy than others. Dong et al. [14] achieved
an additional performance gain by using a spatial pyramid
(SP) to combine features from different regions. The last two
columns of Table II show that our method (FC1 + SVM-
SRBM-T3) outperformed DCNN-based methods [12]-[14],
[34], and also that we achieved the best performance by
employing a spatial pyramid (Ours + SP). Additionally, we
tested our method on a whole set of successfully downloaded
AVA images® (instead of just top 10% and bottom 10% of the
photos), and obtained 81.02% accuracy (cf. 83.44% for top
10% and bottom 10%).

4Parameters of the FC2 layer were updated with an initial learning rate of
0.1 which is lowered by 1/10 after three epochs, and with a momentum of
0.9. The numbers of training epochs and the batch size were set to 15 and
30, respectively. The error rate of the training data was converged within a
few epochs (5~6).

5The accuracy values in Table II were quoted from the corresponding
papers. Experimental setting in three methods [10], [12], [34] was different
from our setting. According to Tian et al. [13], the performance of Lu et al.
[12] on the same setting as ours (top and bottom 10% rated images) was
roughly 74.54%.

5The current website disallows acquiring the entire set of AVA images. This
issue was also mentioned in [9].

B. Photo Aesthetic Attribute Analysis

The goal of our second classification task is to identify
descriptive aesthetic attributes for a given photograph. While
theoretically there is no limit in the number of attributes
our model can handle, we chose five aesthetic attributes for
experimental purposes: Complementary Colors, Motion Blur,
Rule of Thirds, Shallow DOF, and Vanishing Point.

1) 5-Style Dataset: In AVA dataset, 14 photographic style
labels are provided for some images. Many of these styles are
related to the camera parameters, such as shutter speed, expo-
sure, and ISO level. AVA dataset provides lists of training and
test images for a style classifier, where the style annotations
are single-labeled for training images and multi-labeled for
test images. For analysis of aesthetic attributes, we selected
five styles from this dataset, and constructed a new dataset
named 5-Style dataset. The selection of the five styles is based
on the aesthetic attributes analyzed in the previous works:
Complementary Colors [3], [9], [35], Motion Blur [2], [5], [9],
[18], Rule of Thirds [1]-[3], [36]-[38], Shallow DOF [2], [3],
[9], [18], except for Vanishing Point which we selected based
on the observation in AVA dataset that photos having this
property are highly likely to be classified as high quality (Fig.
7). The numbers of images associated with these styles are
as follows: Complementary Colors (949), Motion Blur (609),
Rule of Thirds (1,031), Shallow DOF (710), and Vanishing
Point (674).

2) Classification Performance: The test images for this
experiment have multi-labeled class annotations, and we mea-
sured the average precision for each class using the precision-
recall curve. We then used the mean average precision (MAP)
of the five classes to evaluate the classification accuracy. In
Table I, we compared the accuracy of classification based on
our SVM-SRBM features with the baseline DCNN features
(FC1 and FC2). As shown in the table, we witnessed even
bigger performance gain over the baselines compared to the
case of photo quality assessment, which suggests that the pre-
trained DCNN features are increasingly ill-equipped for the
target classification task as the number of classes goes up.
Also, Table I shows that our method outperformed all other
encoding methods in this task as well, and achieved the best
result when combined with the spatial pyramid method (Ours
+ SP).

C. Relation between Photo Quality and Aesthetic Attributes

1) AVA & 5-Style Dataset: Using the classifiers {w,, z.},
c = 1,...,5, that have been learned for the five aesthetic at-
tributes, we can compute a classification score s = wcThi + 2.
of each attribute ¢ for a given photo x;. The score s is
normalized by the sigmoid function o(s) = (1 + e=%)71,
and regarded as the aesthetic attribute score. Fig. 5 shows the
normalized scores of the five aesthetic attributes for example
photos. Fig. 6 shows the results of Top-5 and Bottom-5
ranked photos based on the computed scores for each aesthetic
attribute. The ranked results were remarkably consistent with
the query aesthetic attributes.

Using our aesthetic attribute scores computed for AVA
images, we analyzed how much contribution each aesthetic
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TABLE I
CLASSIFICATION ACCURACY COMPARISON FOR VARIOUS SETTINGS (ON AVA AND 5-STYLES DATASETS).

| Methods

| Feat-dim. | AVA, Accuracy(%) | 5-Styles, MAP(%) |

Baseline, FC1 (w/o encoding) 4,096 78.24 62.28
Baseline, FC2 (w/o encoding) 4,096 81.44 68.99
FC1 + SVM-SRBM-T1 4,096 82.29 74.40
FC1 + SVM-SRBM-T3 4,096 83.44 75.53
FC1 + SVM-SRBM-T5 4,096 83.27 7491
FC1 + SVM-SRBM-T10 4,096 83.15 75.27
FC1 + Standard RBM [15] 4,096 78.08 71.34
FC1 + BBP RBM [23] 4,096 79.72 70.26
FC1 + Cross-entropy-regularized RBM [17] 4,096 82.20 74.20
FC1 + T-CNNW [33] 4,096 81.11 70.07
| FC1 + SVM-SRBM-T3 + SP | 409 | 87.98 | 77.82
TABLE 11

CLASSIFICATION ACCURACY COMPARISON WITH EXISTING METHODS (ON AVA DATASET).

[Methods | [31 [ 141 | [ | [51 [ [0] [ (121 | [34] [ (3] | DCNNAesth [14] | DCNNAesth+SP [14] | Ours | Ours+SP |
[ Accuracy(%) | 61.49 | 68.13 | 68.67 [ 71.06 | 68.55 | 71.20 [ 7541 | 8038 | 7392 8352 [ 8344 | 87.98
Ay
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Fig. 5. Normalized scores of the 5-Style aesthetic attributes for example photographs.

attribute makes to the overall photo quality. For this analysis,
we selected Top-100 photos with the highest scores for an
aesthetic attribute or a combination of aesthetic attributes.
Based on the binary quality label (high or low) on AVA dataset,
we calculated the ratio of high and low quality photos for each
attribute or attribute combination (Fig. 7).

As shown in Fig. 7, Vanishing Point is one of the most
important aesthetic attributes, and the combination of Motion
Blur and Shallow DOF gives the least pleasing results. Rule of
Thirds, as expected, is an important attribute for high quality
photos, but the test reveals that combining it with Shallow
DOF improves the photo quality even more. While Motion
Blur alone does not seem to contribute much for photo quality,
Fig. 7 shows that when it is combined with other properties,
such as Vanishing Point, it could make a positive impact.
While Shallow DOF is generally considered a desirable feature
of a good photograph, Shallow DOF in AVA dataset often
occurs with other attributes (e.g., Motion Blur), and as a result,
pictures with high Shallow DOF could be classified either way
(good or bad quality) due to the influences of other attributes.

These results suggest a variety of possible photo editing
strategies to make a given photograph more attractive. One
obvious strategy would be to edit the given picture to incor-
porate or strengthen an aesthetic attribute that would improve
the aesthetic quality (Fig. 8). As an experiment, we selected
three attributes that our analysis reported to generate high
quality photos, Vanishing Point, Rule of Third, and Rule of
Thirds + Shallow DOF. For a given photograph, we applied
photo editing to change each of these attributes, and compared
the quality scores of two versions with weak and strong at-
tributes. As for Vanishing Point, we generated two photos with
weak and strong vanishing structures by applying cropping
and scaling to an image. For Shallow DOF, we introduced
the effect by applying blur to the background region using
Adobe PhotoShop. Finally, Rule of Thirds property was simply
changed by cropping an image. In all cases, the versions that
have strong desired attributes marked higher aesthetic photo
quality scores.

2) AADB Dataset: Aesthetics and Attributes Database
(AADB) [43] has a more balanced distribution of professional
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false

false

Fig. 6. Top-5 and Bottom-5 ranked images for each aesthetic attribute (on 5-Styles dataset). Each row corresponds to an aesthetic attribute in the order (from
the top) of Complementary Colors, Motion Blur, Rule of Thirds, Shallow DOF, and Vanishing Point. Each image is marked “true” if it is labeled in the
dataset to have the corresponding aesthetic attribute, or “false” otherwise, showing our aesthetic attribute scores are consistent with the ground truth labels in

the dataset.

TABLE III
CLASSIFICATION ACCURACY COMPARISON WITH BASELINE METHODS (ON
AADB DATASET).

[ Methods

[ Quality, AP(%) | 11-Attributes, MAP(%) |
[ Baseline, CNN-S (FCI) \ 66.90 \ 50.60 \
| Baseline, CNN-S (FC2) ‘ 69.27 ‘ 54.44 ‘
[ CNN-S (FCI) + SVM-SRBM | 77.03 | 61.84 |

and consumer photos collected from Flickr, compared to AVA
dataset which mostly consists of professional images. AADB
dataset contains a total of 10,000 images, that are split into
training (8,500), validation (500), and testing (1,000) images.
Each image is annotated with quality and eleven attribute
scores that are averaged by five raters. The eleven attributes
are interesting content, object emphasis, good lighting, color
harmony, vivid color, shallow depth of field, motion blur, rule
of thirds, balancing element, repetition, and symmetry. They
cover traditional photographic principals of color, lighting,

focus and composition.

Since AADB dataset was constructed for rating and ranking
images in terms of aesthetics, it did not provide any binary
classification labels. For images of each class, we re-assigned
binary labels by thresholding scores of the images with a mean
score of each class. In Table III, we compared classification
accuracy with the baseline methods for photo quality (Quality)
and eleven attributes (11-Attributes). The comparison result
shows that our method clearly improves the classification
accuracy over baselines.

To check the relationship between photo quality and this
expanded set of aesthetic attributes, as we did with AVA
dataset, we selected Top-30 photos with the highest scores
for an aesthetic attribute. Based on the binary quality label
(high or low) on AADB dataset, we calculated the ratio of
high and low quality photos for each attribute (Fig. 9). In this
dataset, shallow depth of field is one of the most important
aesthetic attributes, and Motion Blur gives the least pleasing
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Fig. 7. Ratio of high and low quality photos for each aesthetic attribute or
a combination of attributes (on AVA dataset). Also shown below are samples
of images that contributed to the statistics in the green/red dotted boxes in
the graph.

Vanishing Point

Fig. 8. Example images that are edited in various ways to make them visually
more appealing. Green scores indicate better quality after editing. The scores
are obtained from our quality assessment scheme.

results.

D. General Object Classification

We applied our SVM-SRBM model to general object classi-
fication task, and identified that our method can achieve similar
performance gain on this task via enhanced feature sparsity
and class discriminability. We used the a-Pascal dataset for
this experiment and compared our classification accuracy with
other related methods.

10
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60
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40
30
20
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0 i
1 2 3

Fig. 9. Ratio of high and low quality photos for each aesthetic attributes (on
AADB dataset)
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Fig. 10. Failure cases with misclassified labels.

1) a-Pascal Dataset: a-Pascal [39] is datasest created for
classification of 20 visual object classes in a variety of natural
poses, viewpoints, and orientations. The object classes are
people, bird, cat, cow, dog, horse, sheep aeroplane, bicycle,
boat, bus, car, motorbike, train, bottle, chair, dining table,
potted plant, sofa, and tv/monitor. This dataset is split into
training and testing sets, each containing over 6400 images.

2) Classification Performance: To evaluate the classifica-
tion accuracy, we measured both “overall” and “mean per
class” accuracies. The “overall” accuracy is the ratio of
correctly classified test images over total test images, and the
“mean per class” accuracy is the mean of class-wise classifi-
cation accuracies. In Table IV, we compared the classification
accuracy of our method with other related methods. Our base-
lines are DCNN-features extracted from pre-trained models
[19], [20] on the large database (ImageNet), and “CNN-S
(FC1) + SVM-SRBM” means DCNN-features extracted from
the FC1 layer of the CNN-S model are encoded with our SVM-
SRBM. As shown in the table, using DCNN-based features
achieved significant performance gains over low-level and
DBN-based features, and using features encoded by our SVM-
SRBM improved the classification accuracy over the baselines
and other related method.

E. Discussion

1) Computation Time: We implemented our system using
MATLAB on a PC with Intel Core(TM) i7 4770 @ 3.40
GHz, 32GB RAM and NVIDIA GeForce GTX 650 Ti. We
also used CUDA to extract features from the pre-trained
DCNN. The computation time for constructing target vectors,
SVM parameters, and sparse bases, took about 34.6s, and the
training time of our SVM-SRBM model was about 54.4s. For
a given 224 x 224 color test image, it took 90ms to extract
features from the pre-trained DCNN, and 8ms for feature
encoding with our SVM-SRBM.

2) More Deep Architecture: Our SVM-SRBM model can
encode DCNN-features extracted from any deep architectures.
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TABLE IV
CLASSIFICATION ACCURACY COMPARISON WITH EXISTING METHODS (ON
A-PASCAL DATASET).

[ Low-level Features |

[ Methods [ Overall (Mean Per-class) (%) |
Farhadi et al. [39] 59.4 (37.7)
Wang et al. [40] 62.2 (46.2)

[ DBN-based Features |

[ Methods [ Overall (Mean Per-class) (%) |
Chung et al. [41] 59.4 (37.7)
Mittelman et al. [42] 63.2 (46.1)

[ DCNN-based Features |

[ Methods [ Overall (Mean Per-class) (%) |
AlexNet [19] 75.8 (64.7)
CNN-S [20] 77.9 (67.3)
CNN-S (FC1) + T-CNNW [33] 77.1 (65.5)
CNN-S (FC1) + SVM-SRBM 82.1(71.2)

For an experiment, we applied our SVM-SRBM to more deep
architecture, the vgg-verydeep-19 (with 19 layers) [44]. For
5-Style dataset (Section IV-B), the pre-trained vgg-verydeep-
19 model reached 71.48% MAP, which is better than CNN-S
model. By encoding features extracted from the vgg-verydeep-
19 with our SVM-SRBM, we achieved the improved perfor-
mance with 77.14% MAP, compared to 75.53% using CNN-
S model. Similarly, for a-PASCAL dataset (Section IV-D)
the pre-trained vgg-verydeep-19 model reached 81.8% overall
classification accuracy, which is much better than other deep
architectures (with 7 layers). By encoding features extracted
from the vgg-verydeep-19 with our SVM-SRBM, we could
achieve the best performance on this dataset with 84.10%
overall classification accuracy.

3) Using Pre-trained DCNN: Instead of using a pre-trained
DCNN, we could have trained a DCNN ourselves. The benefit
of using a pre-trained DCNN comes from the fact that the
size of the ImageNet dataset (15 million images) for image
classification is significantly larger than that of the AVA
dataset (250 thousand images) for aesthetics analysis, and thus
the features learned from ImageNet would have a stronger
representation power. In fact, Lu et al. used AVA dataset for
self-training [12] or fine-tuning [34] their DCNNs, while Dong
et al. [14] used features directly extracted from a DCNN
that has been pre-trained with ImageNet dataset. Even though
Dong et al. simply used a traditional DCNN, Table II shows
that higher aesthetics analysis accuracy could be achieved than
both self-trained and fine-tuned DCNNs of Lu et al. Since it
is a huge task to build a dataset as large as ImageNet, we
focused our efforts on developing and training a new encoding
scheme which generates a set of customized features tailored
to a specific photo classification task.

4) Limitations: Fig. 10 shows failure cases of our system.
The classification fails when the image does not contain
the major features represented by the target vectors for the
class that the image actually belongs to. In addition, features
extracted from DCNN may have captured some semantic
scene elements, such as car, horse, pasture, etc. While these
semantic elements could provide useful information for our

classification tasks (e.g., car - Motion Blur), they can also
mislead when the relevant aesthetic attributes are not strong
enough in the image.

V. CONCLUSION

We have presented a novel method to perform both photo
quality assessment and analysis of aesthetic attributes in a uni-
fied fashion. Using a pre-trained DCNN, our method automat-
ically extracts relevant high-level features that account for the
aesthetics of a given photograph. In particular, we developed a
novel SVM-SRBM feature encoding method to customize the
DCNN-extracted features to our two classification tasks and
thereby improve the classification accuracy. We have demon-
strated via experimental results that our method outperforms
the state-of-the-art techniques in both classification tasks, and
could provide valuable guidance in an application of image
editing. In addition to aesthetic analysis, we have applied our
method to general object classification task, and demonstrated
that our method can achieve similar performance gain. In-
teresting future research direction is visualization of image
features modeled by our photo aesthetic analysis system [45].
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