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Abstract

A novel livewire algorithm for image segmentation is
proposed. Based on a generalized graph formulation, our
algorithm incorporates the internal energy of the boundary
curve while preserving the principle of optimality, resulting
in better segmentation results in noisy images.
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1 Introduction

Image segmentation techniques can be generally clas-
sified into manual, semi-automatic, and fully automatic
ones. Manua segmentation, while good at object recog-
nition, takes excessive amount of time and effort for precise
boundary capture. Fully automated methods, while much
more efficient, often fail to recognize the object of interest,
resulting in inaccurate segmentation. On the other hand,
semi-automatic techniques provide both high efficiency and
accuracy by allowing users to do the object recognition
and letting computers capture the fine details. Thus, semi-
automatic image segmentation techniques are of practical
use for various applications including medical image anal-
ysis, digital image composition, key extraction, etc.

While there are a variety of techniques of this category
including region growing [1], snakes[17], livewire[21, 12],
graph-cuts [5, 6], etc., our main focus in this paper is on
the boundary-based techniques such aslivewire and snakes.
Snake, also called active contour, is an energy-minimizing
curve which deforms to the target boundary from the ini-
tial curve specified by the user [17]. The energy is de-

fined by a combination of internal force such as the cur-
vature at the point and external forces such as its image
gradients. One problem of snake is that since the deforma-
tion stage is purely automatic, the final shape of the bound-
ary is hard to predict or control. If the resulting bound-
ary is not acceptable, the whole process must be repeated
with anew initia curve, or the computed boundary must be
post-edited either manually or by adding new constraints
interactively. livewire segmentation technique, based on
minimum-cost path search from a single seed point on a
graph, provides much tighter control to users since the de-
sired path can be interactively ‘selected’ from multiple can-
didate paths [21, 22, 12, 13, 16]. Also, path digression is
handled more effectively by allowing interactive placement
of a new seed point from which to start the new boundary
segment.

Livewire, however, has a limitation of its own. The cost
function used in livewire graph search agorithm is only
based on external features in the input image, such as gra-
dient magnitudes. That is, there is no internal curve en-
ergy term used in existing livewire algorithms such as cur-
vatures of the points on the boundary curve. Thus, unlike
snakes, livewire does not produce a smooth boundary curve
in which the interna energy is minimized, making livewire
technique sensitive to noises. One might think of simply in-
corporating the internal energy such as curvature term into
the cost function of the existing livewire framework, but as
will be explained in the next section, it would violate the
principle of optimality in the underlying shortest-path algo-
rithm, and thus the optimality of the resulting path would
no longer be preserved.

In this paper, we propose anew livewire algorithm called
G-wire, which is capable of handling the internal energy as
well as the external energy of the boundary curve. Based
on a generalized multi-dimensional graph formulation, our



algorithm allows both internal and external features to be
incorporated into the cost function and handled in a uni-
fied manner. Given the new cost function and the gener-
alized graph, G-wire successfully works without violating
the principle of optimality, thus preserves the optimality of
the computed path. As will be shown in the experimental
results, our algorithm produces good segmentation results
even in noisy images while retaining al the merits of the
original livewire algorithm. Also, it provides fast enough
feedback since we localize the search domain to expedite
the segmentation process. The remainder of this paper is
organized as follows. In Section 2, based on the detailed
comparison of livewire and snake, we derive our new cost
function for the graph search. In Section 3, we present the
new graph formulation and the algorithm, as well as the
search domain localization strategy. Sections 4 shows some
experimental results, and Section 5 concludes this paper.

2 Livewirevs. Snake

After thefirst debut of snake[17], there have been anum-
ber of its variants developed so far, including finite element
snakes, B-spline snakes, Fourier snakes, level-set snakes,
etc[9, 26, 10, 19, 8, 4, 18, 7, 23]. In genera, a snake mod-
els a contour as atime-varying curve v(s) = (x(s),y(s))
where s representsthe arc length. Once asnake curveisini-
tialized by the user, the curve isdeformed to find the desired
boundary in an attempt to minimize the following energy
functional.

Esnake = /0 Eing (V(S)) + Eext (V(S)) ds (1)

where E;,; represents the internal curve energy due to
bending or discontinuities, and E..; is the externa energy
mainly based on image forces. Although the image forces
can be drawn by various events such as lines, edges, ter-
minations, etc., we will focus on edge features like gradient
magnitudes, which usually constitute the most dominant ex-
ternal force. Theinternal spline energy is written as

Eint - (OZ‘VS(S)F + ﬂ|vss(5)|2) (2)

where the subscripts indicate derivatives with respect to
s. The first-order term increases where there is a gap
in the curve, thus controlling the continuity of the curve.
The second-order term gets large where the curve bends
abruptly, which is essentially equivalent to the curvature of
the curve. Accordingly, the values of o and 3 control the
extent to which the contour is allowed to stretch or bend at
apoint. Especialy, large 3 value lowers the curvature val-
ues, resulting in a smooth snake curve even in anoisy input
image.

While the snake always produces a single solution which
may not match the target boundary, livewire allows a user

to select the most suitable curve segment from multiple
choices, providing better controllability and predictability.
Finding the target boundary is much easier with livewire
since it works as if the curve is automatically snapped to
the target boundary as the user moves the cursor around it.
The livewire algorithm is essentially a graph-based single-
source shortest path algorithm [11]. Whenever a seed pixel
is interactively selected on the image, livewire agorithm
computes the path map that records the minimum-cost paths
from the seed pixel to all other pixels, considering the im-
age as a directed graph with nodes (pixels) and arcs (links
connecting neighboring pixels).

To assign an appropriate cost for each arc in the graph,
a cost function should be defined first. Although livewire
also has a number of its variants which share the basic un-
derlying algorithm [21, 22, 12, 13, 16], most of their cost
functions are solely based on externa forces, that is, the
edge features in the input image. Thus, the cost for an arc
between two neighboring pixels v, and v 1 can bewritten
as.

(Vi V1) = Ceat (Vi Vir1) = (|VI(Ve) |+ VI(Vii1)])/2

©)
where |VI(v)| denotes the gradient magnitude of image I
at pixel v. However, the lack of internal energy in exist-
ing livewire algorithms could lead to rough and inaccurate
boundary segmentation especially when the input image is
Noisy.

In order to incorporate internal energy (such asin Eqg. 2)
into the cost function, we take advantage of an interesting
fact that both livewire and snake algorithms can be formu-
lated as dynamic programming. The livewire algorithm, as
adynamic programming, attempts to minimize the function
f(vy) which represents the cost of a path from a seed pixel
v to any pixel v,, though a sequence of neighboring pixels
Vo, Vs, ..., Vp_1. The recurrence relation for the dynamic
programming is as follows:

f(Vis1) = H},ikn{f(vk) + (Vi V1) } 4

Here, the principle of optimality states that if an optimal
path from v, to v,, passes through a pixel v;, then its sub-
path from v, to v; should beitself an optimal path from v,
tov; [3]. That is, the decision-maker should always choose
the optimal solution at each stage. Obviously, Eq. 4 does
not violate this principle since all the future decisions at a
current state k are simply based on an external function c.,;
which is independent of how we got to the current state.

Now, let us incorporate the following discrete versions
of the two internal energy terms:

Vo(8)]? = [Vigr—Vil* and [ves(s)]* & [vigr—2vitvioa |

©)
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Figure 1. The violation of the optimality prin-
ciple

to obtain the new cost function
= a|visr — Vk|2
+B|Vis1 — 2vg + Vi1

+YCext (Vs Vies1) (6

C(Vk—la Vi, Vk+1)

where «, 3, and v are weight parameters. Now if we apply
this new cost function to Eq. 4, the principle of optimality
no longer holds since the future decisions at a state k£ de-
pends not only on the external functions, but aso on the
decisions made at the previous state k£ — 1. Thisimpliesthat
the decision at a certain stage may not be optimal and has
to be corrected later. That is, an optimal path from v, to v;
may not be inlcuded in the eventual optimal path from v to
v, that passes through v; (Fig. 1). For this reason, simply
putting the internal energy term into the existing livewire
framework does not guarantee the optimality of the com-
puted path.

To resolve this problem, we need to re-define astate as a
combination of two neighboring pixels vi1; and v, since
the internal energy spans two consecutive arcs. Then the
new recurrence relation can be written as:

FVierr, vie) = min{f(vk, vi-1) + c(Vi-1, Vi, Vir1)}

()
That is, our objective at each stage is now to find a pixel
vi_1 that minimizesthe cost of a path that ends with an arc
(Vi, Vi+1). This formulation is similar to that of the dy-
namic programming version of snakes [2]. Note that now
the principle of optimality is preserved in that an optimal
path ending with an arc (v;_1, v;) is aways included in
the eventual optimal path that passes through thisarc (v;_1,
v;). The generalization of this idea leads to the following
recurrence relation with an energy term that spans m con-
secutive arcs (such as multiscale curvature):

min {f(Vk, ceny Vk—nz+1)
Vik—m+1

+c(vk*m+17 o0y VkJrl)} (8)

S(Vit1s o Viemy2) =

Based on this framework, we propose in the next section
anew livewire agorithm together with a generalized graph
formulation.

3 TheG-wirealgorithm
3.1 Thegraph formulation

As described above, our agorithm is based on a high-
order dynamic programming, which is often used for solv-
ing various problems in computer vision and pattern recog-
nition such as contour matching, feature extraction, mo-
tion tacking, stereo matching, speech recognition, etc [2,
14, 20, 15, 24, 25]. To our knowledge, however, exist-
ing livewire algorithms are al based on a first-order dy-
namic programming and thus they model the image as a
2-dimensional graph whereasingle pixel v = (z,y) serves
as a node. Since the new recurrence relation (Eq. 7) de-
pends on two consecutive pixels at the same time, it re-
quires a 4-dimensional graph where two pixels constitute
a single node. Similarly, a 2m-dimensiona graph would
be needed for the genera case with a cost function that
spans m arcs (Eq. 8). However, considering the fact that
a single pixel in an image only has a constant number of
neighbors (at most 8), we can lower the dimensionality of
the graph down to 2 + (m — 1). Note that livewire, un-
like snake, only alows a graph arc to be formed between
two immediately neighboring pixelsin the image. Thus, a
3-dimensional graph would be sufficient for implementing
Eqg. 7. Although the proposed idea itself is general to cover
an arbitrary n-dimensional case, we will mainly focus on
3-dimensional case to clearly show the practicality of our
method.

Given an input image with N pixels, the corresponding
graph will be constructed with N x 8 nodes, based on the
8-neighbor system. Each node is represented by 3 numbers
(z,y, z), where z and y denote the location in the image
and z denotes the source neighboring pixel from which it
is connected. That is, (z,y) denotes position and z denotes
direction. Asshown in Fig. 2, asingle pixel p can have 8
distinct nodes in the graph (denoted as p°,...,p") indicating
that these nodes will be treated independently even though
they al lead to the same pixel p. A graph arc is created
between any two nodes p and ¢ which satisfy al of the fol-
lowings:

1. Their (z,y) coordinates are in the neighboring posi-
tionsin the image.

2. The z value of one node pointsto the (x, y) position of
the other.

3. Their z values do not point in exactly opposite direc-
tions.



plat(xy0)  plat(xyl)  plat(xy2)  plat(xy.3) Algorithm 1 ConstructPathMap(v,, D)
INPUT : A starting node v and the domain D
| OUTPUT : An optimal path from v to each node v in D
@ ° o ° DATA STRUCTURES : A(active node list), E(expanded node
list)
1 Insertvs in A
2. while E' is not empty do
3:  Remove the minimum-cost node v from A, and insert it in
E
4. for each ' a (x,y,2) (¢ F) where (x,y) isin the neigh-
@ ° - ° borhood of v and z pointsto v do
I 5 Let vo bethe pixel pointed to by z coordinate of v
6: Let v, be the pixel containing v and let v2 be the pixel
containing v’
p4 at (xay’4) pS at (x, )&5) p6 at (x’y56) p7 at (x’ y’7) T CCtmp (’U/) = CC(U) + C(V07 Vi, V2)
8: if ccemp(v') < cc(v') then
) ) o cc(v') := ccrmp(v”) and now v’ is connected to v
Figure 2. The 8 possible graph nodes for a 10: ifq(/%Athéﬂﬁ(serzv/inA
i i 11 end if
single pixel p at (z,y) B eadter
13: end while

For example, an arc is generated between a destination node
péat(z,y,2) andasourcenodeq at (xz+ 1, y, z) for any val-
ues of z except for 6, which leads to (8 — 1) = 7 such
cases. Since each pixel can be either a source or a desti-
nation, there are 7 + 7 = 14 possible arcs between two
neighboring pixels.

3.2 Thealgorithm

G-wire agorithm presented here is a modified shortest-
path algorithm that runs on a 3D graph, and it can be nat-
urally extended to an arbitrarily higher-dimensional case.
Initialy, al the nodes in the graph are assigned the maxi-
mum cost possible. Once a seed pixel is specified by user,
a minimum-cost path from the seed pixel to each pixel in
the image is computed. Starting from the seed pixel, the
path map is expanded to the neighboring pixels, which is
essentially the iteration of a single node expansion cycle.
At each cycle, we pick the node v whose cumulative cost
(denoted cc(v)) is minimum in the active node list contain-
ing the nodes visited at least once, and compute the cost
from v to each node v’ in its neighborhood, using the cost
function defined in Eq. 6. Note that v’ is considered only if
it pointsto v by its z-coordinate. Whenever the new cost for
v’ islower than its previous cost, the minimum-cost path for
v’ is updated to include this new arc (v, v’). If this process
is done for al 8 neighbors of v, then v is inserted into the
expanded node list and we move on to the next minimum-
cost node. In this way, we can construct the minimum-cost
path from the seed pixel to every pixel in the image. Note
that, however, in our case there are 8 distinct paths com-
puted for asingle pixel. This path map construction process
issummarized in Algorithm 1.

Given the constructed path map, as the user interactively
moves the cursor point (also called free pixel, obtained at

an event time ;) around the target boundary, the minimum-
cost path reaching the free pixel isinstantly displayed. This
gives an impression that the livewire curve automatically
snapsto thetarget boundary, making it easy to for the user to
select the most desirable path of all. While each pixel stores
8 distinct paths that lead to it, only the minimum-cost path
out of them is displayed when the mouse cursor reaches it.
Note, however, this path segment may not be displayed later
as part of another optimal path even if it also contains the
same pixel, which is a big improvement from previous al-
gorithms. Also, note that there are 8 distinct nodes start-
ing from the seed pixel and thus any one of these nodes
might be selected as part of an optimal path. Whenever the
curve digresses from the target boundary during this oper-
ation, the new seed pixel is interactively specified and the
new path map construction resumes from this pixel, while
freezing the previous boundary segment as approved. The
complete boundary curve will be obtained as a sequence of
such frozen segments. The proposed G-wire algorithm is
summarized in Algorithm 2.

Another important issue in our algorithm is the conti-
nuity at the seed points. In the previous livewire algo-
rithms, two successive boundary segments sharing a seed
pixel were treated completely independently, which could
result in non-smooth connection at the seed points. In our
framework, however, the inclusion of internal energy that
spans multiple arcs naturally leads us to the inspection of
the cost at the seed points connecting two path segments.
That is, successive segments can be connected smoothly in
an attempt to minimize the cost function at each seed point.
For this purpose, we need to ook at how the previous seg-
ment ended, which isrecorded in each of 8 nodes at the new
seed pixel (which coincides with the previous ending point).
Whenever the new segment starts, each of these 8 nodes at
the seed pixel should be initialized with proper costs ob-



tained from the previous boundary construction, and the
path construction resumes with taking al of these 8 nodes
into consideration. Now the next optimal path segment will
be obtained such that it minimizes the internal energy for
connecting to the previous segment.

Algorithm 2 G-wire
INPUT : A sequence of seed pixels so, ...
image 1
OUTPUT : A set of boundary segments forming an optimal path
from sp to s,,—1 passing through s1, ..., sp—2

1 k:=0, v(to) := so, cc(v”(to)) == 0foralp € {0,...,7}

, Sp—1 and the input

2: whilev(ty) # sp—1 do
3 if k=0then
4 vP (to):=the minimum-cost node at pixel v(to)
5 ConstructPathMap(v?® (to), I)
6: se
7: v?(t):=the minimum-cost node at pixel v(tx)
8 Display a boundary segment from v (¢) to v?(¢x)
9 endif
10:  if v(tx) isanew seed then
11 Freeze the previous boundary segment from v”(to) to
v (tk)
12: V(to) = V(tk) andk =0
13:  dse
14: k:=k+ 1andgetv(ty)
15: i

end if
16: end while

Based on our algorithm, the two successive path seg-
ments [s;—1,s;] and [s;,s;+1] sharing a single seed pixel
s; is identical to the minimum-cost path [s;_1,s;+1] that
passes through s;. Also, it can be concluded that given a
sequence of seed pixelssy, s1, ..., S,,_1, our algorithm finds
the optimal path between sy and s,,_; that passes through
al the intermediate the seed points, considering them as
hard constraints which are often dealt with in snake algo-
rithm.

3.3 Path map localization and incremental update

At each seed point selection, the path map is computed
for al the pixelsin the image. The time complexity for the
path map construction is O(N x M) where N is the num-
ber of pixelsintheimage and M isthe number of nodesfor
each pixel. When the size of the image is large, or the di-
mensionality of the graphishigh, it could significantly slow
down the feedback at the seed point selection. To resolve
this problem, we employ the path map localization strategy
from our previous work [16].

First, we locate a window w(ty) centered at the seed
pixel, and the path map is constructed only inside the win-
dow. Then the window moves along with the free pixel,
and the path map is incrementally expanded into the newly
added region in the current window w(t;) at any time k
(Fig. 3(8)). The path map expansion at time k& begins with
the minimum-cost node on the border of the previous win-
dow intersecting the current window (denoted v, (t)). For

w(t,)

w(t,)

Wit wit )

v(t,) <b/>
| L9 v, J
Vo P
A\
/ ®© \ v(t, <)D
Vit2) vt = v, ()
— —

Wwt,_,) w(t;_,)
(@) (b)

Figure 3. Incremental path map update

example, if there are m pixels on this intersecting border,
then there are total of m x 8 nodes to consider and the
one with the minimum cost is selected as the new starting
point. Basically, the path map is expanded into the nodes
of the unexplored region in the current window. As shown
in Fig. 3(b), however, some nodes in the already explored
region in the current window might also have to be updated.
Among the nodes in this already explored region, only the
ones with the bigger cost than that of the minimum-cost
node v (t)) have chances of getting updated. Thus, in the
update domain at time k (denoted D(¢)), we include all
the nodes in the unexplored region and the ones with bigger
cost than that of the minimum-cost node v; (tx,).

Algorithm 3 Incremental G-wire
INPUT : A sequence of seed pixels s, ..., Sn—1
OUTPUT : A set of boundary segments forming an optimal path
from sg to s,,—1 passing through s1, ..., sp—2
1 k:=0,v(to) := so, cc(vP(to)) == 0foralp € {0,...,7}
2 Wh”ev(tk) # sp-1 do

3 ifk=0then

4; vP (to):=the minimum-cost node at pixel v(to)

5. wa(to):=0” (to), D(to) == w(to)

6: se . .

7: vs(tr) := the minimum-cost node in the border of
w(tk_1) in w(tk)

8: D(ty) := the non-overlapping region in w(t;) U there-

gion containing the nodes of the previous windows in
w(tx) whose costs are higher than that of v, (¢)

9 endif

10:  ConstructPathMap(vs (tx), D(tx))

11 v9(t):=the minimum-cost node at pixel v(¢x)

12 Display aboundary segment from v? (¢o) to v?(tx)

13 if v(tx) isanew seed then

14: Freeze the previous boundary segment from v”(to) to
v (t)
15: (to) = V(tk) andk :=0
16: €se
17: k:=k+1andget v(tx)
18 endif
19: end whlle

Algorithm 3 shows our modified algorithm based on the
path map localization and incremental update paradigm. As



proven by [16], this incremental algorithm still preserves
the optimality of the computed path with respect to the
given cost function, and in the cumulative region formed
by the window sequence. Since the path map construction
is aways restricted to the current window, our incremental
agorithm givesinteractive feed back speed strictly bounded
by the size of the window. That is, the time complexity for
the feedback isO(L x M) if L isthe number of pixelsina
window and M isthe number of nodes for each pixel.

In addition to the better time efficiency, this algorithm
aso leads to better accuracy in that it keeps the curve from
digressing to nearby edges outside the window sequence,
thus reducing the number of seed points required. The pre-
vious livewire techniques always look for a globally opti-
mal path between two points, which often does not coin-
cide with the target path. Our technique, however, provides
abetter chance to extract the target path without digressions
by finding the locally optimal path in the domain formed by
the user-guided window sequence (see Fig. 4). Also, the
window is interactively resizable, providing more flexibil-
ity in segmenting boundaries with varying complexities.

4 Experimental results

Our G-wire algorithm has been successfully tested on
hundreds of images with various sizes and complexities. As
mentioned earlier, the biggest advantage of our algorithmis
that it gives smooth and accurate segmentation results even
in noisy images. Figure 5 shows the test results on the same
input image, obtained by the standard livewire algorithm
and G-wire. We spent the same number of seed points with
both methods, to show G-wire produces smoother and more
accurate segmentations on such noisy images.

In Figure 6, the effect of interna energy isclearly shown.
By varying the values of the coefficients o and 3 for thein-
ternal energy terms, we can get different segmentation re-
sults from the same image. With larger internal energy co-
efficients, it gets easier to prevent the curve from digressing
to nearby objects. Also, Fig. 7 shows that with our algo-
rithm, the smoothness of the boundary curve is preserved
at the seed points connecting two successive boundary seg-
ments. Note that since G-wire is a generalization of the

Globally optimal path

- ~
&« Do
\\\ ///
N :_~
Target path

Figure 4. Finding a locally optimal path

(a) livewire (b) G-wire

Figure 5. Livewire vs. G-wire

livewire framework, it is capable of doing everything that
can be achieved by the standard livewire algorithm. For
example, when the target object has a clean but highly com-
plex boundary, we can simply turn off o and § coefficients
to get accurate segmentation results (Fig 8).

Figure 6. Effect of internal energy: (@) a =
0,=0,vy=1(0O)a=0.1,6=0.1,7=08(c)
a=0.1,=02~y=0.7

For the path map localization, we used a fixed size of
the window (80 x 80), and as a result our incremental G-
wire algorithm performed at an interactive speed regardless
of the image size, complexity of the target boundary, or the
level of noise. All the experiments have been conducted
on Intel Pentium® PC (P4 2.90 GHz processor with 1 GB
memory).

5 Conclusions

We have presented a generalized livewire segmentation
agorithm based on a multidimensional graph formulation.
Unlike existing livewire algorithms, our algorithm is capa-
ble of incorporating both the internal energy and the ex-
ternal energy of the boundary curve while preserving the
optimality of the computed path on the graph, and thus
leads to better segmentation results especially in noisy im-
ages. While we mainly focused on a 3-dimensional graph
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Figure 8. Turning off internal energy: o =
0,6=0,7v=1

in this paper, it can be naturally extended to an even higher-
dimensional case, such as segmentation of aboundary curve
with multiscale internal energy. Also, based on the path
map localization and incremental update strategy, our al-
gorithm ensures the interactive speed of the segmentation
regardless of the image size or the dimensionality of the

graph.
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