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Figure 1: Scale-aware texture filtering. Compared with previous methods, ours effectively filters out multiple-scale textures from the input
image, while preserving structure edges and small-scale salient features, such as corners, without oversharpening and overblurring artifacts.

Abstract

This paper presents a novel method to enhance the performance of structure-preserving image and texture filtering. With con-
ventional edge-aware filters, it is often challenging to handle images of high complexity where features of multiple scales coexist.
In particular, it is not always easy to find the right balance between removing unimportant details and protecting important
features when they come in multiple sizes, shapes, and contrasts. Unlike previous approaches, we address this issue from the
perspective of adaptive kernel scales. Relying on patch-based statistics, our method identifies texture from structure and also
finds an optimal per-pixel smoothing scale. We show that the proposed mechanism helps achieve enhanced image/texture filter-
ing performance in terms of protecting the prominent geometric structures in the image, such as edges and corners, and keeping

them sharp even after significant smoothing of the original signal.

Categories and Subject Descriptors (according to ACM CCS): 1.4.3 [Image Processing and Computer Vision]: Enhancement—

Smoothing

1. Introduction

Noise or texture filtering often involves smoothing of signal. Linear
translation-invariant filters like Gaussian, for instance, aggressively
smooth out data noise or small-scale oscillations by averaging the
signal values around each data point at the expense of losing impor-
tant structural information such as edges. On the other hand, edge-
preserving filters [TM98,FFLS08,HST10,PHK11,XL.XJ11], which
have now become mainstream in visual processing, are designed
to protect edges while removing noise. They take into account the
structure of the signal and give different smoothing weights across
signal discontinuities in order to avoid blurring them out.
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One of the deficiencies of the classical edge-preserving filters is
that they often rely on gradient-based measure to detect edges, and
thus may fail to remove small-scale, high-contrast oscillating de-
tails (e.g., texture) that make little contribution to the image seman-
tics. Recently, more sophisticated approaches have emerged that
are capable of identifying and filtering such textures while still pre-
serving important structures [KEE13,CLKL14,ZSXJ14]. Although
these techniques generally deliver successful structure-texture sep-
aration, it is still a challenge on certain images to keep structure
edges sharp while aggressively taking out high-contrast and large-
scale texture patterns. Moreover, existing methods have trouble in
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preserving the corners which are small-scale but semantically im-
portant visual features in the image.

In this paper, we present a novel filtering method for structure-
texture separation based on adaptive scales of filter kernels. The
central idea is to use pixel-neighborhood statistics to distinguish
texture from structure and simultaneously find an optimal smooth-
ing scale for each pixel. We show that unlike existing techniques,
our method manages to achieve multiple conflicting goals, such
as identifying/removing texture, preserving structure edges, pro-
tecting easy-to-miss features such as corners, and preventing over-
sharpening and/or overblurring artifacts (see Fig. 1).

2. Related Work

Edge-aware smoothing filters Anisotropic diffusion [PM90] av-
erages neighboring pixels in an edge-aware manner by iteratively
solving a diffusion equation based on local variations of pixel
values. Bilateral filter [TM98] combines two Gaussian kernels,
spatial and range, to average neighboring pixels without crossing
edges. Guided filter [HST10] reduces gradient reversal near edges
by using a local linear transformation kernel. Local Laplacian fil-
ter [PHK11] avoids halo artifacts by communicating information
across multiple scales within Laplacian pyramid. The domain trans-
form method [GO11] accelerates 2D edge-aware filtering by solv-
ing the problem in 1D space. One weakness of this line of filters
is that they are not particularly well-equipped to filter out high-
contrast detail or texture.

Kernel-based texture filters Recently, more sophisticated kernel-
based filters have been proposed to perform structure-texture sep-
aration. Mode filter [KS10] and median filter [Wei06, MHW*13,
7ZXJ14] are capable of filtering out certain textures from images.
To identify and remove texture components from an image, Kara-
can et al. [KEE13] use a patch-based covariance measure and Bao
et al. [BSY*14] utilize a minimum spanning tree extracted from
the image. Zhang et al. [ZSXJ14] employ bilateral filter guided by
Gaussian-blurred input image to eliminate all image structures as
well as textures smaller than a certain scale. Cho et al. [CLKL14]
incorporate patch shift mechanism into conventional bilateral filter
to perform structure-preserving texture filtering. Yang [Yan16] uti-
lizes a semantic edge detector for iterative edge-preserving texture
filtering. Many of these filters use a fixed smoothing scale on the
entire image, which may result in overblurring or oversharpening
when features of multiple scales coexist.

Global methods Some image/texture filters are driven by
global minimization of certain objective functions. Farbman et
al. [FFLSO08] proposed weighted least squares (WLS) method that
solves a large linear system to perform multiscale image decom-
position. Subr et al. [SSD09] considered local extrema to distin-
guish fine-scale oscillations from real edges. Ly gradient minimiza-
tion [XLXJ11] restricts the number of non-zero gradients in the im-
age for enhanced edge-aware filtering quality. Xu et al. [XYXJ12]
minimize the relative total variation (RTV) measure of image for
clearer separation of structure and texture. Ham et al. [HCP15] in-
corporate a Gaussian-blurred guidance image into their nonconvex
optimization framework, and Bi et al. [BHY15] use L1 local flat-

ness and global sparsity for image smoothing. Compared to kernel-
based filtering, optimization-based techniques are harder to imple-
ment and accelerate.

3. Our Approach

Some of the recent texture filtering methods [CLKL14, ZSXJ14,
HCP15] rely on intermediate guidance images to remove textures
from images. The guidance image is typically generated via edge-
preserving smoothing of the source image, and then used for a joint
bilateral filtering to filter out texture. Given an input image /, the
joint bilateral filter is defined as follows:

1
Sp:E Y f(p.q) ¢(Gp.Gy) Iy, ey
g€N(p)

where I, Gp, and S, represent intensity/color values at the pixel
p of the input, guidance, and filtered images, respectively, and
p = (px,py), ¢ = (qx,qy) are spatial coordinates of two pixels. f(-)
and g(-) measure spatial and range distances between two pixels,
for which Gaussian weighting functions are used [TM98,PSA*04].
The filtering process could be iterated depending on filtering objec-
tives.

For the guidance-based structure-texture separation framework,
the guidance image is crucial in determining the quality of filter-
ing results. The properties of a good guidance image for structure-
texture separation are: 1) being smooth within textured regions so
the texture would be filtered out effectively; 2) showing clear dis-
continuities at structure edges and visually important features, how-
ever small they may be. In [ZSXJ14], the guidance image is first
generated by Gaussian smoothing of the source image with cer-
tain scale, then updated via successive joint bilateral filtering op-
erations. This method loses small-scale structures such as corners
due to the initial Gaussian blurring. Cho et al. [CLKL14] proposed
patch shift operation that preserves structure edges by finding alter-
native patches for pixels near the structure edges, but in a complex
region containing multiple structures, confusion may arise during
searching alternative patches and end up blurring the structures.

These artifacts are, in a sense, due to the fixed scale parameter
for the smoothing method that they use when generating the guid-
ance image. Ideally, the source image would have to be smoothed
more aggressively within textured regions and less around impor-
tant edges and features in order not to blur them. In this paper,
we address this issue by adaptively controlling the smoothing scale
for guidance image generation. While adaptive scaling in image
filtering is not new [EZ98, CT05, KFEA10], to the best of our
knowledge, our method is the first filtering-based approach to apply
adaptive scale to the problem of texture-structure separation. In the
following sections, we describe a guidance image based texture-
structure separation method with the collective flatness, a novel
kernel scale measure based on directional relative total variation.

4. Adaptive Kernel Scale Estimation

Similarly to [ZSXJ14], we obtain the guidance image by filtering
the source image. The difference is that we perform a Gaussian
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filtering with adaptive kernel scale:

Gp="Y sk (paly
q€N(p)
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where K, is an optimal kernel scale at a pixel p that is estimated as
described in the following subsections.

4.1. Relative total variation (RTV)

To estimate K, at each pixel, we need to measure how close the
pixel is to the nearby structure edge that we want to preserve. The
underlying principle is to enlarge K, within a flat or textured region,
and shrink K} near structure edges and corners. In order to distin-
guish fine-scale oscillations from structure edges, first we employ
relative total variation (RTV) metric [XYXJ12] for its robustness
and discriminability. Given an image /, RTV along the x-axis is
defined as follows:

quN(p) gG(P,q) ‘(axl)q|
YeN(p) 85(P,q) (0xl)q| +€

RTV), = )

where 0(+) is the discrete gradient operator and gs(-) is a Gaussian
function of variance 7. € is a small positive number. N(p) is the
spatial neighborhood of pixel p with the size of 36 X 3c. RTVIyU is
defined similarly along the y-axis. Simply put, RTV increases in a
region of small-scale oscillations and decreases in a region contain-
ing a real edge. In that sense, RTV could be used for determining
the kernel scale K, at pixel p.

4.2. Directional RTV

One limitation of original RTV in Eq. (2) is that it often mistakes
slanted sharp features such as corners for texture regions because
they are considered as oscillations along both x- and y-axes. If we
directly use RTV for kernel scale Kj, this mistake would result in
overblurring of the fine-scale features due to the large-scale ker-
nels assigned to them. To overcome this limitation, we define di-
rectional relative total variation (dRTV):

ZqEN(p) gﬁ(pv q) | (a¢1)q|
Ygen(p) 8o(p,q) (9p] )q‘ +€

dRTV = 3)

where dy(-) is a directional partial derivative operator along angle
0:
3(-) = x(-) cos ¢+ y(-) sino. @

We find 6, which we call structure direction, as the direction that
has the smallest oscillation. Usually such 6, is the direction perpen-
dicular to the nearby structure edge. At a corner, 8, is the direction
in which the corner’s tip is pointing. In a texture region, 8, can be
an arbitrary direction. Since small-scale oscillation introduces high
dRTY, the structure direction 8) is obtained as:

6y = argmin dRTVY )

for 0 < ¢ < 2m. In our implementation, we sampled and checked
12 different directions to efficiently identify structure direction 6.
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input original RTV dRTV

Figure 2: dRTV outperforms the original RTV in capturing salient
features. Red color indicates small RTV value (considered as edge),
while blue color indicates large RTV value (considered as texture).

Using structure direction, dRTV can identify the structure edges
as well as sharp corners which are easily missed by original axis-
aligned RTV. Fig. 2 illustrates that dRTV outperforms the original
RTV in capturing salient features, including slanted corners.

4.3. Flatness

Although dRTV in Eq. (3) can effectively distinguish even small
structures from textures, it has limitation in accurately determining
the kernel scale K. That is, a large value of dRTV?, implies that
pixel p belongs to a texture region but does not exactly mean that p
is far away from a structure edge, as dRTV value is affected by the
magnitudes of oscillations as well as the number of oscillations in a
region. To resolve this limitation, we normalize dRTV values using
a nonlinear transform and compute Eg, which we call flatness:

1/dRTVY)?
E,‘?_exp{— <( / S ) )} (6)

G, controls the flatness transition from structure edges to texture
regions, which is fixed as 0.05 for sharp transition. The flatness
value ranges in [0, 1], where 0 means a structure edge.

4.4. Collective flatness for kernel scale estimation

Fig. 3 shows that the flatness is high within flat or textured regions,
and low around edges. Therefore, we should be able to define kernel
scale as proportional to this measure. However, in Fig. 3b, flatness
drastically reduces to zero at the pixels around an edge, which may
result in overly conservative filtering near structure edges. More-
over, as shown in the right column of Fig. 3, the flatness inside a
single stripe structure with textures becomes large because oscil-
lations exist in any direction. This large flatness would introduce
undesirable filtering artifacts as the kernel scales of pixels inside
the stripe are larger than the strip width (Fig. 5). That is, although
the flatness can distinguish texture regions from structures well, in-
cluding edges and corners, it is not enough to determine an optimal
kernel scale which leads exact amount of blurring.

To mitigate this problem, we gather information from a collec-
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Figure 3: 1D synthetic examples (G=5). (left) structure edge; (mid-
dle) texture region; (right) valley-like structure. In (b), texture re-
gions have high flatness values while structure edges have low flat-
ness values in the neighborhood. Our kernel scale estimation prop-
erly assigns small kernel scales to the pixels near structure edges,
according to the estimated collective flatness in (d). Consequently,
our guidance images in (e) effectively remove textures while pre-
serving structure edges. Input signals are plotted with gray curves.

tion of flatness values in the neighborhood. The collective flatness
is computed as:

Cp = max (clp,c,’,) , %)

where Cfp and C}, denote collective flatness from the left and right
neighborhood of p, respectively. The left collective flatness Cf) is
obtained as:

ch = ﬁ Yy E. )

1(P) 4ENI(p)

where N; denotes the left half of the 2D patch of size ¢ X G ro-
tated along the estimated structure direction 6. Czl7 is the average
flatness of the pixels in the left neighborhood of p along the struc-
ture direction. Similarly, Cy, is computed as the average flatness on
the right half of the patch along the structure direction. Finally, the
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Figure 4: Estimated kernel scales of grid sample points. A circle
shows the size of the Gaussian filter kernel applied at a sample
point (¢ =4).

input guidance using E,? guidance using Cp

Figure 5: Guidance images generated with adaptive kernel scales
estimated using flatness and collective flatness. Collective flatness
resolves the inverted filtering artifacts inside the stripe structures.

collective flatness Cp is the maximum of the two average flatness
values.

Consider a pixel p in the left column of Fig. 3, where p is on the
left side of the edge. The flatness Eg of p itself is almost zero, but
its left collective flatness Cﬁ, is larger than zero as the left neighbor
pixels of p have non-zero flatness. In addition, as the distance of
p from the edge increases, C;, also increases due to progressively
more involvement of texture pixels in the left neighborhood. Con-
sequently, we can use the value of C'f, as an approximation of the
distance from the edge. In this case, however, the right neighbor-
hood of p contains the edge and C,r, is smaller than Cfu. Moreover,
C}, does not decrease when p approaches the edge, and cannot well
approximate the distance of p from the edge. In the case that pixel p
is on the right side of the edge, C}, would be a better approximation
of the distance from the edge than Cﬁ,. By taking the maximum of

(© 2016 The Author(s)
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(a) input

(b) Cho et al. [CLKL14] (c) Zhang et al. [ZSXJ14] (d) our guidance image

(e) our result

Figure 6: Guidance images used for texture filtering. (a) input image, (b) Cho et al. [CLKLI4] [k =], (c) Zhang et al. [ZSXJ14] [cs =
4.6, =0.1], (d) our guidance image [c = 4,6, = 0.05], (e) filtering result using the guidance image in (d). Compared to other methods, our

guidance image better keeps small but salient features.

Cf, and Cj, for the collective flatness Cpp, we can handle both cases
in a consistent way.

Now we estimate the kernel scale K, using the collective flatness
as follows:

Kp = max (6Cp,9), )

where 67 is the variance of the Gaussian function used for comput-
ing dRTV in Eq. (3). Parameter § is introduced to safeguard against
signal oversharpening or aliasing (8 = 1 by default). Note that K,
ranges in [§, 6]. Fig. 3d shows examples of kernel scale estimation
for synthetic 1D signals, and Fig. 4 visualizes the estimated kernel
scales for a real image. Fig. 5 demonstrates that the collective flat-
ness Cp incorporates the neighborhood statistics and thus outper-
forms the original flatness Eg in handling small-scale structures,
such as narrow stripes.

5. Texture Filtering Process
5.1. Guidance image generation

With the estimated kernel scale K, we apply varying scale isotropic
Gaussian smoothing on / to generate the guidance image G:

1 1 . — x2 _ '2
Gr=1 y exp{_z((p q);—g(py qy) )}Iq» (10)

gEN(p)

where k is the normalizing factor. As demonstrated in Fig. 3e, the
adaptive kernel scale K ensures aggressive filtering of texture re-
gions while preserving structure edges in the resulting guidance im-
age. Fig. 6 compares guidance images generated by existing meth-
ods and ours.

5.2. Guidance-based texture filtering

The final output S is obtained by applying a joint bilateral filter to
the source image / using the guidance image G:

1
Sp= % Z 80,(P:q) 80,(Gp,Gq) Iy, (11
qEN(p)
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Algorithm 1 Scale-aware texture filtering

Input: image /

Output: filtering result S
S« 1
fork:=0...(N—1)do

E® + flatness values from S > Eq. (6)
K < kernel scales > Eq. (9)
G < guidance image from S using K > Eq. (10)
S < joint bilateral filtering of I using G > Eq. (11)

end for

where go, (-) and 8o, () give spatial and range weights with corre-
sponding Gaussian kernel sizes o5 and G, respectively. Note that
o may be different from ¢ used in Eq. (3). The process of guid-
ance image computation and joint bilateral filtering can be iterated
a few times to improve the filtering result. Algorithm 1 summa-
rizes the entire process of our method, and its intermediate images
are shown in Fig. 7.

6. Experimental Results

Kernel scale estimation Our method estimates the proper ker-
nel scales of pixels to remove textures while preserving the struc-
ture edges and corners. We evaluated our kernel scale estimation
method on various texture images. Our method shows satisfactory
estimation results even on the complex regions that multiple struc-
tures coexist nearby. Visualization examples of kernel scale esti-
mation can be found in Fig. 4 and the supplementary material.
Note that the little intrusion of kernel to structure edge does not
introduce overblurring because we use Gaussian filter kernel which
gives smaller weights for kernel boundaries.

Parameters Our method has only one parameter ¢ when generat-
ing a guidance image. Parameter ¢ controls the maximum scale of
texture to be removed. Since our method can identify the per-pixel
smoothing scale, ¢ does not have much impact on pixels nearby
structure edges. However, for pixels away from structure edges



J. Jeon, H. Lee, H. Kang, & S. Lee / Scale-aware Structure-Preserving Texture Filtering

flatness E®

=

input direction 6

c-flatness C

guidance G 1st iteration S final result

Figure 7: Intermediate images of our filtering process. The lengths of red line segments in the second column show the values of directional
flatness E®. In the third ( E°® ) and fourth (C) columns, red color indicates large value while blue color indicates small value.

Figure 8: Effect of the maximum kernel scale parameter ©. Bigger textures are removed as G increases. As our method automatically identifies
the smoothing scale per pixel, small but salient structures (antennas and legs of the bee) are well preserved even when large textures are

smoothed out with a big ©.

(e.g., texture regions), a bigger ¢ increases the estimated kernel
scale, and leads to more aggressive texture removal and smoother
results. We used ¢ = 4 in most cases of our experiments. Fig. 8
shows the effect of parameter 6. The joint bilateral filtering step re-
quires two parameters, spatial and range kernel sizes 5 and 6. We
find that making o5 bigger than ¢ produces smoother results, and
we set 65 = 1.50 throughout. G, ranges in [0.05,0.1] (large value
for images with high-contrast textures). We used 5 iterations of our
filtering process throughout, similarly to [ZSXJ14].

Visual comparison In Fig. 9, we compare our results with the
state-of-the-art texture filtering techniques. Compared to existing
kernel-based methods [CLKL14, ZSXJ14, BSY*14, Yan16], ours
generally performs better in terms of preserving small but salient
features/corners and making them look sharp. Our results are also
comparable to optimization-based approaches [XYXJ12, HCP15]
that are hard to accelerate with GPU implementation. The scale pa-
rameters for existing methods are set to filter out high-contrast mo-
saic textures in the background for visual comparison. For Zhang et
al. [ZSXJ14], as the domain transform filter in the author-provided
code causes color bleeding, we instead used our bilateral filter
based implementation for fair comparison.

Handling large scale textures Since existing methods use fixed-
scale kernels for structure-texture separation, they often fail to pre-
serve salient but small scale features such as corners when large-
scale textures should be removed. In contrast, our adaptive kernel
scale estimation facilitates filtering of large-scale textures without
hurting the important structures and features. Fig. 10 demonstrates
that our method outperforms other methods in this regard. Note
that, for fair comparison, scale and smoothness parameters for other
methods have been modulated enough for removing the largest tex-
tures.

Analysis on iterative filtering As described in Section 5, our fil-
tering process consisting of guidance image generation and joint
bilateral filtering can be iterated to remove desired amount of tex-
tures. Since our iterative process is similar to RGF [ZSXJ14], we
compare the behavior of progressive filtering in both methods.
As shown in Fig. 11, RGF aggressively smooths out all the de-
tails smaller than a certain scale, and then recovers the remain-
ing structures and some details iteratively. On the other hand, our
method focuses more on identifying pixels nearby structure ele-
ments and smoothing them conservatively through multiple filter-
ing iterations, so that such structure elements are better preserved
regardless of their scales, while smoothing out even large scale tex-
tures.

(© 2016 The Author(s)
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(a) input

(€) TreeFiltering [BSY*14]

(f) Static & Dynamic [HCP15] (g) Semantic Filter [Yan16]

\ I
(h) our method

Figure 9: Visual comparison of texture filtering results. (a) input image, (b) RTV [A. = 0.01,6 = 6,&; = 0.02, njser = 4], (¢) BTF [k = 5,njter =
5], (d) RGF [065s = 5,0, =0.1,njer = 4], (e) TreeFiltering [ = 0.02,65 = 5,0, = 0.05, njrer = 5], (f) Static & dynamic filtering [A = 200,60 =
2,steps = 10], (g) Semantic filtering with recursive bilateral filter [levelgnoohing = 4.5], (h) our method [G = 4,6, = 0.1,nyer = 5] (Dest

viewed in the original resolution).

Timing data Table 1 shows timing statistics of our method.
Although the MATLAB-based implementation of the proposed
method is relatively slow than previous methods due to the spa-
tially varying Gaussian smoothing and joint bilateral filtering, the
parallel nature of our algorithm allows a drastic speedup on GPU.
By implementing the algorithm using CUDA C++, our method
can be accelerated up to more than 10 times faster than the MAT-
LAB version. Moreover, exploiting fast implementation strate-
gies [DDO02, PD06, GO11] for bilateral and Gaussian smoothing
would provide additional drastic speedup.

Applications Fig. 10 demonstrates the application of our method
to detail enhancement. The optimization based approach [XYXJ12]
shows best quality in terms of gradient preservation and artifact
minimization. On the other hand, our result keeps shading infor-
mation during the filtering process, and preserves small scale struc-
tures better than other kernel-based methods. As with many ex-
isting edge-aware filtering techniques, our method can be used to
assist image abstraction and stylization. Inverse halftoning can also
be handled with our method, where we can remove halftone dots

(© 2016 The Author(s)
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o=3 c=>5 c=7
Component
CPU/GPU  CPU/GPU  CPU/GPU
Comp. E,K 0.03s/26ms  0.04s/68ms 0.04s/112ms
Comp. G 0.08s/4ms 0.11s/8ms  0.12s/15ms
Comp. S 0.40s/11ms  1.05s/28ms  2.02s/53ms
Total 0.51s/0.041s  1.2s/0.1s 2.18s/0.18s

Resolution 400x300 800x600 1600x1200

Comp. E,K 15.53ms  55.3ms 205.03ms
Comp. G 1.89ms 6.39ms 21.50ms
Comp. § 6.09ms  21.59ms 77.41ms
Total 23.51ms  83.28ms  303.94ms

Table 1: Timing data for varying maximum kernel scale parameter
G using a grayscale image of 800x600 pixels, and for varying im-
age resolutions (GPU version) using 6 = 4 with single filtering it-
eration. Times are measured using our MATLAB and CUDA imple-
mentations on a PC with Intel Core i7 CPU and NVIDIA GeForce
GTX 980 graphic card running Windows 10.
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Figure 10: Large-scale texture filtering (top) and detail enhancement (bottom) results. (a) input image, (b) RTV [XYXJI12] [\ = 0.03,6 =
10,5 = 0.02, njrer = 4], (¢) BTF [CLKLI4] [k = 6,nj¢r = 5], (d) RGF [ZSXJ14] [6s = 10,6, = 0.1,nj,r = 10], (e) our method [c =
18,6, = 0.04,n;. = 8]. For filtering large-scale textures, our method clearly outperforms previous methods in terms of preserving salient
small-scale features such as corners (red box). As a result, our method enables the detail enhancement of an image containing large-scale

textures without introducing halo artifacts near corners.

from input images, revealing the underlying structures and shading
(Fig. 12).

Additional results of our filtering method and comparisons with
previous methods can be found in Fig. 13 and the supplementary
material.

7. Conclusion

We have presented a novel structure-preserving image/texture fil-
tering algorithm based on adaptive kernel scales. Our method re-
lies on a collection of local statistics, collective flatness, to estimate
per-pixel filter scale that is big enough to eliminate noise, texture,
and clutter, but small enough to preserve all structure edges and
corners. Our collective flatness measure and per-pixel kernel scale
could be utilized as local statistical features for kernel based as well
as optimized based image processing operations.

Our method is not without limitations. It assumes the oscillating
property of textures and thus may not perfectly handle certain tex-
tures that would require explicit texture analysis or specific prior
knowledge. Acceleration of the current implementation and its ex-

tension to video would also be an interesting future research direc-
tion as well.
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Figure 13: Additional results. (top) input images, (bottom) texture filtering results.
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