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Abstract

We present a novel scheme for automatically generating
line drawings from 2D images, aiming to facilitate effec-
tive visual communication. In contrast to conventional edge
detectors, our technique imitates the human line drawing
process and consists of two parts: line extraction and line
rendering. We propose a novel line extraction method based
on likelihood-function estimation, which effectively finds the
genuine shape boundaries. We consider the feature scale
and the blurriness of lines with which the detail and the
focus-level of lines are controlled in the rendering. We also
employ stroke textures to provide a variety of illustration
styles. Experimental results demonstrate that our technique
generates various kinds of line drawings from 2D images
enabled by the control over detail, focus, and style.

1. Introduction

Line drawing is a simple yet effective means of visual
communication. A good piece of line art, sketch, or techni-
cal illustration typically consists of a small number of lines,
describing the identifying characteristics of objects, that is,
shapes. This enables quick recognition and appreciation of
the subject with little distraction from relatively unimpor-
tant contents. Also, line-based object representation can
provide significant gain, both in terms of time and storage
space, in subsequent processing of the data.

As an effective tool for abstract shape visualization,
line drawing falls squarely within the scope of non-
photorealistic rendering (NPR). In recent years, 3D line
drawing, that is, line drawing of 3D objects, has been a cen-
tral issue of NPR [21, 14, 15, 5, 17, 35, 26, 39], and has
proven to outperform conventional photorealistic rendering
in terms of quick and accurate communication of shapes.
The shape of a 3D object is in general explicitly represented

by low-level geometric elements (such as points or vertices
on the surface) whose coordinates are known a priori, and
hence the problem of 3D line drawing is reduced to identifi-
cation of important contours (such as creases or silhouettes)
formed by these elements. In 2D line drawing, however, the
target shape to convey is implicitly embedded in a 2D lat-
tice (image) and often corrupted by noise, making the task
of contour identification a less obvious—in fact extremely
difficult—one.

Traditionally, various problems in 2D line extraction
have been addressed by a low-level image analysis tech-
nique called edge detection. From the perspective of vi-
sual communication, however, edge detectors typically have
limitations in the following respects. First, the resulting
edge map often includes lines that may be accurate but less
meaningful (or even distracting) to the viewers. Second, the
‘importance’ of a line typically depends on the image gra-
dient only, hindering the possibility of a more sophisticated
detail control. Third, they have no interest in the ‘style’ of
lines and thus do not provide any mechanism for style con-
trol.

In this paper, we present an automatic 2D line-drawing
framework that addresses these limitations. The main idea
is to extract lines that locally have the biggest ‘likelihood’
of being genuine lines that will be of interest to the view-
ers. While extracting lines, we also compute additional line
properties, such as feature scale and blurriness. The ren-
dering module then performs line drawing by mapping on
the extracted lines stroke textures with a variety of styles.
For the versatility of line drawing, the attributes of the lines
are automatically adjusted according to the line properties
delivered from the line extraction module.

Our technique resembles the human line drawing pro-
cess. The likelihood function used for line extraction is
constructed by merging small line segments fitted for the
neighborhoods of feature points of the image (see Fig. 2(e)).
This is similar to the sketching process of artists where they



typically apply many small strokes over the shape contours.
In rendering extracted lines, the thicknesses and opacities
of lines are controlled by their feature scales and blurri-
ness. This imitates a typical artistic drawing where impor-
tant shape features are drawn prominently with strong col-
ors while background is depicted with soft tone and color.

In summary, our line drawing technique provides the fol-
lowing merits;

e Effective shape extraction and depiction: Due to the
resemblance to the human line drawing process, ‘per-
ceptually meaningful’ lines can be captured and then
rendered in ‘recognition efficient’ styles.

e Effective style control: The level of details, the level of
focus, and the style of the illustration can be controlled
in a way that is impossible with conventional edge de-
tection techniques. For example, we can remove a set
of strong but unimportant edges, or switch line styles
for different moods of the illustration.

o Effective visual communication: Given the above
properties, our technique results in fast and accurate vi-
sual communication in terms of conveying shapes and
also identifying subjects.

2. Related Work
2.1 Stroke-based rendering

Most of the existing image-guided NPR techniques aim
at creating styles that are somewhat distant from ‘pure’ line
drawing. These styles include painting [20, 4, 12, 13, 9,
11, 18], pen-and-ink illustration [29, 28, 30], pencil draw-
ing [34, 7], and engraving [25, 7], where clean, accurate de-
piction of outlines is either unnecessary or relatively unim-
portant. Instead, they focus on filling the interior regions
with certain types of ‘strokes’ (thus the term of stroke-
based rendering), such as lines, rectangles, or polygons, to
stylistically describe the tonal variation across the surface.
Some of these techniques use textured polygons as strokes
to widen the possible rendering styles. While we also use
textured strokes for the line rendering, the strokes in our
case are placed along the detected shape boundaries to con-
vey the shapes, not the interior tonal information.

2.2 Image abstraction

In image abstraction (also called image tooning), the in-
terior regions are abstracted by color smoothing and pixel
clustering. To clearly distinguish the clustered regions and
reveal the shape boundaries, line drawing is often used as
part of the rendering process. DeCarlo and Santella [6] pre-
sented an image abstraction system based on Canny edge

detector [1] and mean-shift image segmentation [3]. Wang
et al. [36] and Collomosse et al. [2] both applied the mean-
shift segmentation to classify regions in video. Wen et
al. [37] also used mean-shift segmentation to produce a
rough sketch of the scene. Fischer et al. [8] and Kang et
al. [18] both employed Canny edge detector to obtain styl-
ized augmented reality and line-based illustrations, respec-
tively. Note in general edge detector is suitable for extract-
ing lines while image segmentation is effective in pixel clus-
tering.

Gooch et al. [10] presented a facial illustration system
based on difference-of-Gaussians (DoG) filter, similar to
Marr—Hildreth edge detector [22]. Winnemdller et al. [38]
recently extended this technique to general color images
and video. Unlike Canny’s method, their DoG edge detec-
tor produces a group of edge pixels along the boundaries in
non-uniform thickness, creating an impressive look remi-
niscent of pen-and-ink line drawing done by real artists. On
the other hand, it also makes it difficult to extract the accu-
rate shape and direction of each contour, which may hinder
the flexible control of line styles.

2.3 Edge detection

In addition to the standard edge detectors mentioned
above, there are a variety of edge detectors that are useful in
many image processing applications [32, 27, 16, 33, 23]. In
fact, the literature on edge detection is vast, and we make no
attempt to provide a comprehensive survey. The limitations
of edge detectors in general have been discussed in Sec. 1.

Our line extraction algorithm (which will be described
in Section 4) can also be regarded as a novel edge detector.
The main difference is that our approach is based on lo-
cal line fitting, mimicking the human line drawing process.
We show that this approach is effective in terms of captur-
ing genuine lines and also preserving the line connectivity.
More importantly, our line extraction process is specifically
designed to enable control over various aspects of the il-
lustration, such as line details, focus, and styles, which is
essential in a line drawing application but not supported in
typical edge detection algorithms.

3. Overall Process

Our overall framework consists of two modules: line ex-
traction and line rendering (see Fig. 1). Each module is
again decomposed into multiple steps which we briefly de-
scribe here.

Feature point sampling: Our line extraction method is
based on kernel-based density estimation. To expedite the
process, we perform this estimation from the sample pixels
(rather than the entire pixels) that are highly relevant to the
task of line drawing, that is, the pixels with high enough
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Figure 1. Overall process

edge strengths. We use gradient magnitude to measure the
initial edge strength.

Likelihood function computation: For each pixel, we
compute its likelihood of being part of a genuine line by
performing least-square line fitting in the neighborhood.
The local likelihood functions obtained in this way are then
combined to construct a global likelihood function over the
entire image, from which we extract lines.

Feature scale and blurriness computation: In general,
the size of the neighborhood (kernel) strongly affects the
resulting likelihood function. We compute the likelihood
functions in two levels (with small and large kernel sizes),
to extract additional information including feature scale and
blurriness, based on the line fitting errors. The feature scale
of a pixel refers to the size of the feature that the pixel
belongs to, and it is useful for separating large dominant
features from unimportant details. The blurriness measures
how blurry its neighborhood is, and is used to control the
level of focus in the illustration between foreground objects
and the background. In addition, the two likelihood func-
tions are combined using the blurriness so that the resulting
likelihood function enables us to extract lines from blurry
regions in a more robust way.

Linking: We connect the ridge points on the global like-
lihood function to create individual line strokes. We first
create a set of connected components by naively connect-
ing the adjacent ridge points (which we call clustering). We
then extract an ideal (minimum-cost) line stroke from each
cluster.

Curve fitting: Each line stroke is further smoothed by
curve fitting. In particular, we adjust the number of points
along the curve based on the local normal derivatives, to
reduce the number of points while preserving the shape.

Texture mapping: The final illustration is created by vi-
sualizing the lines as textured strokes. The type of stroke
texture affects the overall style or mood of the illustration.
The line attributes such as thickness and opacity are con-
trolled by the feature scale and the blurriness to emphasize
dominant and foreground objects while deemphasizing de-
tailed and background parts. Since a line with zero thick-
ness or zero opacity is invisible, the line attributes can also
be used to change the amount of lines in a drawing for level-
of-detail (LOD) control.

The details of these two modules (line extraction and line
rendering) will be presented in Secs. 4 and 5, respectively.

4. Line Extraction
4.1. Feature point sampling

Given an input image I(x,y), we construct a Sobel gra-
dient map, denoted by I,(x,y), where each pixel is associ-
ated with its gradient vector g(x, y). To represent the edge
strength, we use a normalized gradient magnitude, denoted
by §(z,y) € [0,1]. From I,, we extract N sample pix-
els P = {p1, ..., pn } by applying a hysteresis thresholding
method (similar to that of [1]) on the values of §(z,y).

We first choose pixels having g(z,y) larger than ay,.
Next, among the pixels connected to the selected pixels in
the normal directions to their gradient vectors g(x,y), we
choose pixels having §(z,y) larger than «;. We repeat this
point tracing until no more points can be added. For the re-
sults in this paper, oy, was automatically determined as 2/3
of the average gradient magnitude, except Fig. 2 where a
larger a;, was used to clearly show the process. For oy, we
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Figure 2. Line extraction steps

used ay, /2. Figs. 2(c) and 2(d) show the selected points in
these two steps.

4.2. Likelihood function computation

Given a 2D point set P, we wish to estimate an unknown
likelihood function L(x), representing the probability that
a point x € R? belongs to a genuine edge. To derive L(x)
from P, we accumulate the local likelihood functions L;(x)
computed at points p; in P. Each L;(x) is computed by
fitting a line to the neighborhood of p,;. This process is
motivated by a robust point set filtering technique proposed
in [31] and we adapt the technique to the domain of 2D
line extraction. The line fitting step and the final likelihood

function L(x) are visualized in Figs. 2(e) and 2(f), respec-
tively.

To compute a local likelihood function L;(x), we define
a circular kernel K; of radius A centered at p;, and estimate
the location of a representative line e; in the kernel. Let e;
be represented by n;Tp + d; = 0, where n; is a unit vector
orthogonal to e;. We obtain e; using the well-known total
least square method [24]. In particular, we compute e; by
minimizing E(p;, k) under the constraint that n;"n; = 1,
where

1 X wilpy) (e +di)°
Bleoh) = g > i1 wi(p;) -

w; (p; ) is the weight for a point p; in the kernel K;, defined
by

gjmax{g"'gj,o}. )

w;(py)
! |gi\|gj|

Thus, higher weights are given to points p; having strong
edge features as well as similar edge directions to p;. This
is an essential criterion for improving the quality of line ex-
traction in our application. A line in an image most likely
lies on or nearby pixels with strong gradient magnitudes.
Also, by considering gradient directions in Eq. (2), we can
separate neighboring lines with different directions.

We then define an anisotropic (elliptical) kernel K for
p; using the line e;. The center c; of kernel K7 is deter-
mined by projecting onto e; the weighted average position
of points p; in K;, using the weights w;(p;). The longer ra-
dius of K7 (in the direction of e;) is fixed as h. To determine
the shorter radius of K (in the direction of n;), we compute
the weighted average distance from e; to the points in K.
The shorter radius is set by multiplying a constant ~y to the
average distance. In our experiments, we used v = V2.

Now we define the local likelihood function L;(x) as in-
versely proportional to the distance to e;;

)rﬂux

Li(x,h) = ¢i(x—c; ,(3)

Ci) -1y ]2]
h2
where ¢; denotes the kernel function defined by an
anisotropic, bivariate Gaussian-like function oriented to
match the shape of K/. In our implementation, we use a
uniform cubic B-spline basis function. Thus ¢; peaks at
c;, then gradually decreases as moving toward the ellipse
boundary and stays zero outside.

Finally, we obtain the global likelihood function as the
accumulation of local ones and normalize it into the range
of Oand 1;



The gradient magnitude g; is used as a weight to reflect the
edge strength. E(p;, h) is included so that a local likeli-
hood function with a lower line fitting error can have more
influence on the global one. Note that the value of E(p;, h)
is between 0 and 1.

4.3. Linking

Ridge point clustering In the global likelihood function
L(x), the ridges with high function values are most likely
to form the genuine edge lines. The goal of clustering is to
put all the pixels belonging to the same line into a single
cluster. We again use a method similar to the hysteresis
thresholding of Canny edge detector [1]. That is, we start
with ridge pixels with local maximum function values larger
than T}, then trace along the ridge directions until we visit
rigid pixels with values smaller than 7;. Fig. 2(g) shows the
result of ridge point clustering.

Stroke extraction While each cluster is now a simply
connected point set, it may not be smooth enough to be
directly drawn as a line stroke or to be point-sampled for
curve fitting. To obtain a smooth line stroke from a cluster,
we first find the farthest pair of points in the cluster and then
obtain the shortest path between them. For the path compu-
tation, the cost ¢;; for connecting two points p; and p; is
defined by

2
cij = li; - 0;5 - max (|n; - s3], [n; - s550),  (5)
where 6; ; = 1 — w l; is the distance between p; and

P;, and s;; is the unit direction vector from p; to p;. The
cost ¢;; becomes low when the distance is short, when the
normals are similar, or when the path direction is orthog-
onal to the normals. Fig. 2(h) shows the result of stroke
extraction.

4.4. Two-level processing

In constructing the likelihood function (Sec. 4.2), the
kernel size plays an important role. The use of a small
kernel is good for extracting minute details but the result-
ing lines can be disconnected or jagged especially when the
region is blurry (see the top left part of Fig. 3(b)). With
a bigger kernel, it is easier to construct long lines even in a
blurred region but small-scale details may disappear (see the
hair region in Fig. 3(c)). To have both effects, we compute
the likelihood functions in two levels with different (small
and large) kernel sizes, and obtain a new likelihood func-
tion by combining them. Fig. 3(d) shows the line strokes
extracted from the combined likelihood function. Note that
in Fig. 3(d), lines are extracted properly in both blurry re-
gions and detailed regions.
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Figure 3. Two-level processing

Blurriness computation When combining the two like-
lihood functions, we can determine their relative weights
by computing the blurriness of image regions. The blurri-
ness indicates the degree to which a region is blurred. In
general, an important region has a clearly visible structure
while an unimportant area (such as the background) is of-
ten blurry due to the photographer’s intentional defocusing.
Therefore, we can assume that the blurriness represents how
important (or focused) a region is.

We use the line fitting errors E(p;, k) from small and
large kernels to compute the blurriness at feature points p;
in P. A blurry region has a large fitting error because strong
edge points may not exactly lie on the fitted line. On the
other hand, the fitting error becomes small in a region with-
out blurring.

We define the blurriness b; at p; by

bi = E(pi,ha) +wiE(pi, hs), (6)

where hg and hy, are the two different sizes (small and large)
of the kernel, respectively. wj; is the relative weight when
we combine the line fitting errors. If E(p;, hy) is small, it
means the region is not much blurred, and we can almost
neglect E(p;, hy). On the other hand, when E(p;, hy) is
big, we need to check again with the large kernel to deter-
mine the amount of blurriness. In this case, the line fitting
error E(p;, hy) should be reflected on the blurriness value.
For simplicity, we set w; as E(p;, hq), which worked well



in our experiments. The blurriness b; has a value between 0
and 1.

Likelihood function composition With the blurriness b;
computed for each feature point p; in P, we can compose
the two likelihood functions by

L;a(x) Gi(1 = E(pi, ha))Li(x, ha), (7

Li,b(x) = Ai(l —E(Pi,hb))Li(X, hb)» (8)
N

L(x) = Z((1_bi)Li,d(x)eriLi,b(x)). )

=1

After composition, we normalize L(x) into the range of 0
and 1.

Feature scale computation In addition to the blurriness,
we compute for each feature point p,; another property,
called feature scale f;, from the line fitting errors. The fea-
ture scale defines the size of the feature in the surrounding
region of a feature point. If the feature scale is large, the
region belongs to a large dominant structure of the image.
Otherwise, the region corresponds to a small detail of the
shape.

Around a large feature, the line fitting error remains con-
sistent because a line can nicely approximate the feature re-
gardless of the kernel size. It could even decrease with a
larger kernel because the fitting error is normalized by the
kernel size. Around small features, however, the line fitting
errors increase when the kernel size becomes large. There-
fore, we define the feature scale f; at p; by

fi: 1— le_mlnl{le} , (10)
e, (/7 — min: (77}
where f] is arctan(E(p;, hy) — E(ps, ha)), and by and hy
are the same as in Eq. (6). We use the arctan function in
Eq. (10) to suppress the influence of extremely small and
large values of E(p;, ) — E(pi, ha).

From Eq. (10), it is clear that the feature scale f; is be-
tween 0 and 1. Note that when there is no strong feature
around p;, the line fitting errors can be consistently large
with different kernel sizes, resulting in a large feature scale.
However, in this case, no line will be drawn through p; in
the rendering process and the wrong feature scale has no
effect on the result image.

5. Line Rendering

In this section, we first describe the basic process of line
rendering, including curve fitting and texture mapping. We
then explain how to render individual line strokes with var-
ious styles using feature scale and blurriness.

5.1. Line rendering process

We apply curve fitting to connected stroke points to con-
struct smooth lines similar to human-drawn line illustra-
tions. We first reduce the number of points in each line
stroke by point sampling. For effective shape preservation,
we should sample more points in a segment where nor-
mals are changing abruptly. The sampling density is con-
trolled with the sampling cost s; ;11 between two consecu-
tive points p; and p;+; along a line stroke, defined by

Siit1 = liit1 - 05 it1 - Oit1 last (11)

InEq.(11), 6, ;, =1— w l3,i+1 is the distance between
P; and p;41. Piast 1S the last point sampled so far.

We start with sampling the first point of a line stroke and
set it as pyqst. We visit the line stroke points in sequence
and sample the next point p;;; when the cumulative dis-
tance from p;,s; exceeds a pre-defined threshold. After the
sampling, the cumulative distance is reset to zero and piqs¢
is updated. In our experiments, the pre-defined threshold
is a half of the logarithmic length of the line stroke. Thus,
a relatively smaller number of points are sampled from a
longer line, which makes it smoother than a shorter line. To
avoid having too few samples along a nearly straight line,
we also regularly sample points for every pre-defined num-
ber of points, which is 10 in our experiments.

A line stroke is converted to a smooth curve by generat-
ing a Catmull-Rom spline curve from the sampled points.
The final line drawing is obtained by mapping a material
texture along the spline curves. The type of the stroke tex-
ture determines the overall style or mood of the resulting
line drawing. To further imitate the human line drawing,
we allow line attributes (such as thickness and opacity) to be
adjusted, using the feature scale and blurriness computed in
the line extraction process. The following sections discuss
this issue.

5.2. Detail control using feature scale

The feature scale of a line can be computed by averag-
ing the feature scale values of the feature points belonging
to the line. The feature scale of a line estimates the size
of the feature that the line is describing. Using the feature
scale values, we can control the amount of details in the
line drawing by removing lines with small feature scales.
We can also adjust the thickness of a line stroke according
to its feature scale.

To control the amount of details and line thickness, we
use two thresholds f; and fj, for the feature scale. The lines
whose feature scales are smaller than f; are either omitted
or drawn with the minimum line width, while lines with
larger feature scales than fj are drawn with the maximum
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Figure 4. Line attribute control with feature scale and blurriness

line width. Line widths between f;, and f; are obtained by
linear interpolation.

Fig. 4 shows an example of detail control with feature
scale. In Fig. 4(c), compared to Fig. 4(b), small details have
been removed while large features are preserved.

5.3. Level-of-focus control using blurriness

Similarly to the case of feature scale, the blurriness of a
line can be computed by averaging the blurriness of feature
points along the line. The blurriness of a line relates to how
much the region around a line is focused or important in
the image. The blurriness can be used to adjust the opacity
of a line, that is, to control the level-of-focus, where large
blurriness means less opacity. In addition, the blurriness
can help remove an unimportant line by making the opacity
ZEero.

In the line rendering process, line opacity is controlled
with the blurriness using two thresholds b; and by, in a sim-
ilar way to the feature scale. Fig. 4(d) shows an exam-
ple where the opacities of the lines in Fig. 4(c) have been
changed according to the blurriness.

6. Experimental Results

The line drawing results in Fig. 6 are obtained from the
test images in Fig. 5. These results demonstrate that the
amount of details and the level of focus are effectively con-
trolled by our technique using the feature scale and blur-
riness. For Figs. 6(b), 6(d), and 6(f), a pastel texture was
used. Figs. 6(a), 6(c), and 6(e) were drawn with a black-ink
texture.

By default, the radii of the small and large kernels, hq
and hp, are 3 and 6 pixels, respectively. We usually set
the threshold T}, for selecting ridge pixels as 0.08. For a
black-ink style illustration, we use a larger value for 77, to
remove more details. The threshold 7; is set to O for all the
results in this paper. We also provide a threshold 7T for re-
moving very short lines. 7T is usually set to 7 pixels. For
feature scale control, f; is usually between 0.4 to 0.5, and
fn between 0.6 to 0.7. For control with blurriness, b; ranges

(d

Figure 5. Input images

between 0.1 to 0.3, and by, between 0.5 to 0.8 in our exper-
iments. The parameter values for the results in Fig. 6 are
given in Table 1.

fig. hqg hy, Tn T. fi fo b by
6(a) 3 6 022 7 05 0.7 03 0.6
6(b) 3 6 008 10 04 06 03 06
6(c) 4 6 008 15 05 07 03 055
6(d 3 6 008 7 045 07 01 05
6(e) 3 6 008 7 04 0.7 03 0.8
6(f) 3 6 008 19 05 06 01 07

Table 1. Parameter values for results in Fig. 6

The proposed line drawing system was implemented
with Visual C++ and OpenGL on a Windows PC. The com-
putation time mostly depends on the image size. For an
image with the size of 512 x 512, it takes about 20 seconds
to generate a line drawing result on a Windows PC with a
3.0 GHz Pentium processor and 2 GB memory. For each of
the results in this paper, the computation time took about 7
to 30 seconds.

Different stroke textures can be applied to change the
style or mood of the illustration. The attributes of the lines
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Figure 6. Line drawing results

can also be adjusted. Figs. 7(a) and 7(b) use the same input
images as Figs. 6(a) and 6(b), respectively. Fig. 7(a) uses
a crayon texture and keeps the background details. In Fig.
7(b), we attempted to express a wide range of darkness to
imitate the oriental black ink style.

Fig. 8 compares our method with Canny edge detector
[1], which is a standard edge detection technique. Fig. 8(b)
is a result from Canny edge detector, where the detailed
edges have been extracted. Since Canny’s method strongly
depends on the gradient magnitudes, it is often impossible
to remove a set of strong but unimportant edges without los-
ing other important features. See for an example the letters
on the cup in Fig. 8(a). If we adjust the Canny’s parameters
to remove them, important features (such as the boundaries
of the face and the cup) are also removed (see Fig. 8(c)). On
the other hand, our method provides feature scale to effec-
tively handle such a case. Fig. 8(d) shows the ridge points
extracted from the likelihood function, and Figs. 8(e) and
8(f) are the line drawing results with different LOD control.
We can choose to draw the letters with fine lines as in Fig.
8(e) or remove them as in Fig. 8(f). In addition, it is possible
to emphasize the main structures by adjusting the opacity in
the background (such as the face in Figs. 8(e) and 8(f)). For
the abstracted result of Fig. 8(f), we set f; as 0.65 and f}, as
1.0, while b; and by, are set to 0.3 and 1.0, respectively.

(b) oriental black-ink texture

Figure 7. Control with different textures
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7. Discussion and Future work

We have presented a novel framework for automatic
image-guided line drawing. Inspired by human line draw-
ing process, our method extracts lines that are most likely
to represent the genuine and meaningful shape boundaries.
In addition, based on the information obtained from the line
extraction process, our rendering module visualizes individ-
ual lines with different thicknesses and opacities, in order
to maximize the effectiveness of visual communication. Fi-
nally, the overall style and mood of the illustration may also
be controlled by proper selection of stroke texture.

In a separately developed line drawing scheme by Kang
et al. [19], the DoG edge detector [10, 38] is further ex-
tended to exploit the edge flow extracted from the im-
age, resulting in a new line construction filter called flow-
based DoG (FDoG). The FDoG filter delivers improved
line-drawing performance in terms of coherence enhance-
ment and noise suppression. Compared to the FDoG filter-
ing approach, our line construction scheme involves more
sophisticated algorithms, whereas it exclusively provides
control over feature selection, level-of-focus, and line style,
each of which could lead to more effective visual commu-
nication.

An existing image abstraction system [6] enables inter-

active LOD control using an eye-tracking device for bet-
ter visual communication. Our framework also provides
some amount of LOD control, based on parameter adjust-
ment with feature scale and blurriness analysis. It requires
further study to support such functionality to a greater de-
gree without the use of specialized hardware.

As discussed in Section 2, image-guided line drawing is
often coupled with abstract region coloring to obtain styl-
ized image abstraction. Our line drawing result may simi-
larly benefit from adding colors to image regions in provid-
ing more effective visual communication.

While our line drawing framework takes into account
multiple factors, such as gradient, feature scale, and blur-
riness, the image gradient still plays an important role in
determining the level of pixel salience. As a result, it may
not be easy to entirely discard, say, some strongly textured
but unimportant background. We believe it would be bene-
ficial to incorporate a texture analysis procedure to address
this problem. We are currently exploring the possibility of
providing control over ‘stroke merging’ to further enhance
the stroke connectivity and reduce the number of strokes in
the illustration. Also, content-based style selection could
be another interesting future research topic, that is, the de-
velopment of an automatic mechanism for selecting stroke
style based on the image content.
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