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Abstract In this paper, we introduce a novel method for content-aware image
resizing based on flow-guided seam carving. It extends the existing seam carving
framework by replacing the conventional energy field with a “structure-aware”
energy field that takes into account the feature orientations in the image. Guided by
this new energy field, our approach excels in preserving (i.e., avoiding the distortion
of) important structures in the image, such as shape boundaries. We also present
a simple user interface to further optimize the resizing result based on the genetic
selection process among multiple resizing operators such as scaling, cropping, and
flow-guided seam carving. We show that such simple user interaction, coupled with
the genetic algorithm, dramatically increases the chances of producing the user-
desired outcome.
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1 Introduction

With the recent advances in digital image processing, images have become an
common material for media distribution and display devices such as PDAs, cell
phones, televisions, computer monitors, and laptops comprise more than 70 % of
communication devices today. An image display using these various devices derives
new problem: images should be resized for its display and application. Typically, each
device is limited by its own fixed resolution and aspect ratio, which calls for proper
image resizing to fit the given image to the display. Furthermore, printing documents
with embedded image need resizing to comply with the overall layout.

Traditional approaches, which are known as image retargeting or resizing, modify
the ratio and size of the image in order to best satisfy the target display device.
However, straightforward resizing operators, such as scaling, produce distorted
image contents because they are oblivious to image content. To overcome this
limitation, a class of techniques is used to attempt resizing the images using a content-
aware energy function. Seam carving [2, 17] and grid warping-based methods [21, 23]
are representative approaches for content-aware image resizing methods. These
methods first estimate the important regions of the image and then resize the image
but preserve of the content of important regions. However, since the energy function
for important region typically reflects feature strength without considering feature
orientation, some prominently shaped boundaries of arbitrary orientations might
be poorly protected. Furthermore, these techniques do not take into account the
aesthetic appeal of the resized image because the user can control only the target
size of the image. The resizing system does not allow for interactions with the user.

In this paper, we introduce a novel method of interactive image resizing that
protects prominent feature lines and shape boundaries during the generation of the
energy field, and provides a better way of choosing a resizing operator. We first
extract a direction field that describes the orientation of salient features in the image,
and then obtain local derivatives in the perpendicular direction of the recorded
orientations in the field. The magnitudes of these directional derivatives, which
can be viewed as “orientation-aware” or ‘structure-aware’ gradient magnitudes, will
comprise our new energy field. We then apply the conventional image resizing
algorithm using this new energy function. Additionally, we use an interactive genetic
algorithm (IGA) to determine the parameter values of the image resizing technique
so as to meet users’ preferences. Users select operators and then order the results by
visual merit. The system collects the scores and the genetic algorithm then repeatedly
changes the parameter values in response to these scores. This process is repeated
until a satisfactory result is obtained.

We will demonstrate that our “structure-aware” energy function outperforms
conventional ones in preventing unwanted distortion of important structures of
arbitrary orientation. We will also show that the interactive interface can produce
results that satisfy users.

The rest of this paper is organized as follows: In Section 2, we illustrate some
limitations of the existing seam carving framework, which leads to the motivation of
our approach. Section 3 describes how the structure-aware energy field is constructed
and incorporated into the seam carving algorithm. In Section 4, we evaluate resizing
results from our structure-aware energy field. In Section 5, we explain how an IGA is
used in our system. In Section 6, we present some experimental results, and we draw
conclusions in Section 7.

@ Springer



Multimed Tools Appl

2 Related work

Image resizing has often been conducted by brute-force scaling along horizontal and
vertical axes, resulting in the distortion of image contents when they are converted
to a different aspect ratio. Cropping methods [1, 3, 6, 20] reduce such distortion by
discarding unimportant content, which is followed by uniform scaling. However, they
may inadvertently remove some important structures near the image boundary.

Seam carving [2, 17] was recently proposed for content-aware image resizing. It
employs dynamic programming to eliminate (or insert) vertical or horizontal seams
that pass through the insignificant (preferably homogeneous) image regions using
an energy function based on gradient magnitude or saliency measures. However,
the shortage of homogeneous regions could lead to shape distortion or jaggedness.
Moreover, since the energy function reflects feature strength only along to the axes
of image coordinate, it cannot protect some prominent shape boundaries of arbitrary
orientations.

Grid warping-based methods [21, 23] place a grid mesh on the image and perform
adaptive scaling of the grids such that the distortion is minimized in important
regions. Unlike seam carving, it does not discard any pixel information and thus
reduces jaggedness in the end result. However, as pointed out by Wang et al. [21],
such adaptive warping of grids may lead to severe contraction or stretching of certain
image contents. It may also fail to preserve the shapes of prominent image lines in
arbitrary orientations.

To overcome the this problem, additional functions have been considered for
image resizing. Wu et al. [24] used a translational symmetric which promoted better
understanding of the image semantics of the image. Kim et al. [12] minimized the
overall distortion of resized image by detecting a partitioned scale distortion function
in the frequency domain. However, these approaches only protected image contents
which have symmetrically or directionally structured shapes, whereas our structure-
aware energy can preserve the arbitrary shapes.

A recent trend is to apply different operators sequentially, such as scaling,
cropping, and resizing, to the image. since no single operator performs well in every
case. Rubinstein et al. [18] recently presented an image-resizing algorithm in which
bi-cubic scaling, cropping, and seam carving are combined. Liu et al. introduced the
continuous seam carving (CSC) operator and combined it with uniform scaling to
generate the final retargeted result. However, these results do not always agree with
users’ preferences [18] since they do not consider users’ satisfaction.

3 Observation

To illustrate the limitations of the existing seam carving framework [2, 17], we
prepared an image with some obvious directional features (see Fig. 1a). Based on
the method of [2], let us attempt to resize this image in the horizontal direction.
Here, we use /(x) to denote the input image, where x = (x, y). Figure 1b shows the
accumulated energy map using the conventional gradient magnitude as the energy

function: e(x) = /g + g3, where g, = 3//dx and g, = 91/dy. This input image does
not contain strong horizontal features and thus exhibits relatively low energy in g,;
this leads to the distortion of the vertical features (see Fig. 1c). On the other hand,
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Fig. 1 Resizing with/without orientation information: a input image with vertically-biased features;
b accumulated energy map using conventional gradient magnitude; ¢ resizing based on b; d accumu-
lated energy map using horizontal gradient only; e resizing based on d; f proposed method

if we use only the horizontal gradient component e(x) = |g2| as an energy function
the accumulated energy map fully appreciates the vertical features (see Fig. 1d); this
leads to better protection of prominent feature lines (see Fig. 1e).

This experiment suggests we can improve the quality of image resizing by incorpo-
rating feature orientation information. Since the feature orientations generally vary
from pixel to pixel, we must design an energy function that adaptively conforms to
the local structure and orientation. We therefore generalize this idea of directionally-
biasing the energy function by first extracting the feature direction field from the
image and then computing gradient magnitudes in the perpendicular direction to the
local feature orientations recorded in the field. Figure 1f shows the results obtained
using our approach.

4 Flow-guided seam carving

We define an energy function such that both feature strength and feature orientation
are taken into account. We first construct a vector field that represents prominent
feature orientations in the image. In particular, we look for a smooth direction field
in order to reduce the influence of noise and to maintain consistent and coherent
feature flow all around. There are a variety of techniques to obtain a smoothed
direction field from an image, including scattered orientation interpolation [7, 13],
PDE-based orientation diffusion [15, 19, 25], structure tensor [16, 22], and non-
linear orientation filtering [10, 11, 14]. We choose the method of [11] to construct
a directional field known as an edge tangent flow (ETF). An ETF is constructed
by non-linear smoothing of tangent vectors that describe the directions of minimum
color variation, that is, the vectors perpendicular to the image gradients V /.

Using ETF, we now define the orientation-adaptive gradient magnitude. Let
t(x) = [#(x), t,(x)] be the normalized tangent vector recorded in the ETF at x. Also,
let t+(x) denote its perpendicular vector. We then compute the ‘oriented’ gradient
magnitude as a directional derivative of I along t*(x):

8 (x) = Ve I(®)]. (1)

As opposed to the conventional gradient magnitude |V /| obtained in a non-biased
fashion (see Fig. 2a), our method measures the feature strength only in the direction
of the biggest color variation, and therefore produces a more “structure-aware”
energy field.

Image resizing is typically conducted in either a horizontal or a vertical direction.
As we demonstrated in Fig. 1, vertical structures are vulnerable to horizontal resizing.
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Fig. 2 Oriented-axis-based
gradient acquisition: a
conventional method; b ETF;

¢ proposed method g(x) =

[8x(x),8y(%)] 1(x) Vol

g

(a) () (©)

Similarly, horizontal structures are easily distorted by vertical resizing. To address
this, we make further adjustments to our structure-aware energy term. For vertical
seams, we introduce the structure-adaptive weight w,(x) as follows:

wy(X) = |ey ~t(x)], (2)

where e, = (0, 1), that is, the unit vector along the y axis. This adjustment leads to
better protection of vertical feature lines under horizontal resizing. The weight for
horizontal seams, denoted as wy,(x), is similarly obtained.

The new energy function for finding vertical seams is now defined as:

ey(X) = [y (x)g°(x)]. ®)

Similarly, the energy function e;(x) for finding horizontal seams is defined as
en(x) = |wp(x)g°(x)|. We thus use e, under horizontal resizing and e, under vertical
resizing. Figure 3 compares the energy field based on conventional gradient magni-
tude versus ours.

(a) (b) O

Fig. 3 Structure-aware energy field: a input image; b conventional gradient magnitude; ¢ magnitude
of structure-adaptive gradient

@ Springer



Multimed Tools Appl

Fig. 4 Seam detection and image resizing: a gradient-based accumulated energy field; b our
accumulated energy field; ¢ seam detection (and resizing) using a; d seam detection (and resizing)
using b

Using our new energy function, we perform dynamic programming [2] to construct
the accumulated energy map and find the optimal seams. The forward energy [17] has
also been added in this process.

Our approach enables interactive image resizing just like these predecessors [2,
17]. However, the key difference is in the energy function setup, which is part of the
preprocessing.

Figure 4 compares the accumulated energy field of the original seam carving with
ours. Notice that our approach does a better job of protecting the curved boundary
of the cup.

5 Evaluation of the structure-aware energy field

In our experiments, we use a set of images from [5], many with directional features.
Figure 5 shows comparisons with [17]. Again, notice that the prominent shape
boundaries are preserved better with our approach. Figure 6 shows a comparison
with the grid warping-based resizing method [21]. Since each grid has a quad form, it

@ Springer



Multimed Tools Appl

Input image Rubinstein et al, [7]  Flow-guided Input image Rubinstein etal. [7]  Flow-guided
seam carving seam carving

Fig.5 Comparisons with Rubinstein et al. [17]. Our method better preserves prominent feature lines

may have a problem handling features not aligned with the grid, such as diagonally
oriented lines (as shown in Fig. 6a). Our flow-guided approach has no such problem,
and protects prominent outlines as well as avoids over-stretching of grid warping (as
shown in Fig. 6b). In several of these comparisons, it is clear that flow-guided seam
carving produces a more readable image at the new aspect ratio.

We also demonstrate applying a flow-based energy field to the grid warping
method [21]. Figure 7 shows a comparison of gradient-based energy-based grid
warping and flow-based energy-based grid warping. Our method better preserves
the circle shape boundary of the bowl and portion of each wood (as shown in
Fig. 7c and e). As shown in Figs. 7b and d, flow-based energy has a field with more
structure-aware properties than the gradient-based energy field, such as the circle
boundary of the bowl and the veining of the wood.
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Input image Rubinstein Flow-guided

‘Wang et al. 2008 [9]

et al. 2008 [7] seam carving

Fig. 6 Results by Rubinstein et al. [17], Wang et al. [21], and ours

To verify our results, we determine the quality of our results using image similarity
measures. Recently, Dong et al. [4] proposed a bi-directional similarity function
called Image Euclidean distance (IMED). Image Euclidean distance considers the
spatial relationship between pixels in different images and is robust enough to
withstand small perturbations. We compare IMED values for flow-guided seam
carving with Rubinstein et al. [17] and Wang et al. [21] (see Table 1). For most
images, the similarity measure is better for flow-guided seam carving. However, if
we look at the IMED cost measures for Figs. 5d and 6a in Table 1, it becomes
apparent there are exceptions. However, it seems pretty clear from these pictures
that flow-guided seam carving produces a better result. Rubinstein [18] observes
that the results of automatic resizing by similarity distance do not coincide with
user preferences. This is why we make provision for our system to be modified
interactively, using a genetic algorithm.

6 Interactive generic algirothm (IGA)
An IGA [8] uses human subjective evaluation instead of the fitness function used

by a standard GA. Interactive genetic algorithms are useful for finding solutions to
problems related to emotional and subjective factors. We use an IGA, to construct
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(d)

Fig.7 Grid warping-based image resizing [21] using different energy fields: a input image; b gradient-
based significant map; ¢ grid warping-based image resizing using [21] with gradient-based energy;
d flow-based significant map; e grid warping-based image resizing [21] with flow-based energy

a multi-operator system that combines flow-guided seam carving with an approach
to scaling and cropping similar to that of Rubinstein [18]: we replace the similarity
metric they used to compare images with the IGA.

Table 1 IMED similarity values for seam carving [17], grid warping-based resizing [21] and flow-
guided seam carving

Images [RSAO08] [WTSLO08] Structure-aware energy
(a) IMED similarity values for Fig. 5

Figure 5a 5.66 4.78

Figure 5b 2.11 1.00

Figure 5c 1.21 0.81

Figure 5d 0.53 0.67

Figure 5e 1.82 1.65
(b) IMED similarity values for Fig. 6

Figure 6a 0.49 0.58 0.51

Figure 6b 0.21 0.32 0.20
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Table 2 Chromosome
encoding

Parameter Lower Upper Bits

p1: number of operator 1 3 2
p2: types of operator
p3: order of operators
pa: portion of operator

=

3 2
6 3
9 4

6.1 Chromosome encoding

The resizing of an image using the multi-operator scheme is controlled by a list of
pre-defined parameters. A chromosome p; consists of a choice of parameters and
image resizing methods as follows:

1.

The parameter p; is the number of operators used for image resizing. We can use
between one and three operators, chosen from flow-guided seam carving (FSC),
scaling (SL), and cropping (CR).

The parameter p, represents a combination of operators and its meaning de-
pends on p;. If p; is 1, then p, determines which of the three possible operators
will be used. If p, is 2, then p, specifies the pair of operators that will be used,
chosen from (FSC, SL), (FSC, CR) or (SL, FSC) without regard for operator
order.

The parameter p; is the order in which the operators are applied. It is only
relevant if p; is 2 or 3. If p; is 3 and p; is (FSC, SL, CR), then p; makes the six
samples of gene combination, and these samples correspond to values between 1
and 6.

The parameter p, is the influence of the chosen operator, and its effect is also
relative to p;. The influence of each operators can vary between 10 % and 90 %.

Table 2 and Fig. 8 show the domain of each parameter and the number of bits

required in a chromosome.

6.2 Interactive resizing

Figure 9 illustrates the GUI of our system. The interactive image resizing procedure
using our GUI is as follows:

Initialization: First, the user assigns a target size for resizing and then the system
presents the user with six resized images, which are computed using six randomly
selected operators.

User Interaction: Six images are shown to a user with a slider located below the
images to assign a fitness value to each generated image. We assumed that 10
indicates the greatest satisfaction and 1 indicates the lowest satisfaction with the
resized image. After the user assigns a score from 1 to 10 for each image, he or

Fig. 8 Chromosome [ 2bits | 3bits | 2bits |  4bits |
representation of our system
Number of Types of Order of Number of
the operator  the operator  the operator the operator’s
repetitions
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|« Image Controler oE

original image

most tavorile image

0

Fig.9 Interface used in the experiments

she presses the generate’ button. The system then finds three chromosomes with
the highest value in the first generation.

— Reproduction: From the three highest-ranked chromosomes in the first gener-
ation, two parent chromosomes are randomly selected to produce one chro-
mosome. The crossover operator swaps the part of the bit-string in the parent
chromosomes determined by a crossover point. We use a single crossover point
on both parents’ chromosomes, and generate six child chromosomes using
different combination of parent set. After the crossover, the system applies the
mutation operator to the six child chromosomes. This process inverts 2 % of
the total number of bits to introduce randomness. By trial and error, we found
that mutation values are suitable. A new set of resized images is then computed
using the new parameters and presented to the user. Figure 10 illustrates the
interactive evolution process.

— Repetition and Termination: The interaction and next-generation processes are
repeated until the user feels that no further progress can be made and presses

Current Generation c int Next Generation
(population = 6) TOSSOVEr porn (population = 6)

1000--0101 — =21y, 10001+ 00101 11001+ 00011 ST

11000101 440q.. 1001—)01001 00000 | 11001---00011 1000:-0001 " 4444... 911
0100---0000 Crossover 1000---0010

1100--0100
Child 10001 - oo1o1|:1(>01 00011 160> 10

W 10000011
Mulanon¢ | ’
10001---00101 ~0001---00011

Fig. 10 The genetic operation process: selection, crossover, mutation, and reproduction

1100---1000
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! Step 1

Input image

Final result

Fig. 11 Steps in the evolution of an image resizing filter

“finish” button. Figure 11 shows an example of the evolution process, although
only the three highest-ranked images are reproduced. In this case, the user
achieves an acceptable result in three iterations.

Our system is implemented by MFC with OpenCV 2.3, and the test environment
is a PC with an Intel Core i-5 2500S processor and 2Gb of memory. Performance
mainly depends on the resolution of the image.

7 Experimental results

We compare our result with the multi-operators in [18] with flow-guided energy and
seam carving in Fig. 12. In comparison with seam carving, flow-guided energy applied
to multi-operators in [18] produces images that contain better preserved contents and
less distortion. To prove the advantage of our system, we conducted a user evaluation
and system usability test. Twenty-one users participated in our experiments. Most
participants were computer science students or experienced users of graphic editing
tools. We experimented with the ten photographic images shown in Fig. 13.

7.1 User evaluation

We measured the users’ degree of satisfaction and the processing time with the
results produced automatically [18] and by interactive optimization. Before the
experiment, we explained an interface of our IGA based system with single example
image. We fixed resizing ratio as an 80 % of width size, and firstly showed an original

@ Springer



Multimed Tools Appl

/

Input image Rubinstein Rubinstein et al. 2009 [10] Our results
et al. 2008 [7] with flow-guide energy

Fig. 12 Comparison of results from our system with those from seam carving and multi-operator
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Fig. 13 Input images

image and automatically resized result. Then, user resized an original image using
our system, and compared the satisfaction of resized result. The degree of satisfaction
was determined by scores between 0 and 100. Figure 14a shows the users’ preference
for the interactive and automatic systems, averaged over all the images. The overall
preference for the interactive approach is 73 %: this means users get a preferred
result using the interactive system for 73 % of the image. Generally, users can
recognize the important things in the image, but the energy field cannot. Therefore,
the user gives a high score when the important things are preserved, despite the fact
that the image’s background has disappeared due to cropping. We also compared

100%

(min) [Average]
w0t - - -t - - 35
g 80% {1 — — — EEEEEI RS BN RS RS . ~IGA 144
70% g s s e B -« mulit-Op : 1.80
S I e T B A 25 '\ //\\ — p/-
2
NS EEEEEEE - T Multi-Op 2 A
2 4% H4u -+ 1+ Equality 15
O o™ -
D 20% v \/
& 10w I 05 Y
0% 0
123465678 910111213141516 1718192021 1 2 3 4 5 6 7 8 9 10
User Image number
(@) (b)

Fig. 14 Results of user evaluation: a preference for the results of each system by each user; b
processing time
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Fig. 15 Changing fitness
during the search for a resized
image

\\

—#-Average Fitness Value

=B-Best Fitness Value

Fitness Value
o N N (e [ee]

1 2 3 4 5 6
Generation

the processing times: the results shown in Fig. 14b indicate our interactive approach
is faster than the automatic system.

We then carried out a convergence test based on the users’ preferences that we
measured. Figure 15 shows the average and best changes of fitness. The average and

score

= Ours

m Previous

users

(a)

score

M Ours

M Previous

questionnaire

(b)

Fig. 16 Result of usablity test: a usability Scale by each user; b 5-point Likert scale by each item

@ Springer



Multimed Tools Appl

best value of fitness is calculated based on the preferences of selected users who
finished IGA processing over the six generation step. These figures show the steady
improvements of the results over generations.

7.2 System usability test

We assessed and compared the usability of our system and original seam carving
method [2, 17] using the SUS (System Usability Scale) [9] tool. An user is asked
to rate 10 items using a 5-point Likert scale (strongly disagree to strongly agree).
Figure 16a shows the results of the SUS. While the average score of original seam
carving is about 67.7 with a distribution range from 57.5 to 80, the average score of
our system is about 76.1 with a distribution range from 65 to 92.5, which means that
our system is more usable than the original seam carving. Figure 16b shows the results
of the SUS by item using a Likert scale. Using a conversion formula, we controlled
all scores to have positive phases. That is, the higher the score, the more usable the
system. Figure 16b shows our system scored more points for systematic stability and
function, but scored fewer points for ease of use. Our system, which requires iterative
steps, cannot give feedback to users in real time. However, the resulting images
from our system are preferred over those of the original seam carving by users. The
average preference score of our system is about 88.8, while that of the original seam
carving is about 54.8.

8 Conclusion

We have presented an enhanced seam-carving technique that improves the quality
of photograph resizing. Guided by the structure-adaptive energy field, which can
effectively be applied to any resizing algorithm, we improved the state-of-the-art
photograph resizing algorithms based on seam carving and grid warping, in terms
of protecting prominent feature lines and the boundaries of shapes. Furthermore,
we made use of an IGA to provide users with more acceptable resized images.
This addresses the problem of the inconsistency between users’ preferences and
automatically produced results. To prove the advantage of our interactive system,
we conducted user evaluation and convergence tests, and the results showed that
users find interactively resized image more satisfactory. We also showed that users
can resize an image much faster using this technique than with a multi-operator
system. Therefore, our method not only improves the quality of image resizing but
also replaces the previous image resizing interface mechanism.

One limitation of our approach is that the accuracy of ETF may be compromised
when there are blurry shape boundaries surrounded by a complex background. This
could lead to an inappropriate resizing result. Using an adaptive kernel size for ETF
construction based on texture might alleviate this problem.

Another limitation of our approach is the risk of falling into a local minimum
due to errors in the user’s input. An IGA cannot convert inconsistent input to a
useful result. Furthermore, fitness is expressed only as scores rather than reflecting
any specific criterion of resized images. We plan to study how we might incorporate
more sophisticated fitness values.
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Although the current paper mainly focuses on photograph resizing, our approach
may be applicable to video resizing by extracting a 3D directional field that extends to
the temporal axis. The next logical step is to experiment with various 3D orientation
fields extracted from a 3D video cube, such as work by [26], and extend our scheme
to video resizing followed by some comparative analysis vs. [17].

Acknowledgement This study was supported by 2011 Research Grant form Kangwon National
University and the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. 2011-0028568).
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