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Abstract

This paper presents a simple algorithm for producing stylistic abstraction of a photograph. Based on mean cur-
vature flow in conjunction with shock filter, our method simplifies both shapes and colors simultaneously while
preserving important features. In particular, we develop a constrained mean curvature flow, which outperforms
the original mean curvature flow in conveying the directionality of features and shape boundaries. The proposed
algorithm is iterative and incremental, and therefore the level of abstraction is intuitively controlled. Optionally,
simple user masking can be incorporated into the algorithm to selectively control the abstraction speed and to
protect particular regions. Experimental results show that our method effectively produces highly abstract yet

feature-preserving illustrations from photographs.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Picture/Image Generation]: Display algorithms

1. Introduction

Image abstraction and stylization has been an active research
topic in non-photorealistic rendering. It refers to a task of
simplifying scene information in the image while retaining
or emphasizing meaningful features to convey. Such reduc-
tion and clarification of visual information must be done
in a stylistic fashion, so that the output of abstraction can
serve the purpose of communicating the messages as well as
pleasing the viewer’s eyes. Herman and Duke [HDO1] used
the term “minimal graphics” to describe the benefit of such
meaningful abstraction and stylization.

The central problem in image abstraction is how to de-
crease the complexity of the scene while protecting impor-
tant structures. Conventional approaches often involve low-
level vision techniques such as image segmentation, color
quantization, or feature-preserving smoothing. They mainly
focus on clustering/smoothing pixels within homogeneous
regions and therefore simplifying the ‘colors’ that comprise
the image, without hurting the boundaries between heteroge-
neous regions. However, such techniques in general do not
simplify the region boundaries (i.e., ‘shapes’) themselves,
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and thus may require an additional process of curve fit-
ting and editing for further abstraction. Also, the aggressive
smoothing/merging of pixels often results in loss of impor-
tant information, such as the directionality of features.

In this paper, we present a novel image abstraction algo-
rithm that simplifies both shapes and colors in an integral
fashion and therefore does not require any post-processing.
It is based on constrained mean curvature flow in conjunc-
tion with shock filtering. The constrained mean curvature
flow effectively protects and conveys directional character-
istics of shapes, features, and textures. Also, since the cur-
vature flow is iterative as well as incremental, one can intu-
itively control the level of abstraction; just stop the process
when the desired level is reached. The proposed algorithm is
straightforward and easy to implement. Fig. 1 shows some
example abstraction results produced by our method.

2. Related work

Existing approaches for image abstraction often rely on im-
age segmentation. DeCarlo and Santella [DS02] presented
a system for abstracting and stylizing photographs, based
on mean shift color image segmentation [CM02]. Collo-
mosse et al. [CRHOS5] extended the mean shift segmentation
to video, producing a temporally coherent cartoon-like im-
age sequence. Wang et al. [WXSC04] used anisotropic mean
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(a) Input (b) Output

(c) Input (d) Output

Figure 1: Image abstraction by our method

shift filter for handling elongated structures often found
along the temporal axis of a video. Wen et al. [WLL*06] also
used the mean shift segmentation algorithm for generating a
colored sketch from a photograph. Lecot and Levy [LLL06]
developed a triangle-based image segmentation algorithm
for abstract and stylistic bitmap-to-vector image conversion.

Image segmentation is a natural choice of tool for the
task of image abstraction as it aggressively reduces the com-
plexity of the scene while protecting important structures.
However, a crude segmentation often results in a rather
incomplete abstraction as the segmented regions still re-
tain rough and complex boundaries. Therefore, the region
boundaries may have to go through some post-processing,
which typically includes curve fitting, editing, smoothing,
and stylizing [DS02, WLL*06, L.L.06, WXSCO04]. In this pa-
per, we present an abstraction algorithm that directly simpli-
fies shapes and does not require any post-processing.

There are other abstraction approaches that are not
based on image segmentation. Winnemdéller et al. [WOGO06]
showed that bilateral filter [TM98] can be used (together
with color quantization) to abstract color images as well
as video. Orzan et al. [OBBTO07] developed a multi-scale
image abstraction system based on gradient reconstruction.
These feature-preserving filters reduce the scene complexity
by smoothing insignificant color variations while protecting
important region boundaries. They do not, however, directly
simplify those region boundaries (i.e., shapes), whereas our
method enables simultaneous simplification of the region
boundaries and the colors within.

3. Overview

To provide a simple and integrated scheme for shape/color
simplification, we base our algorithm on mean curva-
ture flow (ak.a. mean curvature motion, geometric heat
flow) [Gra86]. The mean curvature flow regularizes the
given geometry at a speed proportional to the local mean
curvature value. It is known as the quickest way to decrease
the complexity of a geometric structure, and has proven to
be a useful tool for removing noise from images, curves, or

surfaces [ALM92, MSV95, DMSB99]. In this paper, we use
it for the task of image abstraction and stylization.

The application of mean curvature flow alone, however, is
problematic as the regularization process shrinks and blurs
every shape boundary in the image, and eventually leaves no
meaningful structures or edges in it. To prevent this, we in-
terleave mean curvature flow with an edge enhancement step
using shock filter [OR90]. By adjusting the frequency of in-
serting this shock filtering step, one can control the sharp-
ness of edges.

Another limitation of mean curvature motion is that it
does not properly protect the directionality of features or
texture patterns. We thus propose an improved abstraction
algorithm based on constrained mean curvature flow, which
uses a feature direction field as a constraint. We will show
that such constrained motion not only provides better pro-
tection of features, but also contributes to the stylistic look
of the output illustration.

Our approach is based on an iterative image evolution pro-
cess, and thus makes it easy to control the degree of abstrac-
tion as the user may simply stop the algorithm when the de-
sired level is reached. Optionally, we allow for a selective
user masking of important features to protect. Such user in-
put can be easily incorporated into our algorithm, prompting
the regularization speed of the masked area to slow down.

4. Methodology
4.1. Mean curvature flow

Suppose we are given an input image /(x), where x =
(x,y) denotes pixel location. If we view I(x) as a height
field, where height represents intensity (or luminance), we
should be able to draw the iso-luminance contours (of the
same height) on the image. These contours are often called
isophote curves or level sets. Mean curvature flow (MCF),
when applied on such a height field, regularizes the geom-
etry of each of these isophote curves. The speed of regular-
ization is proportional to the local isophote curvature. That
is, a high-curvature portion of the curve is smoothed faster.
The overall shape of the curve is then simplified and shrunk,

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Itd.



H. Kang & S. Lee / Shape-simplifying Image Abstraction

and eventually collapses to a circle. The evolution equation
under mean curvature flow is defined as:

I =x|VI| (1)

where I; is the derivative of image / with respect to time
t, and VI = (I,Iy) is an image gradient. k denotes lo-
cal isophote curvature, and can be computed from the im-
age [ALMO92]:

Ly =2yl + K
B+ R

In case of a color image, RGB channels are processed sep-
arately. As the mean curvature flow regularizes all isophote
curves, it simplifies every region boundary present in the im-
age. Also, Eq. 1 indicates that an isophote curve is smoothed
via the adjustment of local intensities (heights) along the
curve. Specifically, the intensity increases where ¥ > 0 (con-
vex), and decreases where x < 0 (concave). This results in
the simultaneous abstraction of both shapes (region bound-
aries) and colors (intensities). Fig. 2 shows how mean cur-
vature flow simplifies an example image.

2

(a) Input

(b) MCF (c) MCF

Figure 2: Mean curvature flow: (b) 20 iterations (c) 60 iter-
ations

4.2. Shock filtering

The mean curvature flow aggressively contracts isophote
curves by blurring pixel intensities along edge direction. It-
eration of such shrinking and blurring eventually obliterates
most of the height discontinuities (edges) in the image, some
of which may be of interest to the viewers. For better protec-
tion of edges, we regularly perform edge enhancement by
shock filtering.

Shock filter [OR90] is originally developed as a data de-
blurring tool, and its evolution equation is formulated as:

Iy = —sign(AI| V1| 3)

where AI = Iy + Iyy denotes Laplacian, the second spatial
derivative of the image. Eq. 3 is known to evolve image [/
in the following way. At each time step, [ increases (or ‘di-
lates’) in maximum influence zone, where AI < 0. On the
other hand, I decreases (or ‘erodes’) in minimum influence
zone, where AI > 0. As a result, the evolution sharpens the
edges at the zero-crossings of A/, while in each influence
zone the dilation/erosion process gradually reduces |V/|,
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and in time, / becomes piecewise constant. Overall, shock
filter sharpens the discontinuities between heterogeneous re-
gions, whereas it flattens each homogeneous region.

To determine the influence zone, we employ Laplacian-
of-Gaussian (LoG) function, denoted AGg, where Gg is a
bivariate Gaussian function of standard deviation ¢. This is
used to reduce the sensitivity to image noise and also to help
control the size of the influence zone (and thus the style of
abstraction). Our modified evolution equation for shock fil-
tering thus reads:

Iy = —sign(AGe +1)| V| 4)

The convolution with LoG can be implemented by applying
Gaussian blur before Laplacian operation. The dilation pro-
cess is implemented by max filter in a 3 x 3 neighborhood
(and the erosion by min filter). For a color image, we use
the sum of RGB components to determine the max and min
values. In practice, we perform only a single step of shock
filtering (Eq. 4) after every k-th iteration of mean curvature
flow (see Algorithm 1). Fig. 3 shows the effect of shock fil-
tering, i.e., edge sharpening and region flattening.

Algorithm 1 Image Abstraction by MCF
loop
for 1to kdo
I <~ MeanCurvatureF low(I)
end for
I < ShockFiltering(I)
end loop

(a) Input

(b) MCF + Shock (¢) MCF + Shock

Figure 3: Algorithm 1: (b) 20 iterations (c) 60 iterations.
The iteration number means how many times the system runs
mean curvature flow. We set k = 10 in this example. There-
Sfore, shock filter is called 2 times for (b) and 6 times for (c).

4.3. Constrained mean curvature flow

From the standpoint of stylistic image abstraction, the mean
curvature flow may be a bit too aggressive as it quickly
dismantles meaningful structures, along with their features.
While the use of shock filter slows down the fading of edges,
it does not effectively protect directional features or texture
patterns. To address this, we extract a smooth vector field
that describes local feature directions, and use it as a con-
straint for the mean curvature flow.
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We employ a nonlinear vector smoothing method
in [KLLCO7] to construct the direction field from [I: First
get the gradient vectors via Sobel operator and rotate them
counter-clockwise by 1/2. The resulting vectors are aligned
with tangent directions of edge curves, and thus called tan-
gent vectors. These vectors are then bilateral-filtered to form
a smooth and feature-preserving direction field, which we
call tangent vector field (TVF) (see Fig. 4d). Let t(x) denote
the smoothed tangent vector, which is interpreted as the ‘de-
sired’ feature direction at X.

(a) Input (b) CMCF + Shock (c) CMCF + Shock

(d) TVF (e) MCF + Shock (f) MMF + Shock

(h) Bilateral filtered (i) Luminance quantized

(g) Segmented

Figure 4: Algorithm 2: (b) 20 iterations (c) 60 iterations.
The iteration number means how many times the system runs
constrained mean curvature flow. We set k =10 in this exam-

ple.

Given the direction field t(x), the idea is to constrain the
speed of isophote regularization as follows:

I =s-x||VI|| ®)
The speed control function s in Eq. 5 is defined as:
s(x) = (1= r) +7-|t(x) - VI(x)"| (6)

where VI denotes the vector perpendicular to the current
local gradient (both VI and t are assumed to be unit vec-
tors). r is a control parameter between [0, 1] (default value
r=1).1f VIt is not aligned with t, small s will result. That
is, it discourages the regularization along anything but the
(desired) feature directions, and therefore has the effect of
protecting the directionality of features, shapes, and texture
patterns (see Fig. 4b and c). Moreover, as it directs the dif-
fusion of colors along feature direction, it adds to the stylis-
tic look of the output. Algorithm 2 describes the modified

image abstraction algorithm based on the constrained mean
curvature flow (CMCF). Note if we set r = 0, Algorithm 2 is
identical to Algorithm 1.

Fig. 4e shows the abstraction result via Algotirhm 1 (mean
curvature flow + shock filtering) for comparison. It should
also be noted that this constrained mean curvature flow dif-
fers from min/max curvature flow (MMF) [MS96], which
is another curvature-driven denoising process. In the con-
text of image abstraction and stylization, min/max flow does
not preserve the feature directionality or edge smoothness as
well as our constrained mean curvature flow (see Fig. 4f).

Algorithm 2 Image Abstraction by CMCF
loop
for 1 to k do
t« TVF(I)
I + ConstrainedMeanCurvatureF low(1,t)
end for
I < ShockFiltering(I)
end loop

(a) Input (b) CMCF + Shock

JUS .

e

(c) Segmentation

(d) Quantization

Figure 5: Comparison with other techniques: (a) Input
(courtesy paulbence [Fli]) (b) Algorithm 2 (50 iterations of
CMCE k = 10) (c) Mean shift segmentation (d) Bilateral fil-
tering + Luminance quantization

Fig. 4g, h, and i show how other abstraction techniques
process the same input image. Fig. 4¢g is obtained by mean
shift segmentation procedure. Note that it aggressively sim-
plifies the image regions (and colors), but not the region
boundaries. Also, important feature directionality is lost
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(a) Input (b) 20 iterations

)

(c) 40 iterations (d) 60 iterations

Figure 6: Controlling the level of abstraction. The iteration number means how many times the system runs constrained mean

curvature flow. We set k = 10 in this example.

in the process. Fig. 4h is the output of bilateral filtering,
in which the shape boundaries are similarly untouched as
the filter removes insignificant height discontinuities only.
Fig. 4i is a further simplification of Fig. 4h via luminance
quantization (as suggest in [WOGO06]). Although it is pos-
sible to further simplify the individual region boundaries of
Fig. 4g and i, it may involve rather cumbersome procedures,
such as low-resolution curve fitting of each boundary, elim-
inating tiny regions, possible hole filling after smoothing or
removing of each region, protecting junction points as well
as their geometric continuities, and coloring of interior re-
gions that are defined by a network of curves.

Fig. 5b is another abstraction result by our method, shown
in comparison with conventional approaches (Fig. 5c¢ and d).
In this example, our method performs well not only in terms
of shape simplification, but also in conveying important fea-
tures. In our result (Fig. 5b), features like the seam on the
hat, thick eyebrows, wrinkles under both eyes, cheek bones,
structure of mouth and chin, are all well preserved and con-
veyed.

Fig. 6 shows the iterative nature of our algorithm and how
it helps to control the level of abstraction. The system dis-
plays the continuous evolution of the image, and lets the user
decide when to stop the abstraction.

4.4. Incorporating user input

Sometimes the user may want to protect some particular area
in the image by slowing down the regularization speed there.
We enable this by allowing interactive area masking (such as
in [HerO1]). The user may ‘paint’ a particular area covering
an important feature to protect. We implement painting as
plotting of circles along the path of a mouse cursor.

Let w(x) denote a ‘weight map’ in which the user-painted
pixels are marked with nonzero values. Before painting,
w(x) is initialized to zero. We emulate a smooth-brush ef-
fect, by using a circle whose interior is weighted to form a

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

(a) Input

(c) Weight map (d) Weighted

Figure 7: Incorporating user input

Gaussian-like volume (that is, the center of the circle has the
biggest weight, which is 1.0). Adjacent circles on the path
may overlap and the weights are summed in such area. The
total weight at each pixel, denoted w(x), is clipped to [0, 1].

To slow down the regularization in a painted region, we
modify the speed s(x) if x is associated with a nonzero
weight, that is, w(x) > 0.

sX)=a+(l—0) - [1—wx)], if wx)>0 (7)

where we set o = 0.1 by default. Fig. 7 shows how a sim-
ple user input makes a difference in feature protection. As
shown in this figure, it is particularly useful for conserving
circular features as the curvature motion quickly shrinks any
circular shapes. It may also be used to protect sharp corners.
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5. Results

We use Algorithm 2 for producing abstraction results. Eq. 5
and 6 indicate that one can use parameter r to control the
strength of constraint in Algorithm 2. In particular, Algo-
rithm 2 degenerates to Algorithm 1 when r = 0. Fig. 8 shows
different results obtained by adjusting parameters, such as r
(strength of constraint), £ (shock filtering frequency), ¢ (ker-
nel size for shock filtering). The eye of the bird has been
masked for protection. Note that large r conveys directional
features better, small k£ emphasizes fine details, and big &
expands the influence zones.

(2) (b)

© ®

Figure 8: Parameter control: (a) Input (b) r = 0,k= 10,6 =
1.0(c)r=1,k=10,6 =1.0(d) r =1,k = 10,6 = 2.0 (e)
r=1,k=506=10(0)r=1,k=506=2.0

Fig. 9 shows some additional abstraction results obtained
by Algorithm 2. The following parameters are used: r €
[0.5,1.0],k € [8,10], 0 € [1.0,2.0], and 40 ~ 60 iterations of
CMCE. Note our method aggressively simplifies the shapes,
yet successfully conveys visual information in a concise
fashion. Fig. 9d, e, and f show that the texture directional-
ity is well protected and stylized by the constrained mean
curvature flow. Some circular features of high importance
have been masked before applying the main algorithm (as

described in Section 4.4). For example, eyes in Fig. 9a, e,
and f were masked. In Fig. 9b, we left the eyes unmasked
(because they are non-circular) but masked the beauty spot
on the cheek to protect it. In the masked area, the abstrac-
tion process is slowed down considerably. As shown in
Fig. 10, the user masking enables our algorithm to perform
importance-adaptive abstraction [DS02, OBBT07] with rel-
ative ease (note that the masked areas remain sharp). Fig. 11
shows how our scheme handles a complex scene. Notice the
significant reduction of scene complexity while retaining the
essentials in a stylistic way.

We tested our algorithm on an Intel Xeon® 3GHz PC with
2GB memory. The processing time depends mainly on the
image size and the number of iterations. For a 500 x 500
color image, Algorithm 2 took about 30 seconds to complete
50 iterations. For a large image, it is possible to achieve sig-
nificant speed-up by adopting a downsample-then-process
strategy, followed by upsampling and shock filtering to re-
vive sharp edges. Our algorithm is based on local operations,
and therefore ideal for GPU implementation, which would
bring about dramatic acceleration.

6. Conclusions

We have presented a novel approach to image abstraction
and stylization. Based on an iterative constrained mean cur-
vature flow, our algorithm provides merits such as integrated
simplification of shapes and colors, protection of feature di-
rectionality, an intuitive control of the degree of abstraction,
and the simplicity of implementation.

As shown in Fig. 7, an obvious limitation of our approach
is that the curvature flow contracts small, circular shapes
very quickly. In case the circular shape is of high importance
(for example, an ‘eye’), it needs to be masked before run-
ning the algorithm. Incorporating an automatic eye-detection
technique [DLCDO04] may be helpful in this regard.

In the current implementation, the weight map is mainly
used to protect highly important area. We may further extend
its use to enable adaptive shape regularization, in which a
shape contracts with a different speed locally. This could be
achieved by including prior knowledge on the object or a
more sophisticated user input [DS02]. A related topic is how
to enable not only ‘shrinking’ but also ‘expanding’ of certain
shapes in the image, to produce a more exaggerated style of
abstraction.

Acknowledgment

We thank the anonymous reviewers for their helpful com-
ments and suggestions. This work was supported by the IT
R&D program of MCST/ITTA (2008-F-031-01).

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.



H. Kang & S. Lee / Shape-simplifying Image Abstraction

(a) Lincoln

(e) Eagle

Figure 9: Results
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