and escape velocity [plot].

Solve[(1/2) m v^2 == G M m/R, v]

{{v→ -(2^(1/2) G^(1/2) M^(1/2))/R^(1/2)}, {v→ (2^(1/2) G^(1/2) M^(1/2))/R^(1/2)}}

In[11]:=

vesc[r_, R_, G_, M_] := Sqrt[2 gpotential[r, R, G, M]]

FullSimplify[vesc[r, R, G, M]]

 {{2^(1/2) (G M)/r^(1/2), r>R}, {(G M (-r^2 + 3 R^2))/R^3^(1/2), True}}

[Graphics:../HTMLFiles/index_89.gif]

-Graphics -

vesc[6378140, 6378140, 6.673 * 10^(-11), 5.9742 * 10^24]

11180.7

vesc[0, 6378140, 6.673 * 10^(-11), 5.9742 * 10^24]

13693.5

Solve[(2 (G M)/r)^(1/2) == vtarget, r]

{{r→ (2 G M)/vtarget^2}}

Solve[(G M (-r^2 + 3 R^2))/R^3^(1/2) == vtarget, r]

{{r→ -(R (3 G M - R vtarget^2)^(1/2))/(G^(1/2) M^(1/2))}, {r→ (R (3 G M - R vtarget^2)^(1/2))/(G^(1/2) M^(1/2))}}

In[12]:=

rOFvesc[ve_, R_, G_, M_] := If[ve<11180.7, (2 G M)/ve^2, R (3 G M - R ve^2)/(G M)^(1/2)]

Sqrt[(3 * 6.673 * 10^(-11) * 5.9742 * 10^24)/rE] (* r goes to zero when ve goes to 13693 m/s *)

13693.5

rOFvesc[1, rE, 6.673 * 10^(-11), 5.9742 * 10^24]

1.10473*10^7

Plot[rOFvesc[vesc, rE, 6.673 * 10^(-11), 5.9742 * 10^24], {vesc, 9000, 13693}]

[Graphics:../HTMLFiles/index_105.gif]

-Graphics -

Table[{i, rOFvesc[i * 1000, rE, 6.673 * 10^(-11), 5.9742 * 10^24]/rE}, {i, 1, 13, 1}] (* for escape velocities of 1 through 13 km/s, earth radii from center are ... *)

{{1, 125.008}, {2, 31.2519}, {3, 13.8897}, {4, 7.81298}, {5, 5.00031}, {6, 3.47244}, {7, 2.55118}, {8, 1.95325}, {9, 1.54331}, {10, 1.25008}, {11, 1.03312}, {12, 0.834351}, {13, 0.544212}}


Created by Mathematica  (February 13, 2007) Valid XHTML 1.1!