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Abstract

While conventional monetary policy has been shown to create differential impacts
on industry output, how unconventional monetary policy affects industries is not yet
known. This paper studies the effects of unconventional monetary policy on industry
output in the United States. I employ both sign restrictions and high frequency data
identifications within a structural global vector autoregressive framework. The effects
on output have substantial heterogeneity across industries. Furthermore, the effects
on output and monetary policy transmission mechanisms are qualitatively similar
to that of conventional monetary policy in the literature. These findings suggest a
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1 Introduction

After the financial crisis, the policy rates of many highly advanced economies reached the

zero lower bound (ZLB) and they implemented unconventional monetary policy (henceforth

unconventional policy). Unconventional policy influences the economy mainly through

quantitative easing and forward guidance. While central banks focus on aggregate variables,

investigating the effects across industries provides new insights. First, differential impacts

across industries directly influence the relative performance of industries. Second, the

connection between industry effects of unconventional policy and financial structure of the

industry gives the implication of the monetary policy transmission mechanisms. Third,

knowing whether unconventional policy can be a substitute for conventional monetary

policy (henceforth conventional policy) is beneficial for central bankers due to the steadily

declining natural rate of interest (Holston et al., 2017) and a high likelihood of entering the

ZLB. As an illustration, the recent outbreak of the novel Coronavirus disease (COVID-19)

and the corresponding economic slowdown has forced central banks in highly advanced

economies to re-enter the ZLB.

In this paper, I estimate the impacts of unconventional policy on industry-level output

in the US over the last decade using two alternative identification schemes. One is based on

Quantitative Easing (QE). The other is based on use of High Frequency data (HF). These

provide a comprehensive look at the measure the impacts of unconventional monetary

policy. This paper also investigates whether the pattern of industry level output responses

and transmission mechanisms are similar to those found in the literature on conventional

policy.

This paper contributes to the literature on several fronts. First, it provides the differ-

ential impacts of unconventional policy on industry output. It has been shown that con-

ventional policy creates differential impacts on industry output (Dale and Haldane, 1995;

Ganley and Salmon, 1997; and many others), on regional output (Carlino and DeFina,

1998 and Arnold and Vrugt, 2002), and on household consumption (Kaplan et al., 2018

and Ampudia et al., 2018). The literature of unconventional policy focuses on the financial

market effects (Gagnon et al., 2011; Krishnamurthy and Vissing-Jorgensen, 2011; Neely,

2015) and aggregate effects (Gambacorta et al., 2014; Boeckx et al., 2017; Bhattarai et al.,
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2021; and many others), however, the differential impacts of unconventional policy in the

literature is scarce. This paper fills this gap in the literature and provides estimates of the

effects of unconventional policy on industry output.

Second, this paper applies two mainstream identifications of unconventional policy in

the literature:

1. QE identification (e.g. Gambacorta et al., 2014)– identifies a policy shock using sign

restrictions between central bank total assets and the financial market uncertainty.

2. HF identification (e.g. Gertler and Karadi, 2015) - focuses on the unexpected change

in the bond prices around narrow intervals between the policy announcements.

These two identifications measure two different aspects of policy: the first identification

measures the quantitative easing component and the second identification measures the

forward guidance component of unconventional policy. The aggregate impacts of policy

shocks from these identifications have been individually explored (Gambacorta et al., 2014;

Peersman, 2011; Gertler and Karadi, 2015; Jarociński and Karadi, 2020; and many others),

however, the quantitative and qualitative heterogeneous effects have not been explored and

may differ between the two identifications. This paper evaluates the industry effects of

unconventional policy by exploiting these two measures of policy shocks.

Third, this paper adds to the literature of industry studies in monetary policy (Dale

and Haldane, 1995; Ganley and Salmon, 1997; Dedola and Lippi, 2005; and many others).

In the prior literature, the impacts of monetary policy are estimated on an industry by

industry basis. This is necessary due to VAR models facing the curse of dimensionality. In

this paper, by exploiting the global VAR (GVAR) model and Bayesian methods, I estimate

the industry impacts of unconventional policy jointly, taking into account the industry

interactions.

Fourth, this paper explores the role of the transmission mechanisms of unconventional

policy. One of the advantages of estimating the effects of monetary policy on industry out-

put is to evaluate the potential transmission mechanisms: estimating the industry effects

make it possible to associate the effect of monetary policy with the financial structure of

the various industries (Dedola and Lippi, 2005 and Peersman and Smets, 2005), and this
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allows the inferences regarding the transmission mechanisms. This exercise also allows in-

vestigation as to the similarities and differences of unconventional and conventional policies

in terms of industry level impacts and monetary policy transmission mechanisms.

I use structural Bayesian GVAR models with the two identification methods, the QE

identification and HF identification, to identify unconventional policy shocks. Given the

shocks, I generate impulse response functions (henceforth response functions). I use the

monthly industrial production index to estimate the GVAR model. To confirm the in-

dustry level estimates, I construct a weighted response function from the industry response

functions with a weight being the gross value added (GVA) share of the industry. The

weighted response functions from both models are approximately the same as the aggreg-

ate manufacturing response functions, though there are differences when using the HF

identification.

I find that the industry-level output responses are heterogeneous across industries. For

example, in response to a 1% increase in central bank total asset from the QE identification,

the magnitude varies from 0.01% in food, beverage, and tobacco to 0.53% in primary metal.

In response to a 5 basis point increase in federal funds futures from the HF identification,

the magnitude varies from 0.00% in food, beverage, and tobacco to 1.49% in machinery.

Generally, durable goods manufacturing industries, such as machinery, primary metal, and

motor and transportation, are responsive due to the production structure relying heavily on

investment and thus the inflow of funds help to stimulate the industries. On the other hand,

industries that are producing non-durable goods, such as food, beverage, and tobacco;

chemical; and printing activities, respond weakly. This pattern of industry level output

responses is similar across the two identifications, and similar to the pattern of responses

to conventional policy found in the literature (Dedola and Lippi, 2005).

Furthermore, I find that industries with a smaller firm size and a lower working capital

ratio are associated with a larger output response to unconventional policy. This finding

is consistent with the literature on conventional policy (e.g. Dedola and Lippi, 2005 and

Peersman and Smets, 2005) and is consistent with the existence of a credit channel and an

interest rate channel. Thus the findings in this paper support the notion of ”substitutab-

ility” between conventional and unconventional policies (Debortoli et al., 2020 and Huber
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and Punzi, 2020) from an industry perspective.

The rest of this paper is organized as follows: Section 2 describes the data that are used,

Section 3 outlines the methodology (including the model, identification, and estimation),

Section 4 presents the main results, Section 5 investigates the relationship between output

response and the industry characteristics, Section 6 checks robustness, and finally Section

7 concludes.

2 Data

The data is of a monthly frequency. The data covers 2008M1-2015M12 based on when the

Federal Reserve operates unconventional policy and when the federal funds rate is near

zero and flat, representing the ZLB.

I apply two different identifications. For both identifications, I use industrial production

index as industry output and consumer price index (CPI) as price level. In addition to these

variables, I use central bank total assets and stock market implied volatility for the QE

identification, and I use the 10-year Treasury yield, the S&P 500 index, and a credit spread

(the excess bond premium from Gilchrist and Zakraǰsek, 2012) for the HF identification.

The industrial production index is obtained from the Federal Reserve Board. The consumer

price index is retrieved from the Bureau of Labor Statistics, and all of the remaining data

are retrieved from the FRED database.

For the HF identification, I use monetary policy surprises as constructed in Jarociński

and Karadi (2020). The data is the change in the tick-by-tick three months federal funds

future and S&P 500 index data. The change is from 10 minutes before to 20 minutes

after the monetary policy announcement. These variables take zero the value if there

are no announcements in the month. As discussed in Jarociński and Karadi (2020), the

instruments provide the overall monetary policy stance and “timing surprises” of monetary

policy decisions, which implies that the policy surprises can capture some forward guidance

component of the unconventional policy. Including the HF identification to the analysis

in addition to the QE identification provides a comprehensive analysis of unconventional

policy.
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I plot industry output in Figure 1. The data is normalized so that 2010M1 is 100.

Generally, industry output has an upward trend, while the rate of increase differs across

industries: some industries grow fast, such as motor and transportation and computer and

electronic product, while other industries grow slow such as apparel and leather product

and printing activities. I also plot the other data used in this paper in Figure 2.1

[Figure 1 about here.]

[Figure 2 about here.]

The following is the complete list of industries examined in this paper: food, beverage,

and tobacco; textile mills product; apparel and leather product; wood product; paper;

printing activities; petroleum and coal product; chemical; plastic and rubber product; non-

metallic mineral product; primary metal; fabricated metal product; machinery; computer

and electronic product; electrical equipment etc; motor and transportation; furniture and

related product; and other manufacturing. More details on the industry definitions are

available in Appendix 4.

Lastly, I use an input-output (IO) table to construct the GVAR model. Specifically, I

use the IO table for generating the weights of how an industry is related to the remaining

industries. For the IO table, I use the most recent data available at this time retrieved

from the Bureau of Economic Analysis.2

3 Methodology

In this paper, I use a global VAR (GVAR) model and follow the identification methodology

in Gambacorta et al. (2014) and Jarociński and Karadi (2020) to identify an unconventional

policy shock, generate response functions, and assess the industry effects. Section 3.1

describes the models, Section 3.2 outlines the identifications, and Section 3.3 depicts the

estimation.

1I use CBOE volatility index for stock market implied volatility.
2I use the IO table measured in 2017, however, the use of different years during the sample period (i.e.

2012) barely change the results.
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3.1 The Empirical Model

A GVAR model (Pesaran et al. 2004) is, broadly speaking, a panel expression of vector

autoregression (VAR) models. This model allows industry interactions by exploiting the

fact that the individual industry dynamics are jointly considered. Additionally, this model

incorporates the external information of the industry interactions from the IO table.

A general form of a GVAR model is:

yi,t = vi + AiYi,t−1 +W (L)y∗i,t + C(L)xt + ui,t t = 1, .., T (1)

where W (L) and C(L) represent matrix polynomials in the lag operator and Yi,t−1 includes

all of the yi,t−1s. y∗i,t is a variable capturing contemporaneous information from the other

industries:

y∗i,t =
I∑
j=1
j 6=i

ωi,jyj,t

where ωi,j is the weight on industry j in the model for industry i. A typical weight used in

the literature is the bilateral trade flow. In this paper, I use an IO table for constructing

this weight.

The vector xt, containing common variables, is the same across industries and has the

following VARX (px, qx) specification:

xt = cx +

px∑
j=1

Djxt−j +

qx∑
j=0

Fj ỹt−j + uxt (2)

where cx is a vector of intercepts, Dj and Fj are coefficient matrices, uxt is white noise

with nonsingular covariance matrix Σx,x, and ỹt =
∑

iw
∗
i yi,t where w∗i is gross value added

(GVA) share of industry i. This GVAR specification follows Burriel and Galesi (2018),

whose framework is an extension of Pesaran et al. (2004). A detailed explanation of the

GVAR specification is in Appendix A.2.

The variables enter the model without taking the first difference as is standard in the

monetary policy literature (e.g. Gambacorta et al., 2014; Boeckx et al., 2017; Christiano

et al., 1999; and many others). I estimate the models in levels without imposing cointeg-

ration restrictions and thus I implicitly keep the long-run relationship of these variables in
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the model. It is known that, for the purpose of generating response functions, levels spe-

cification tends to be more robust than alternative specifications (e.g. Gospodinov et al.,

2013). However, a caveat is that under the level specification, a monetary policy shock

may have a permanent effect.

For the QE identification, central bank total assets and stock market implied volatility

are included to construct the unconventional policy shock. In the ZLB, the short-term

nominal interest rate is no longer a monetary policy instrument. Central bank total assets

and stock market implied volatility has been used to identify QE shocks during the ZLB

periods after the financial crisis (e.g. Gambacorta et al., 2014; Boeckx et al., 2017 and

Bhattarai et al., 2021). However, the use of central bank total assets as an instrument for

unconventional policy entail some shortfalls3, as it is likely to miss the forward guidance

component of the unconventional policy. Hence, I also explore the HF identification.

For the HF identification, high frequency monetary policy shock, high frequency stock

price, the 10-year Treasury yield, the S&P 500 index, the excess bond premium are included.

3.2 Identification

3.2.1 QE Identification

I apply the identification from Gambacorta et al. (2014). The identification is a mixture of

zero and sign restrictions. The following equation summarizes the identification by showing

the relationship of the reduced form error and structural error terms of the GVAR model

(I omit the time subscript):

uIndustry Output1
...
uIndustry Output18

uCPI

uTotal Assets

uVolatility


︸ ︷︷ ︸

Reduced form error
ut

=



∗ . . . ∗ 0 0
...

. . .
...

...
...

∗ . . . ∗ 0 0
∗ . . . ∗ 0 0
∗ . . . ∗ + +
∗ . . . ∗ −/0 +





εIndustry Output1
...
εIndustry Output18

εCPI

εTotal Assets

εVolatility


︸ ︷︷ ︸

Structural error
εt

(3)

3Such as missing policy differentiation and composition effects.
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where the components of εt are uncorrelated and have unit variance, Σε = I. The zero

restriction states that a shock to central bank total assets does not have a contemporan-

eous impact on industry output and price. In other words, unconventional policy has at

most a lagged impact on output and price. This zero restriction is a standard assump-

tion in structural VAR analysis, as it enables the separation of a policy shock from other

contemporaneous shocks, such as demand or supply shocks.

An unconventional policy shock in Gambacorta et al. (2014) is essentially a surprise

increase in central bank total assets. However, a mere increase contains endogenous com-

ponents. Here, stock market implied volatility plays a role as a financial market distress

measure. The Federal Reserve is widely thought to endogenously respond to financial

turmoil and economic uncertainty with unconventional policy. That is, a higher financial

market distress increases central bank total assets. Then an exogenous component of policy

is a shock to central bank total assets that decreases (or keeps steady) the stock market

volatility. This is consistent with the notion in the literature that unconventional policy

reduces financial market uncertainty, volatility, and risk (e.g. Hattori et al., 2016; Krish-

namurthy and Vissing-Jorgensen, 2011; Gagnon et al., 2011; Mallick et al., 2017; and many

others). Thus I only take this latter exogenous component of an increase in central bank

total assets as the unconventional policy shock.

In order to generate the mixture of the sign and zero restrictions, I adapt the Givens

rotation matrix as in Gambacorta et al. (2014). The complete description of the identific-

ation is in Appendix A.1. The mixture of the zero and sign restrictions are imposed on

the impact period. I also impose the same sign restriction for one period after the shock.

However, I modify this assumption in the robustness check to examine how the results are

affected. Table 1 summarizes the restrictions that are imposed.4

[Table 1 about here.]

4The complementary restriction (a shock to stock market implied volatility increases central bank total
assets and own variable) also are imposed so that the shock is fully identified. The importance of a fully
identified sign restriction for inference is mentioned in Kilian and Lütkepohl (2017). However, response
functions generated without this complementary restriction are qualitatively similar to the fully identified
response functions.
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3.2.2 HF Identification

I adopt the identification from Jarociński and Karadi (2020). To identify a policy shock, I

use two high frequency data in the model: the change in the 3-month federal funds futures,

and the change in the S&P 500 index between, both 10 minutes before and 20 minutes after

of the monetary policy announcements. These announcement surprises are only affected

by each other but are not affected by the other variables in the model. Given the narrow

windows of the high frequency data, the surprise component of the shock captures the

central bank announcements but is not likely to capture other macroeconomic shocks.

In order to identify unconventional policy shock, I set up the following equation:

mt

xt

 =

p∑
j=1

 0 0

Ajxm Ajxx

mt−j

xt−j

 +

 0

cx

 +

umt
uxt

 ,
umt
uxt

 ∼ N (0,Ω) (4)

where mt is a vector of high frequency variables, notably the change in federal funds

futures and the S&P 500 index, xt is other monthly variables including the 10-year Treasury

yield, the S&P 500, industry output, the CPI, and the excess bond premium. Based on

the assumption of the high frequency data, mt does not depend on variables in xt, while

xt does depend on variables in mt.

This setup is an alternative approach to external instruments identifications (e.g. Stock

and Watson, 2012; Gertler and Karadi, 2015; Mertens and Ravn, 2013; Gortz et al., 2021,

and Caldara and Kamps, 2017). Since the two approaches generate asymptotically indif-

ferent response functions up to a scaling factor (Plagborg-Møller and Wolf, 2021), I choose

the setup in equation (4) due to the compatibility with the Bayesian inference.

The setup in equation (4) shows that monetary policy surprise, the change in federal

funds futures, is located on the top row of the system. Thus the order of the variables

does not matter in this identification despite the use of the Cholesky decomposition; this

identification does not require imposing zero restrictions on any of the variables in the

system, and the monetary policy surprise can contemporaneously affect all of the variables

in the system.5

5Jarociński and Karadi (2020) further impose sign restriction on the high frequency variables to decom-
pose announcement surprises into the central bank information component and monetary policy component.
This paper is focused on identifying the general announcement effect of unconventional policy and does
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3.3 Estimation

I estimate the GVAR model and generate response functions using the independent Gaussian-

inverse Wishart prior. This prior is more flexible than other Bayesian priors and is useful

for estimating models with small sample sizes by setting tight parameter distributions.

However, it is computationally more demanding than other Bayesian methods and requires

a Markov Chain Monte Carlo (MCMC) algorithm. The estimation includes 2 lags of the en-

dogenous variables. I follow the Bayesian method of Kilian and Lütkepohl (2017) and Koop

et al. (2010). One of the gains of estimating a Bayesian VAR is to circumvent problems

with over-parameterization with the GVAR model. Another gain of estimating a Bayesian

VAR is to overcome the problems of the broader confidence bands and uninformative re-

sponse functions that plague the frequentist approach (Kilian and Lütkepohl, 2017). A

detailed explanation of the Bayesian estimation and how I generated response functions is

in Appendix A.3.

4 Results

I first provide the identified shocks in Section 4.1. Next, in Section 4.2, I show that

the industry responsive functions approximately sum up to the aggregate manufacturing

response function. In Section 4.3, I show that the industry level output responses are

heterogeneous. Finally, in Section 4.4 I briefly compare the findings with existing studies.

4.1 The Identified Shocks

Before I explore the industry level output responses, I present the dynamics of the identified

shocks and examine the characteristics of the identified shocks along with the actions taken

by the Federal Reserve. Figure 3 shows the time series of the median identified shocks from

both the QE and HF identifications. The identified shock is normalized so that the mean

and standard deviation of the shocks are zero and one, respectively.

[Figure 3 about here.]

not decompose announcement surprises.
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Regarding the shock from the QE identification, the identified shock captures unexpec-

ted components of the actions by the Federal Reserve relatively well. For example, the

onset of QE1 and QE2 come with positive spikes, which indicate that the actions by the

Federal Reserve draw surprisingly expansionary shocks to the economy. The ends of QE1

and QE2 come with reductions of the identified shock. Contrarily, with regard to the iden-

tified shock from the HF identification, most of the announcement activities are clustered

around the QE1 announcements. This finding is likely to be due to lower volatility of the

federal funds rate during the ZLB.

The identified shocks do not necessarily coincide with the actions taken by the Federal

Reserve. The time series of the identified shocks before and during QE3 are modest,

while the central bank total assets dramatically rise, indicating that there are extensive

endogenous and expected components. It is also possible that economic agents are more

familiar and attentive to the actions led by the Federal Reserve after experiencing QE1

and QE2. Overall, the dynamics of the two identified shocks are clearly different from one

another.

4.2 Weighted Impulse Response Functions

First, I plot the weighted response function aggregated from industry response functions

and the aggregate manufacturing response function from a traditional VAR on Figure 4, to

show that the industry response functions approximately sum up to the aggregate response

function. If the industry response functions approximately sum up to the aggregate man-

ufacturing response function, it is credible to argue the validity of the industry response

functions. Using the gross value added share as a weight, the weighted response functions

are calculated as follows:

WIRFp =
I∑
i=1

weighti ∗MIRFi,p (5)

where WIRFp represents the weighted response function at period p = 1, . . . , 24,6 MIRFi,p

represents the median response functions for industry i at period p, and I = 18 is the total

6I plot the response function over a 24 period horizon.
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number of industries.

Each industry response function is the average response from the entire sample period,

from 2008M1 to 2015M12. Thus, I calculate the weighted response function using GVA

based weight from the sample period average. In Figure 4, the bold line represents the

aggregate manufacturing response function7 and the dotted line represents the weighted

response function. The 68% Bayesian credible bands8 are reported for the aggregate man-

ufacturing response function as is standard in the literature.

[Figure 4 about here.]

Both the QE identification and the HF identification have shocks that lead to increases

in output. From here on, to compare the results from the two identifications, I multiply -1

with the response functions from the HF identification. I do this because the QE identifica-

tion represents an accommodative policy, while the HF identification represents a tightening

policy. In terms of magnitudes, the QE identification is in line with the literature (such

as Gambacorta et al., 2014; Bhattarai et al., 2021; Boeckx et al., 2017, and many others)

and the HF identification is also in line with the findings in the literature utilizing high

frequency data (Jarociński and Karadi, 2020 and Gertler and Karadi, 2015).

Both weighted and aggregate manufacturing response functions are generated from the

same size of shocks. The one standard deviation shock to central bank total assets in the

QE identification increases the central bank total assets by 2.06%. This is equivalent to

an increase of approximately $40 billion. To interpret the size of the shock better, the size

of QE1 is $1.75 trillion, QE2 is $600 billion, and QE3 is $40 billion per month. The HF

identification is normalized so that there is a 5 basis point decrease in federal funds futures,

which translates to a 7.8 basis point decrease in the 10-year Treasury yield on average.

The weighted response function from the QE identification is similar to the aggregate

response function. Both increase and reach their maximum around 10 to 15 months after

the shock. Over the period, the weighted response function is slightly weaker than the

7The aggregate manufacturing response functions are estimated using a VAR model. For the QE
identification, the system includes the aggregate manufacturing, CPI, central bank total assets, and stock
market implied volatility. For the HF identification, the system includes the high frequency monetary policy
surprise, high frequency S&P 500 index, 10-year treasurey yield, S&P 500, the aggregate manufacturing,
CPI, and excess bond premium.

8Credible band is an interval within which the estimate falls with the probability given.
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aggregate manufacturing response function, though the weighted response function is within

the credible band of the aggregate manufacturing response function.

On the contrary, the weighted response function from the HF identification takes a dif-

ferent path than the aggregate response function. In response to the shock, the weighted

response function immediately reaches its maximum after three months and slowly goes

back to zero, while the aggregate response function slowly increases and reaches its max-

imum at the end of the horizon. Potential explanations for these deviations are estimation

uncertainty and differences in the model. In spite of those differences, they end up reaching

a similar level at the end. While there are some deviations, the weighted response functions

reasonably tracks the aggregate response functions.

4.3 Industry Results

Figures 5 and 6 show the industry response functions from the QE identification and HF

identification, respectively. I report the 16% and 84% credible bands. As mentioned before

the response functions are from the one standard deviation shock to central bank total assets

for the QE identification and a 5 basis point decrease in federal funds futures. With regards

to the QE identification, the surprise increase in central bank total assets comes with a

decrease in stock market implied volatility (due to the sign restriction) and an increase in

the price level, consistent with the findings in the literature (such as Gambacorta et al.,

2014; Bhattarai et al., 2021; Boeckx et al., 2017, and many others). With regards to the HF

identification, the decrease in monetary policy surprise increases the high frequency S&P

500, decreases the Treasury yield, increases the CPI, increases the S&P 500, and slightly

decreases the excess bond premium, also consistent with the findings in the literature

(Jarociński and Karadi, 2020 and Gertler and Karadi, 2015).

With regard to the impacts on industry output, I find that 16 out of 18 industries

respond significantly positive for the QE identification and that 15 out of 18 industries

respond significantly positive for the HF identification.

[Figure 5 about here.]

[Figure 6 about here.]
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The magnitudes of the positive responses vary by industries. To compare the precise

impacts of unconventional policy across industries, I calculate the monetary policy elasticity

of output: the maximum percentage change in output in response to the change in the

respective monetary policy instruments.9 Table 2 summarizes the monetary policy elasticity

of output. The elasticity varies from 0.02 to 0.53 for the QE identification and from 0.00

to 1.494 for the HF identification.

[Table 2 about here.]

Even though the nature of the two identifications differ, they are similar when it comes to

the degree of responsiveness. The top five responsive industries from the two identification

have four overlaps: wood product, primary metal, machinery, and computer and electric

product industries. The least five responsive industries from the two identification has

also have four overlaps: food beverage and tobacco, printing activities, chemical, and other

manufacturing. Typically the responsive industries are in the durable goods manufacturing

sector and the unresponsive industries are in the non-durable goods manufacturing sector.

The persistence of response functions from the two identifications is somewhat different.

With regard to the QE identification, most of the industries increase their production and

reach their maximum about 10 periods after the shock and then slowly decline. However,

with the HF identification, production reaches its maximum a few months after the shock

and then slowly go back up to zero. This might be caused by the central bank total assets

potentially influencing output as long as the effect still exists, while the high frequency

surprise terms disappear in the period after the shock.

4.4 Discussion

In the previous section, I find that unconventional policy stimulates the industry output

heterogeneously. In this section, I briefly compare the results with the existing literature

of conventional policy.

9For the QE identification, the change in monetary policy instrument is a 1% increase in central bank
total assets and for the HF identification, the change in monetary policy instrument is a 5 basis point
decrease in federal funds futures.

14



Several studies examine industry impacts in other countires in Europe. Ganley and Sal-

mon (1997) explore the industry impacts of conventional policy in the UK using quarterly

frequency data that spans from 1975 to 1991. They find that rubber and building ma-

terial, furniture, electronic equipment, paper publishing, and leather respond strongly to

the policy while food, beverage, and tobacco; machinery; textile; and motor vehicles re-

spond weakly. Peersman and Smets (2005) investigate the industry impacts of conventional

monetary policy in seven euro area countries using quarterly data that covers the period

of 1980 to 1998. They find that transport equipment, fabricated metal, and basic metal

are responsive to the policy while food, beverage, and tobacco; textile and apparel; and

wood furniture are not responsive to the policy. While I find that the same industries

respond strongly (such as fabricated metal product) and weakly (such as food, beverage,

and tobacco), the pattern of responsiveness of industries generally do not closely match

the pattern of responsiveness of industries in Ganley and Salmon (1997) and Peersman and

Smets (2005).

The differences of industry responsiveness between the above studies and this paper

may be a result of different countries being studied; the above studies focused on euro

area countries while this paper studied the US. It is possible that the same industries have

different industry characteristics in the US and in countries in the euro area, which would

lead to different responsiveness. In order to compare the industry responses in this paper

to literature that also examines the US, I look to Dedola and Lippi (2005). They study

the industry impacts of conventional policy in the five OECD countries, which includes

the US, over the period of 1975 to 1997 using monthly frequency data. They find that

motor vehicle, primary metal, machine and equipment, and nonmetallic mineral product

are responsive while food, beverage, tobacco; paper; and printing respond poorly. This

pattern of industry level output responses matches the pattern I find in this paper quite

well. This indicates that the industry impacts of unconventional policy and conventional

policy are similar in the US, however, this might not be the case for other countries.
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5 Effectiveness and Industry Characteristics

5.1 Industry Characteristics

In the previous section, I find that the pattern of industry level output responses to un-

conventional policy is similar between the two identifications and to that of conventional

policy in the US. In this section, I investigate what industry characteristics are related

to the effectiveness of unconventional policy. I construct the following four variables from

the Compustat database that represent industry characteristics: firm size, leverage ratio,

working capital ratio, and short-term debt. These variables are constructed by referring to

Dedola and Lippi (2005). Since the Compustat database covers only publicly traded com-

panies, the industry characteristics do not comprehensively represent the characteristics of

the industries.

Specifically the industry characteristics are constructed by the following definitions:

• Firm Size = Number of Employees

• Leverage Ratio =
Total Liabilities

Shareholders’ Equity

• Working Capital Ratio =
Current Assets

Current Liabilities

• Short-Term Debt =
Current Liabilities

Total Liabilities

The Compustat database contains annual frequency firm-level observations. I construct

the above variables over the sample period used in this paper. The variables above are

constructed in the following order: I deflate the nominal variables using the GDP deflator,

for each firm and each year I construct the variables of interest, for each firm I take the

average of each variable over the sample period, I allocate firms into industries based on

the North American Industry Classification System (NAICS), and for each industry I take

the average and median of the above variables.

Firm size and leverage ratio are proxies for borrowing capacity of an industry and

represent the credit channel. An industry with larger firms or firms with higher leverage

ratios, on average, tend to possess more borrowing capacity than other industries with

smaller firms or firms with lower leverage ratios. In the literature, the connection between

16



firm size and monetary policy elasticity is closely investigated both empirically (Gertler

and Gilchrist, 1994 and Ehrmann and Fratzscher, 2004) and theoretically (Fisher, 1999).

Also, large firms have access to direct and indirect financing. On the other hand, small

firms usually only have access to indirect financing. Since credit supply helps small or low

leverage ratio firms increase their production, these firms tend to respond more strongly to

policy.

The working capital ratio and short-term debt are proxies for channels on the supply

side, mainly the interest rate channel: a change in the nominal interest rate alters the real

interest rate and the user cost of capital, which alters production decisions. Working capital

represents liquidity and short-term debt represents financing need. These two variables are

constructed using current liabilities. Since a change in the nominal interest rate affects

current liabilities, these two variables are affected by the change in the policy rate. Thus,

industries with lower working capital ratio and higher short-term debt are expected to

respond strongly. However, since the policy rates are attached to the ZLB during the

unconventional policy period, it is of interest to know to what extent the interest rate

channel plays a role. One thing to note is that these channels are introduced as if they

work independently, however, as shown in Bernanke and Gertler (1995), these channels are

interrelated and are difficult to disentangle.

If we assume that unconventional policy transmission mechanisms are the same as con-

ventional policy transmission mechanisms, industries that have smaller firm size, lower

leverage ratio, lower working capital ratio, and higher short-term debt are expected to

respond strongly to the policy. Throughout this section, I show the results from the aver-

age industry characteristics, however, the median industry characteristics provide similar

results.

5.2 Linear Plot

To understand what industry characteristics are associated with higher output responses, I

plot the linear relationship between industry characteristics and elasticity on Figure 7.10 I

plot the average industry characteristics against elasticity from both identifications. I find

10This analysis does not provide statistical tests. However, regression analysis is not appropriate due to
the sample (industry) size of 18.
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that firm size and the working capital ratio have negative correlations with the respons-

iveness to policy in both identifications, which is consistent with the findings in Dedola

and Lippi (2005). Also the QE identification further indicates a negative correlation of the

leverage ratio, and a positive correlation of short-term debt, with the elasticity. However,

the HF identification finds the opposite signs. These plots are small samples and not much

should be take from it. Overall, firm size and working capital show the expected signs from

this exercise, which indicate the possible existence of the credit and interest rate channels.

[Figure 7 about here.]

5.3 Industry Characteristics Weighted Response Function

To support the previous findings, I construct an industry characteristic weighted response

function. That is, I generate several weighted response functions with the weight being

the industry characteristics. The weighted response function tends to be more responsive

if responsive industries have higher values of the industry characteristics. Alternatively,

the weighted response function tends to be less responsive if responsive industries have

lower values of the industry characteristics. By generating the weighted response function,

I visually obtain the association of the monetary policy responsiveness and industry char-

acteristics. I construct the industry characteristic weighted response function using the

following formula:

WIRFp =
∑
i

(
industry characteristicsi∑
i industry characteristicsi

) ∗MIRFip (6)

Figure 8 shows the industry characteristics weighted response functions. For compar-

ison, I plot an equally weighted response function.11 Consistent with the previous section,

the results show that firm size and working capital ratio weights make the weighted re-

sponse functions weaker. With regards to the QE identification, short-term debts lead to

a stronger estimated effect while leverage ratio leads to a weaker effect. This is consistent

with the prediction in Section 5. Similarly to the previous section, we do not find this

pattern from the HF identification.

11Since there are 18 industries, the weight is 1
18 .
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[Figure 8 about here.]

The results suggest that the interest rate channel plays a role even though the policy

rate is attached to the ZLB. This would imply that the real or expected interest rate still

affects the production decisions of firms. One possibility is signaling theory, (such as Bauer

and Rudebusch, 2013 and Bhattarai et al., 2015) that a central bank’s promise to keep the

interest rate lower in the future will lower the expected short-term real interest rates. This

creates incentives for capital intensive firms to invest in projects that involve borrowing.

Thus, this signaling channel may cause the negative relationship between working capital

and elasticity.

Overall, the results I obtained here are consistent with the regression results found

in Dedola and Lippi (2005). I find that monetary policy transmission mechanisms of

conventional and unconventional policies do not differ.

6 Robustness

In this section, I conduct a series of robustness analyses.

6.1 Changing the Sign Restriction Effective Periods

To study the effect of unconventional policy, an accurate identification is key. The results

should not be radically altered by the choice of the effective periods of sign restriction.

Therefore, I change the periods that the sign restriction is effective on the QE identification.

Previously, the sign restriction is imposed on the shock period (period 0) and the first

period. To see how sensitive the results are, I impose the restriction until the end of the

first quarter after the shock. In other words, I impose the same sign restriction on the shock

period through the 3rd period after the shock. Table 3 summarizes the new identification.

[Table 3 about here.]

Figure 9 shows the response functions of this identification. For a comparison, I also

include the response functions of the benchmark identification. The red line represents the

median response functions of the benchmark identification, while the blue line represents
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the median response functions of this identification. Credible bands of both specifications

are reported. The results are not largely affected by the new specification. Rather, the two

results are very similar. Therefore, imposing the sign restriction as shown on Table 1 in

Section 3.2 is sufficient to generate an ideal unconventional policy shock.

[Figure 9 about here.]

6.2 QE identification with Long-term Interest Rate

In this section, I use a long-term asset yield to identify an unconventional policy shock

following Bhattarai et al. (2021). The idea is that unconventional policies operated in

the US focus on long-term asset purchases. In Section 3.2, I used the identification in

Gambacorta et al. (2014), which is a broad measure of unconventional policy. Here, I extend

the identification and observe how the use of a long-term asset yield changes the results

from the benchmark identification. The new identification includes long-term interest rate

in the GVAR framework.

One of the purposes of unconventional policy is to reduce long-term interest rates

through the purchase of assets. This identification allows the unconventional policy shock

to be more specific to the policy. Now the endogenous vector yt contains:

yt =



ln(Industry Output1,t)
...
ln(Industry Output18,t)
ln(CPIt)
Long-Term Yieldt
ln(Total Assetst)
Volatilityt


(7)

where Long yieldt is the 10-year government bond yield. I impose an additional sign

restriction on top of the benchmark identification so that a shock to central bank total

assets decrease the long-term interest rate. One caveat of this identification is that it may

not capture the policies not intending to reduce the long-term asset yield: such as direct

lending to banks. The following is the identification:12

12Again, I omit the time subscript
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

uIndustry Output1
...
uIndustry Output18

uCPI

uLong-Term Yield

uTotal Assets

uVolatility


︸ ︷︷ ︸

Reduced form error
ut

=



∗ . . . ∗ 0 0
...

. . .
...

...
...

∗ . . . ∗ 0 0
∗ . . . ∗ 0 0
∗ . . . ∗ − 0
∗ . . . ∗ + +
∗ . . . ∗ −/0 +





εIndustry Output1
...
εIndustry Output18

εCPI

εLong-Term Yield

εTotal Assets

εVolatility


︸ ︷︷ ︸

Structural error
εt

(8)

Figure 10 shows the results of this identification. For a comparison, I also include the

response functions from the benchmark identification. As before, the red line represents

the median response functions from the benchmark identification, while the blue line rep-

resents the median response functions from this identification. Credible bands from both

specifications are reported.

[Figure 10 about here.]

I find that the impacts from this identification are generally weaker than the impacts

from the benchmark identification, but the shapes of the response functions do not vary

much between the two specifications. This indicates that the refinement of the identification

causes a quantitative level shift of the response functions, but the qualitative impacts of

unconventional policy are not radically altered.

6.3 Changing the order of the industries

An issue with specifying a structural GVAR model is the order of variables. Due to the

zero restriction of the QE identification, different orders of the variables changes how one

variable affects the other variables. For example, in the shock period, the first variable is

only affected by a shock to the first variable, the second variable is affected by shocks to

the first and second variables, the third variable is affected by shocks to the first, second,

and third variables, etc. Thus the earlier an industry is in the order, the less shocks that

industry is affected by in the shock period. Note that this problem does not happen when

the HF identification is used, as the monetary policy shock affects all of the variables

contemporaneously.
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The order of industries from the benchmark specification is reported in Table 4. Since

it is impractical to test all possible combinations, I estimate the model by flipping the order

of the industries. Figure 11 shows the results. The results from this specification are almost

identical to the benchmark. The results from the wood and printing activities show some

deviations between the different specifications, however, the median response functions are

within the credible bands given from the benchmark QE identification.

[Figure 11 about here.]

6.4 HF Identification with 1-Year Treasury Yield

In the analysis of the HF identification, I include the 10-year Treasury yield so that the

high frequency announcement surprises can have real impacts during the ZLB. However,

Jarociński and Karadi (2020) instead use the 1-year Treasury yield. Therefore, in this

section I use the 1-year Treasury yield instead of the 10-year Treasury yield and compare

the results.

Figure 12 reports the results. The results from this specification moderately alters the

response functions. For almost all of the industries, the impacts become weaker. This

suggests some struggles of the model transmitting the policy shock to the real economy

through the 1-year Treasury yield during ZLB. Similarly to the findings in Section 6.2,

this specification generates a level shift of the response functions, however, the qualitative

impacts of unconventional policy are not drastically altered.

[Figure 12 about here.]

7 Conclusion

This paper estimates the industry impacts of unconventional policy for the US using struc-

tural Bayesian GVAR model. The monetary policy shocks are constructed using the QE

and HF identifications. The industry response functions reveal some interesting features.

First, unconventional policy has heterogeneous impacts across industries. Among those re-

sponses, I find that unconventional policy strongly stimulates the industries that produce
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durable goods, which are known to be interest rate sensitive in the literature. Second, the

pattern of industry responses are similar between the QE and HF identifications. Though

the two identifications measure different aspects of unconventional policy, industry level

output responses are quite similar. Third, I find that smaller firm size and lower working

capital are associated with higher industry output responses. The findings from this paper

imply a similarity of the pattern of impacts and monetary policy transmission mechanisms

between conventional and unconventional monetary policies.

Given the potential decline of the natural rate of interest in highly advanced countries

(Holston et al., 2017), it is likely that the ZLB spreads to other countries and requires other

central bankers to implement an unconventional policy. The results obtained in this paper

provide some bottom line predictions for countries that have not yet experienced the ZLB

and aid central bankers in creating an unconventional policy.
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A Mathematical Appendix

A.1 Appendix: Complete Description of Identification

The reduced form variance-covariance matrix, Ω, can be expressed as:

Ω = BB′ = BIB′ = BQQ′B′ (9)

where B is a lower triangle matrix obtained by the Cholesky decomposition and Q is a

Givens rotation matrix defined as:

Q =


I

0
...
0

0
...
0

0 . . . 0 cos(θ) −sin(θ)
0 . . . 0 sin(θ) cos(θ)

 (10)

where θ ∈ [0, 2π]. The above definition can generate the relationship between reduced

form error and structural form error terms:
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

uIndustry output1
...
uIndustry output18

uCPI

uTotal Assets

uVolatility


︸ ︷︷ ︸

Reduced form error
ut

=



∗ . . . ∗ 0 0
...

. . .
...

...
...

∗ . . . ∗ 0 0
∗ . . . ∗ 0 0
∗ . . . ∗ + +
∗ . . . ∗ −/0 +





εIndustry output1
...
εIndustry output18

εCPI

εTotal Assets

εVolatility


︸ ︷︷ ︸

Structural error
εt

(8 revisited)

A.2 Complete Description of GVAR Specification

For each industry i, I model a VARX(pi, qi):

yi,t = ci +

pi∑
j=1

Ai,jyi,t−j +

qi∑
j=0

Bi,jy
∗
i,t−j +

qi∑
j=0

Ci,jxt−j + ui,t (11)

where ci is a vector of intercepts; Ai,j, Bi,j, and Ci,j are coefficient matrices; ui,t is white

noise with nonsingular covariance matrix Σi,i; yi,t consists of domestic variables (i.e. a

vector of output industry i at time t); y∗i,t contains the remaining industry variables (i.e. a

vector that consists of industry output except for industry i); and y∗i,t is constructed as a

weighted average of domestic variables ∀j 6= i:

y∗i,t =
∑
j 6=i

wi,jyj,t
∑
j 6=i

wi,j = 1 (12)

The weight, wi,j, is assumed to be constant during the estimation periods. Traditionally

bilateral trade flow is used (e.g. Vansteenkiste and Hiebert, 2011 and Galesi and Lom-

bardi, 2009) since GVAR models are often used for assessing international spillover effects.

However, since the focus is on industry level interaction, I use the 2017 IO table for the

weight.13

The vector xt, common variable, is the same across industries and has the following

VARX (px, qx) specification:

13Holly and Petrella (2012) and Vansteenkiste (2007) use an IO table for the construction of a foreign
variable.
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xt = cx +

px∑
j=1

Djxt−j +

qx∑
j=0

Fj ỹt−j + uxt (13)

where cx is a vector of intercepts, Dj and Fj are coefficient matrices, uxt is white

noise with nonsingular covariance matrix Σx,x, and ỹt =
∑

iw
∗
i yi,t and w∗i is GVA share of

industry i.

Given the specifications of equation (11) and exploiting the fact that y∗i,t = Wiyt, where

Wi is a link matrix based on the IO table and yt = [y′1,t, y
′
2,t, ..., y

′
I,t]

′
, equation (11) can be

transformed to:

Gi,0yi,t = ci +

pi∑
j=1

Gi,jyi,t−j +

qi∑
j=0

Ci,jxt−j + ui,t (14)

where Gi,0 = (I − Bi,0Wi) and Gi,j = (Ai,j + Bi,jWi). Now we stack all of the industries

together to get:

G0yt = c+

p∑
j=1

Gjyt−j +

q∑
j=0

Cjxt−j + ut (15)

Likewise, using the fact that ỹt = W ∗yt, where W ∗ is a link matrix based on the industry

GVA share, equation (13) becomes:

xt = cx +

px∑
j=1

Djxt−j +

qx∑
j=0

FjW
∗yt−j + uxt (16)

By combining equations (15) and (16), we can construct a structural global VAR model:

H0Zt = h0 +

p∑
j=1

HjZt−j + et (17)

where Zt = (y′t, x
′
t)
′, H0 =

 G0 −C0

−FW ∗ I

, h0 =

 c

cx

, Hj =

 Gj Cj

FjW
∗ Dj

, and

et =

 ut

uxt

. Finally, et has the variance-covariance matrix Σ =

 Σi,j Σi,x

Σx,i Σx,x


Assuming that H0 is invertible. Then we obtain the reduced form global VAR (p)
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model:

Zt = k0 +

p∑
j=1

KjZt−j + νt νt ∼ N (0,Ω) (18)

where k0 = H−1
0 h0, Kj = H−1

0 Hj, νt = H−1
0 et, and Ω = H−1

0 ΣH−1′

0 .

To estimate the model, I impose pi = px = qx = qi = 2. Hypothetically, directly

estimating equation (18) is ideal, however, given the limited sample size and the number

of the parameters to be estimated, it is inevitable to face the curse of dimensionality. To

circumvent this problem, I follow the conventional way to estimate a GVAR: estimate the

domestic equation (11) and the common equation (13) individually using OLS. This is the

prior for the coefficient matrix.

A.3 Appendix: Complete Description of Bayesian Estimation

A.4 QE identification

First, I impose the priors of vec(K) and Ω to be independent and they follow the inde-

pendent Gaussian-inverse Wishart distribution. The joint pdf is:

g(vec(K),Ω) = gvec(K)(vec(K)) ∗ gΩ(Ω)

The distributions for vec(K) and Ω are:

vec(K) ∼ N (vec(K∗), Vvec(K))

and

Ω ∼ IW(S∗, n)

where K∗ is the OLS estimates, S∗ = I, and n is the number of variables in the system

plus 1. For the prior variance of the coefficients parameter, Vvec(K), I impose the Minnesota

prior. This enables the prior distribution to be tight and that is necessary to overcome

the curse of dimensionarity with the GVAR model. First, I set the prior variance of the
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intercept to be infinity and the prior variance of the j, kth elements of Ki to be:

vjk,i =

(λ/i)2 if j=k

(λασj/iσk)
2 if j 6= k

(19)

where λ = 0.3 and α = 0.05. σj and σk are obtained from equation by equation OLS

estimates of the VAR model. Then Vvec(K) is:

Vvec(K) =



∞
. . .

∞
v1,1,1 0

. . .

vn−1,1,1

v1,2,1

. . .

vn−1,2,1

. . .

0 v1,1,2

. . .

vn−1,n−1,2


Now, the posterior distributions are:

vec(K)|Ω,y ∼ N (vec(K̄), Ω̄vec(K))

and

Ω|vec(K),y ∼ IW(S, τ)

where

y = vec(Y ) and Y = [y1, · · · , yT ],

vec(K̄) = [V −1
vec(K) + (ZZ ′ ⊗ Ω−1)]−1[V −1

vec(K)vec(K
∗) + (Z ⊗ Ω−1)y],

Ω̄vec(K) = [V −1
vec(K) + (ZZ ′ ⊗ Ω−1)]−1,
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S = S∗ +
T∑
t=1

(yt − Ztvec(K))(yt − Ztvec(K))′,

and

τ = T + n.

Moreover, Ω is the OLS estimate, Zt = Zt ⊗ I and Z = [Z0, · · · , ZT−1] with Zt−1 =

(1, y
′
t−1, y

′
t−2)′.

Here the posterior distribution of vec(K) is conditional on Ω and the posterior distri-

bution of Ω is conditional on vec(K). Therefore, the Gibbs sampler is required to draw

sample parameters from the joint posterior distribution. A burn-in sample of 20,000 draw

is discarded following the literature14 and then the following steps are taken to generate

response functions.

Step 1: Draw reduced form parameters K∗ri s and Ω∗r and compute the Cholesky decom-

position of Ω∗r.

Step 2: For each K∗ri s and Ω∗r, draw N random Given’s rotation matrix, Qi∈N . For each

combination of K∗ri s, Ω∗r, and Qi, calculate the response function.

Step 3: If the response function satisfies the sign restriction on Table 1 in Section 3.2,

keep it. Otherwise, discard the response function.

Step 4: Repeat steps 1, 2 and 3 M times.

Here N = 1000 and M = 1000. All of the successful response functions are sorted in a

descending order and the upper 84% and bottom 16% are reported as the Bayesian cred-

ible band. This credible band represents the statistical significance as well as modeling

uncertainty since sign restriction from structural VAR models are not unique.

A.5 High Frequency Data Identification

The equation (4) can be expressed as the following matrix notation:

[
M X

]
= W

[
0 A

]
+
[
UM UX

] [
UM UX

]
∼ N (0,Ω)

14I also calculate the Geweke convergence criteria (Geweke et al., 1991) and almost all of the parameters
converged before 4,000 draws.
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where M = (m1, . . . ,mT )′, X = (x1, . . . , xT )′, W = (mt−1, xt−1,mt−2, xt−2, 1)′, B =

(A1
xmA

1
xxA

2
xmA

2
xxcx)

′, UM = (um1 , . . . , u
m
T )′, and UX = (ux1 , . . . , u

x
T )′

First, I impose the priors of vec(B) and Ω to be independent and they follow the

independent Gaussian-inverse Wishart distribution. The joint pdf is:

g(vec(B),Ω) = gvec(B)(vec(B)) ∗ gΩ(Ω)

The distributions for B and Ω are:

vec(B) ∼ N (vec(B∗), Vvec(B))

and

Ω ∼ IW(S∗, n)

where B∗ is the OLS estimates, S∗ is the diagonal element of Ω, and n is the number of

variables in the system plus 2. For the prior variance of the coefficients parameter, Vvec(B),

I impose the Minnesota prior in the previous section.15

Given the prior specification, the posterior distributions are:

vec(B)|Ω,X,M ∼ N (vec(B̄), Ω̄vec(B))

and

Ω|vec(B),X,M ∼ IW(S, τ)

where

vec(B̄) = [V −1
vec(B)+(Ω−1

XX.1⊗W
′
W )]−1[V −1

vec(K)vec(B
∗)+(Ω−1

XX.1⊗W
′
)vec(X+MΩ−1

MMΩMY )],

Ω̄vec(B) = [V −1
vec(B) + (Ω−1

XX.1 ⊗W
′
W )]−1,

S = S∗ + (
[
M X

]
−W

[
0 A

]
)
′
(
[
M X

]
−W

[
0 A

]
),

15λ = 0.1 and α = 0.3 are imposed
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and

τ = T + n.

where Ω =

ΩMM ΩMX

ΩXM ΩXX

 and ΩXX.1 = ΩXX − ΩXMΩ−1
MMΩMX .

The Gibbs sampler draws sample parameters from the joint posterior distribution. A

burn-in sample of 100,000 draw is discarded and then the following steps are taken to gen-

erate response functions.

Step 1: Draw reduced form parameters B∗ri s and Ω∗r, compute the Cholesky decomposi-

tion of Ω∗r, and calculate the response function.

Step 2: Repeat step 1 M times. Here M = 2000. All of the response functions are sorted

in a descending order and the upper 84% and bottom 16% are reported as the Bayesian

credible band.
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B Appendix Figures

C Appendix: Tables

[Table 4 about here.]
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Figure 1: Industry Output

Note: All of the variables are normalized so that 2010M1=100.

Source: The Federal Reserve Board.
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Figure 2: Data Used in This Paper

(a) Manufacturing Output
(b) Consumer Price Index (c) Central Bank Total Assets

(d) Stock Market Implied
Volatility (e) S&P 500 (f) 10-Year Treasury Yield

(g) Excess Bond Premium (h) Monetary Policy Surprises (i) S&P 500 Surprises

Note: Manufacturing Output, Consumer Price Index, Central Bank Total Assets, and S&P 500 are
normalized so that 2010M1=100.

Source: Aggregate output: the Federal Reserve Board; Consumer price index: the Bureau of Labor

Statistics; Central bank total assets (WALCL), Stock market implied volatility (VIXCLS), 10-year

Treasury yield (IRLTLT01USM156N): the FRED database; Excess bond premium: Gilchrist and

Zakraǰsek (2012); Monetary Policy Surprises, S&P 500 Surprises, and S&P 500: Jarociński and Karadi

(2020).
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Figure 3: The Identified Shocks

(a) QE Identification
(b) High Frequency Data Identification

Note: The solid curves represent the median of the identified shocks from the structural GVAR model.

The dotted curve represents the share of central bank total assets of real GDP. I normalized the scale of

the shocks so that the mean (as well as the sum) of the shock and the standard deviation of the shock are

zero and one, respectively.

39



Figure 4: Weighted Impulse Response Functions

(a) QE Identification

(b) High Frequency Data Identification

Note: The Median, 16th, and 84th Bayesian percentiles. Monthly horizon. The response function of

aggregate manufacturing from the VAR model is attached for comparison. To compare the results from

the two identification easier, I multiply -1 with the response functions from the HF identification.
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Figure 5: Industry Response Functions (QE Identification)

Note: The Median, 16th, and 84th Bayesian percentiles are reported. Monthly horizon.
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Figure 6: Industry Response Functions (High Frequency Data Identification)

Note: The Median, 16th, and 84th Bayesian percentiles are reported. Monthly horizon. To compare the

results from the two identification easier, I multiply -1 with the response functions.
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Figure 7: Linear Plot of Industry Characteristics and Monetary Policy Elasticity of Output

Firm Size, QE Identification Firm Size, HF Identification

Leverage Ratio, QE Identification Leverage Ratio, HF Identification

Working Capital Ratio, QE Identification Working Capital Ratio, HF Identification

Short-Term Debt, QE Identification
Short-Term Debt, HF Identification

43



Figure 8: Industry Characteristics Weighted Impulse Response Functions

QE identification
HF identification

Note: Monthly horizon. Weight is constructed based on industry characteristicsi∑
i industry characteristicsi

for each industry i. To

compare the results from the two identification easier, I multiply -1 with the response functions from the

HF identification.
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Figure 9: Industry Impulse Response Functions with Longer Sign Restrictions

Note: The Median, 16th, and 84th Bayesian percentiles. Monthly horizon. The response functions from

the benchmark QE identification is attached for comparison. The size of the shock is rescaled to be the

size of shock from the benchmark QE identification.
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Figure 10: Industry Impulse Response Functions with Long-Term Interest Rate

Note: The Median, 16th, and 84th Bayesian percentiles. Monthly horizon. The response functions from

the benchmark QE identification is attached for comparison. The size of the shock is rescaled to be the

size of shock from the benchmark identification.
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Figure 11: Industry Response Functions (Reverse Order of Industries)

Note: The Median, 16th, and 84th Bayesian percentiles. Monthly horizon. The size of the shock is

rescaled to be the size of shock from the benchmark QE identification.
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Figure 12: Industry Response Functions (High Frequency Data Identification with 1-Year
Treasury Yield)

Note: The Median, 16th, and 84th Bayesian percentiles. Monthly horizon. The size of the shock is

rescaled to be the size of shock from the benchmark identification. To compare the results from the two

identification easier, I multiply -1 with the response functions from the HF identification.
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Table 1: Sign Restrictions of Impulse Response Functions

at period = 0 at period = 1
Industry Output 0 *
Consumer Price Index 0 *
Central Bank Total Assets >0 >0
Stock Market Implied Volatility ≤0 ≤0
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Table 2: Monetary Policy Elasticity of Output

Industry Elasticity Industry Elasticity
QE High Freq. QE High Freq.

Food, beverage, and tobacco 0.018 0.004 Nonmetallic mineral product 0.339 0.357
(-0.003, 0.043) (-0.119, 0.089) (0.220, 0.484) (0.101, 0.646)

Textile mills product 0.289 0.195 Primary metal 0.527 1.254
(0.181, 0.425) (-0.142, 0.534) (0.356, 0.758) (0.643, 2.017)

Apparel and leather product 0.208 0.513 Fabricated metal product 0.354 0.722
(0.115, 0.339) (0.199, 0.793) (0.232, 0.526) (0.293, 1.164)

Wood product 0.383 0.818 Machinery 0.508 1.494
(0.253, 0.572) (0.427, 1.257) (0.314, 0.782) (0.981, 2.237)

Paper 0.144 0.614 Computer and electronic product 0.451 0.760
(0.100, 0.211) (0.434, 0.813) (0.323, 0.617) (0.386, 1.153)

Printing activities 0.133 0.011 Electrical equipment etc 0.313 0.415
(0.075, 0.218) (-0.131, 0.189) (0.201, 0.464) (0.104, 0.764)

Petroleum and coal product 0.003 0.682 Motor and transportation 0.298 1.146
(-0.043, 0.040) (0.427, 0.996) (0.204, 0.409) (0.779, 1.547)

Chemical 0.101 0.207 Furniture and related product 0.336 0.446
(0.064, 0.142) (0.046, 0.345) (0.230, 0.498) (0.060, 0.854)

Plastic and rubber product 0.253 0.467 Other manufacturing 0.091 0.198
(0.185, 0.341) (0.207, 0.814) (0.042, 0.144) (0.046, 0.345)

Industry average 0.26 0.57
Industry median 0.29 0.49

Note: Lower and upper values of credible band in parenthesis. Credible band is an interval within

which the estimate falls with the probablity given. For the QE identification, elasticity is the maximum

median impulse response function consistent with a 1% increase in central bank total asset and for HF

identification, elasticity is the maximum median impulse response function consistent with a 5 basis point

decrease in federal funds futures. For example, for the paper industry, a 1% increase in central bank

total assets increase the output by 0.144% with the QE identification and a 5 basis point decrease in

federal funds futures increases the output by 0.614% with the HF identification. Credible bands are also

transformed by the same amount as the elasticity is scaled.
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Table 3: Sign Restriction (Robustness) of Impulse Response Function

at period = 0 at period = 1, 2 and 3
Industry Output 0 *
Consumer Price Index 0 *
Central Bank Total Assets >0 >0
Stock Market Implied Volatility ≤0 ≤0
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Table 4: Industry definition

Industry NAICS
Food, beverage, and tobacco 311-312
Textile mills product 313-314
Apparel and leather product 315-316
Wood product 321
Paper 322
Printing activities 323
Petroleum and coal product 324
Chemical 325
Plastic and rubber product 326
Nonmetallic mineral product 327
Primary metal 331
Fabricated metal product 332
Machinery 333
Computer and electronic product 334
Electrical equipment etc 335
Motor and transportation 336
Furniture and related product 337
Other manufacturing 339
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