Chapter 10 Liquids, Solids and Phase Changes

The three phases of matter: solids, liquids and gases

Phase change properties of pure water at 1 atm pressure

What is a boiling point? What does it measure?

*The boiling points generally increase with increasing molecular mass down a group of the periodic table, but the hydrides of nitrogen (NH_3) , oxygen (H_2O) , and fluorine (HF) have abnormally high boiling points because these molecules form hydrogen bonds.

$H₂O:$ a unique substance

- Hydrogen bonds: hydrogen attached to an oxygen in particular, is capable of causing association. The association is electrostatic in nature and leads to compounds that have significantly more association than one would otherwise expect.
- Compounds that form hydrogen bonds have a form of chemical stickyness not found in other materials.
- Significance: Self association is fundamental to understanding all biological processes and more often than not, hydrogen bonding is responsible for this self association.

A few examples:

- 1. reproduction of the genetic code
- 2. antigen-antibody response
- 3. transport across cell membranes
- 4. What hold paper together?

When many sugars are linked together you have polysaccharides, which are natural polymers:

oxygen: red; hydrogen: white

Hydrogen bonding in H_2O

Other types of weak bonds leading to some self association:

- 1. Dipole-dipole interactions: forces associated with nonsymmetrical molecules especial those that have atoms bonded with large electronegativity differences.
- 2. London dispersion forces: the weakest of all the forces we encounter. These forces are responsible for our ability to condense substances such as methane, N_2 , He. These forces are often encountered in symmetrical molecules and in molecule in which the electrons are shared equally.

What is the experimental evidence for these forces?

Electronegativities

A Comparison of Intermolecular Forces

a dipole is a vector, that is it has both magnitude and direction

Ammonia (μ = 1.47 D)

Water (μ = 1.85 D)

TABLE 10.1 Dipole Moments of **Some Common Compounds**

*Measured in the gas phase

Dipole moment is define as charge separation*distance of separation; dipole moments are vectors is so far as they have magnitude and direction.

Fusion enthalpy: the amount of heat necessary to convert a fixed amount of solid at its melting temperature to the liquid at the same temperature. Units: J/mol; J/g

Vaporization enthalpy: the amount of heat necessary to convert a fixed amount of liquid at its boiling temperature to the gas at the same temperature. Units: J/mol; J/g

Normal boiling temperature: the temperature at which the vapor pressure of the liquid equals 1 atm

How does vapor pressure vary with temperature?

How do we measure vaporization enthalpy?

One way of measuring vapor pressures

- One method of 1. Cool the liquid to a very low temperature
- 2. Open the valve to vacuum to remove any air
- 3. Close the valve to the vacuum
	- 4. Replace the liquid with a bath at a constant temperature and record the change in the different levels of mercury

Plot $ln(P)$ against $1/T$ where T is in Kelvin

What's ln(P)? Whats' log(P)?

 $ln(x) = 2.303log(x)$

the log of the number 200

 $log(200) = 2.3$ 10^{2.3} = 200; log uses the base 10

$$
\ln(200) = 5.2983; \qquad \qquad 2.718^{5.2983}
$$

Where does the number 2.718 come from?

2.718 is the area under the curve of 1/x where x goes from 0 to infinity

x

How do we measure vaporization enthalpy?

It has been found that by measuring the vapor pressure of a liquid as a function of temperature, an exponential increase in vapor pressure is observed.

Furthermore, it has bee also found that by plotting the logarithm of vapor pressure as a function of 1/T where T is in K, a linear plot is obtained.

The slope of the line has been found to equal to $-AH_{vap}/R$ where R is the gas constant, 1.987 cal/mol or 8.314 J/mol

We can express this line using the general equation for a straight line:

 $y = mx + b$

in this case $y = lnP$, and $x = 1/T$; the slope of the line is found to be

- $\Delta H_{vap}^{}/R$

Clausius Clapeyron Equation

 $ln(P) = 2.303log(P)$

 ΔH_{vap} = vaporization enthalpy

R=gas constant 1.987 cal/(K mol); 8.314 J/(mol K); 0.0821Latm/(K mol)

Let calculate the vaporization enthalpy of water at $T = 298$ K:

 $lnP_1 = -\Delta H_{vap} / [1/T_1] / R + b$ $\ln P_2$ = $-AH_{vap}$ [1/T₂] /R + b lets subtract the first eq from the second $\text{ln} \text{P}_{2}$ - $\text{ln} \text{P}_{1}$ = - $\Delta \text{H}_{\text{vap}}$ [1/T₂-1/T₁]/R 3.459 -2.862 = Δ H_{vap} [1/303-1/293] /R .597*8.314J/(mol K)= .00011 $\Delta \rm H_{vap}$ $\Delta \rm H_{vap}$ = 45120 J/mol at 298 K; the text reports 40670 at 373 K

We have now learned how to experimentally calculate $\Delta H_{\rm vap};$

 ΔH_{sub} is calculated in the same way using the same equation.

We calculate $\Delta \rm{S_{vap}}$ for a phase change at constant temperature?

 $\Delta S_{vap} = \Delta H_{vap}/T_b$ where ΔH_{vap} is the value measured at the boiling point T_b ; likewise $\Delta H_{fus} = \Delta H_{fus}/T_{fus}$ where T_{fus} is the melting point

The text reports 40670 at 373 K; since the boiling of water takes place at a constant temperature, $\Delta G = 0$; the entropy change

$$
\Delta S_{vap} = \Delta H_{vap}/T_b = 40670/373 = 109 \text{ J/(mol K)}
$$

 $\Delta S_{fus} = \Delta H_{fus} / T_{fus} = 6010/273 = 22.0 \text{ J/(mol K)}$

- Nitrogen bp $= -186$ °C
- Dry Ice (CO_2) bp = -77 °C ?
- -77 °C is the temperature at which the vapor pressure of $\mathrm{CO}_2 = 1~\mathrm{atm}$
- Why doesn't Dry Ice melt?

Phase Diagram of CO $_{\rm 2}$

Viscosity and surface tension

Viscosity relates to how freely molecules can flow over each other; is related to the nature of the intermolecular forces present in liquid.

Surface tension is the term used to describe the unequal forces acting on those molecules on a surface that are not surrounded by other molecules; causes formation of spheres

Packing in solids

How is structure in the crystalline state determined? NaCl cubic structure

A brief tutorial on some properties of waves, light waves

 $\sin \theta = a/d$ d= a /sin θ or a =dsin θ

 $BC + CB' = 2d \sin \theta = n\lambda$ for constructive interference

 $d = n\lambda/2\sin\theta$

How do different substances pack in the solid?

Body-centered cubic (b)

Layer a Layer b Layer a

Simple cubic (a)

52% of the volume occupied

only polonium crystallizes in this motif

68 % of the volume used; examples Fe, Na + 14 other metals

crystallize in this motif

Hexagonal closest packed

74% of the volume is occupied; Zn, Mg and 19 other metals pack in this motif

Top view

Cubic closest packed

74% of the volume is occupied; Ag, Cu and 16 other metals pack in this motif

 (a)

Layer a

Layer *b*

Layer a

Unit cell: smallest repeat unit that can generate the entire 3-d structure; 14 different unit cell geometries possible

- 3 different kinds of cubic cell geometry
- 1. primitive cubic
- 2. face centered cubic
- 3. body centered cubic

primitive cubic

body centered cubic

Face centered cubic

TABLE 10.10

Summary of the Four Kinds of Packing for Spheres

- Copper crystallizes in a face centered cubic unit cell with an edge length of $3.62x10^{-8}$ cm.
- How many atoms in a unit cell of Cu? 4What is the radius of a copper atom and what is the density of Cu?

$$
h2 = edge2 + edge2
$$

$$
h2 = 2*(3.62x10-8)2
$$

$$
h = [26.2x10-16]1/2
$$

$$
h = 5.12x10-8 cm
$$

How many radui is h?

4, radius $= 1.28x10^{-8}$ cm

Volume of unit cell? $V = r^3$ $V = (3.62 \times 10^{-8})^3 = 47.8 \times 10^{-24}$ cm³

How many atoms? 4 atoms

If 4 atoms have this volume, then $6x10^{23}$ atoms would have a volume of $6x10^{23}x$ 47.8x 10⁻²⁴/4 $cm³ = 7.17 cm³$

63.5g/7.17cm³ = 8.85 g/cm³; 8.94g/cm³ (25 °C)

Liquid Crystals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C Smectic

. Copyright © The MoGraw-Hill Companies. Inc. Permission required for reproduction or display.

