Units used in IR spectroscopy

The wavelength of light in the IR region varies from about 2.5 to 40  $\mu$  where 1  $\mu$  = 10<sup>-4</sup> cm.

Since  $\lambda_{cm}v_{sec-1} = c$  and E = h v, then  $v = c/\lambda$ ; v is proportional to  $1/\lambda$ , the general convention in IR is to list frequencies proportional to energy.

Frequencies in IR are generally expressed in  $1/\lambda$  units; ie cm<sup>-1</sup> since these are proportional to energy.

 $1/(2.5*10^{-4} \text{ cm}) = 4000 \text{ cm}^{-1}$ ;  $1/(40*10^{-4} \text{ cm}) = 250 \text{ cm}^{-1}$ 

To convert to true energy units, cm<sup>-1</sup> needs to be multiplied by the speed of light,  $3*10^{-10}$  cm sec<sup>-1,</sup> and Planck's Constant,  $h = 6.624*10^{-27}$  erg sec

#### Infrared Spectroscopy

$$E_{vib} = (n+1/2)h(k/\mu)^{.5}/2 \pi$$
 where  $\mu = m_1 m_2/(m_1+m_2)$ 

 $E_{rot} = J(J+1)h^2/8 \pi 2I$ ; where I = moment of inertia

$$E_{\text{vib-rot}} = (n+1/2)h(k/\mu)^{.5}/2 \pi + J(J+1)h^2/(8\pi^2 I); \quad n, J = \pm 1.$$

In IR, the change in *n* is usually by +1, occasionally some + 2 also occurs (overtone). The number of molecules at room temperature that are in an n = 1 state is very small because the energy spacings are large. The rotational energy spacings are considerably smaller;  $J = \pm 1$  An example of a molecule with a small moment of inertia: HBr

# $E_{vib-rot} = (n+1/2)h(k/\mu)^{.5}/2 \pi + J(J+1)h^2/(8 \pi^2 I)$ ; where I = moment of inertia

- $n, J = \pm 1$ . For most large molecules *I* is large. In this spectrum n = +1.
- $J = \pm 1$

**Gas Phase Spectrum** 



#### **Gas Phase Spectrum**



#### In the condensed phase collision broadening also obcures the n=1, J=0 null

# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

0

| Funct. | Туре                       |                    | Frequencies        | Peak      | Examples   |
|--------|----------------------------|--------------------|--------------------|-----------|------------|
| Group  |                            |                    | $\mathrm{cm}^{-1}$ | Intensity | Figure No. |
| С-Н    | sp <sup>3</sup> hybridized | R <sub>3</sub> C-H | 2850-3000          | M(sh)     | 6, 18, 22  |

### sp<sup>3</sup> hybridized CH



% Transmittance

# sp<sup>3</sup> hybridized CH



# **Figure IR-18.** Butylamine, neat liquid; thin film: $CH_3CH_2CH_2CH_2NH_2$

### sp<sup>3</sup> hybridized CH



Figure IR-22. Triethylamine, neat liquid; thin film: (CH<sub>3</sub>CH<sub>2</sub>)<sub>3</sub>N

# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

| Funct. | Туре              |       | Frequencies | Peak      | Examples   |
|--------|-------------------|-------|-------------|-----------|------------|
| Group  |                   |       | $cm^{-1}$   | Intensity | Figure No. |
| C-H    |                   |       |             |           |            |
|        | $sp^2$ hybridized | =CR-H | 3000-3250   | M(sh)     | 7, 13, 42  |
|        | sp hybridized     | ≡С-Н  | 3300        | M-S(sh)   | 13         |

### sp<sup>2</sup> hybridized CH



Figure IR-8. Indene; neat; 0.05 mm cell:



# sp and sp<sup>2</sup> hybridized CH



Н

**Figure IR-13.** Phenylacetylene, neat liquid; thin film (note that R here is an aromatic group):

### sp<sup>2</sup> hybridized CH



Figure IR-42. Sodium benzoate, KBr pellet:



Can the frequency dependence on hybridization be rationalized?

#### Table 2.Carbon Hydrogen Bond Strengths as a Function of Hybridization

| Type of C-H bond               |                                                    | Bond Strength | IR Frequency |
|--------------------------------|----------------------------------------------------|---------------|--------------|
|                                |                                                    | kcal/mol      | $cm^{-1}$    |
| sp <sup>3</sup> hybridized C-H | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> -H | 99            | <3000        |
| sp <sup>2</sup> hybridized C-H | CH <sub>2</sub> =CH-H                              | 108           | >3000        |
| sp hybridized C-H              | НС≡С-Н                                             | 128           | 3300         |

$$E = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}} (n + \frac{1}{2})$$

The bond strength seems dependent of the amount of s character in the bond



What would happen to k (force constant ) if stretching a bond resulted in severe steric interactions?





### Hindered sp<sup>3</sup> C-H



# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

| Funct. | Туре                       |                    | Frequencies        | Peak      | Examples   |
|--------|----------------------------|--------------------|--------------------|-----------|------------|
| Group  |                            |                    | $\mathrm{cm}^{-1}$ | Intensity | Figure No. |
| C-H    | sp <sup>3</sup> hybridized | R <sub>3</sub> C-H | 2850-3000          | M(sh)     | 6, 18, 22  |
|        | $sp^2$ hybridized          | =CR-H              | 3000-3250          | M(sh)     | 7, 13, 42  |
|        | sp hybridized              | ≡C-H               | 3300               | M-S(sh)   | 13         |
|        | aldehyde C-H               | H-(C=O)R           | 2750, 2850         | M(sh)     | 14, 15     |

### aldehyde C-H



**Figure IR-14.** Butanal, neat liquid, thin film: CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO

## aldehyde C-H



O || CH

Figure IR-15. Benzaldehyde, neat, thin film

(R here is an aromatic group):

# Focusing on $-NH_2$

# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

| Funct. | Туре                       |                      | Frequencies | Peak      | Examples   |
|--------|----------------------------|----------------------|-------------|-----------|------------|
| Group  |                            |                      | $cm^{-1}$   | Intensity | Figure No. |
| C-H    | sp <sup>3</sup> hybridized | R <sub>3</sub> C-H   | 2850-3000   | M(sh)     | 6, 18, 22  |
|        | $sp^2$ hybridized          | =CR-H                | 3000-3250   | M(sh)     | 7, 13, 42  |
|        | sp hybridized              | ≡С-Н                 | 3300        | M-S(sh)   | 13         |
|        | aldehyde C-H               | H-(C=O)R             | 2750, 2850  | M(sh)     | 14, 15     |
| N-H    | primary amine, amide       | $RN-H_2$ , $RCONH_2$ | 3300, 3340  | S,S(br)   | 18, 19     |

#### **NH<sub>2</sub>- Stretching Frequencies**



**Figure IR-18.** Butylamine, neat liquid; thin film:  $CH_3CH_2CH_2CH_2NH_2$ 

### **NH<sub>2</sub>- Stretching Frequencies**



(R here is an aromatic group):

# Focusing on –NHR

# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

| Funct. | Туре                       |                      | Frequencies | Peak      | Examples   |
|--------|----------------------------|----------------------|-------------|-----------|------------|
| Group  |                            |                      | $cm^{-1}$   | Intensity | Figure No. |
| С-Н    | sp <sup>3</sup> hybridized | R <sub>3</sub> C-H   | 2850-3000   | M(sh)     | 6, 18, 22  |
|        | $sp^2$ hybridized          | =CR-H                | 3000-3250   | M(sh)     | 7, 13, 42  |
|        | sp hybridized              | ≡C-H                 | 3300        | M-S(sh)   | 13         |
|        | aldehyde C-H               | H-(C=O)R             | 2750, 2850  | M(sh)     | 14, 15     |
| N-H    | primary amine, amide       | $RN-H_2$ , $RCONH_2$ | 3300, 3340  | S,S(br)   | 18, 19     |
|        | secondary amine, amide     | RNR-H, RCONHR        | 3300-3500   | S(br)     | 20, 21     |

#### **NH- Stretching Frequencies**



**Figure IR-20.** Diethylamine, neat liquid; thin film:  $CH_3CH_2NHCH_2CH_3$ 

#### **NH- Stretching Frequencies**



**Figure IR-21**. N-Methyl acetamide, neat liquid; thin film:  $CH_3CONHCH_3$ 

# Focusing on -NR<sub>2</sub>

# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

| Funct. | Туре                       |                      | Frequencies        | Peak      | Examples   |
|--------|----------------------------|----------------------|--------------------|-----------|------------|
| Group  |                            |                      | $\mathrm{cm}^{-1}$ | Intensity | Figure No. |
| C-H    | sp <sup>3</sup> hybridized | R <sub>3</sub> C-H   | 2850-3000          | M(sh)     | 6, 18, 22  |
|        | sp <sup>2</sup> hybridized | =CR-H                | 3000-3250          | M(sh)     | 7, 13, 42  |
|        | sp hybridized              | ≡C-H                 | 3300               | M-S(sh)   | 13         |
|        | aldehyde C-H               | H-(C=O)R             | 2750, 2850         | M(sh)     | 14, 15     |
| N-H    | primary amine, amide       | $RN-H_2$ , $RCONH_2$ | 3300, 3340         | S,S(br)   | 18, 19     |
|        | secondary amine, amide     | RNR-H, RCONHR        | 3300-3500          | S(br)     | 20, 21     |
|        | tertiary amine, amide      | $RN(R_3), RCONR_2$   | none               |           | 22, 23     |

#### **Tertiary Amines**



**Figure IR-22.** Triethylamine, neat liquid; thin film:  $(CH_3CH_2)_3N$ 

#### **Tertiary Amides**



**Figure IR-23**. N,N-Dimethylacetamide, neat liquid; thin film:  $CH_3CON(CH_3)_2$ 

# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

| Funct. | Туре                       |                      | Frequencies        | Peak      | Examples       |
|--------|----------------------------|----------------------|--------------------|-----------|----------------|
| Group  |                            |                      | $\mathrm{cm}^{-1}$ | Intensity | Figure No.     |
| C-H    | sp <sup>3</sup> hybridized | R <sub>3</sub> C-H   | 2850-3000          | M(sh)     | 6, 18, 22      |
|        | sp <sup>2</sup> hybridized | =CR-H                | 3000-3250          | M(sh)     | 7, 13, 42      |
|        | sp hybridized              | ≡C-H                 | 3300               | M-S(sh)   | 13             |
|        | aldehyde C-H               | H-(C=O)R             | 2750, 2850         | M(sh)     | 14, 15         |
| N-H    | primary amine, amide       | $RN-H_2$ , $RCONH_2$ | 3300, 3340         | S,S(br)   | 18, 19         |
|        | secondary amine, amide     | RNR-H, RCONHR        | 3300-3500          | S(br)     | 20, 21         |
|        | tertiary amine, amide      | $RN(R_3), RCONR_2$   | none               |           | 22, 23         |
| O-H    | alcohols, phenols          | free O-H             | 3620-3580          | W(sh)     | 17, 24, 25     |
|        |                            | hydrogen bonded      | 3600-3650          | S(br)     | 24, 25, 28     |
|        | carboxylic acids           | R(C=O)O-H            | 3500-2400          | S(br)     | 26, 27, 29, 30 |

#### Free and Hydrogen Bonded H-O-R



Figure IR-24. The liquid and vapor spectra of n-hexanol.

### Free and Hydrogen Bonded H-O-R



Figure IR-25. The liquid and vapor spectra of phenol.



#### Free and Hydrogen Bonded H-O-R



**Figure IR-26**. The liquid and vapor spectra of hexanoic acid:  $CH_3(CH_2)_4 CO_2H$ 

# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

| Funct. | Туре                       |                      | Frequencies        | Peak      | Examples       |
|--------|----------------------------|----------------------|--------------------|-----------|----------------|
| Group  |                            |                      | $\mathrm{cm}^{-1}$ | Intensity | Figure No.     |
| C-H    | sp <sup>3</sup> hybridized | R <sub>3</sub> C-H   | 2850-3000          | M(sh)     | 6, 18, 22      |
|        | sp <sup>2</sup> hybridized | =CR-H                | 3000-3250          | M(sh)     | 7, 13, 42      |
|        | sp hybridized              | ≡C-H                 | 3300               | M-S(sh)   | 13             |
|        | aldehyde C-H               | H-(C=O)R             | 2750, 2850         | M(sh)     | 14, 15         |
| N-H    | primary amine, amide       | $RN-H_2$ , $RCONH_2$ | 3300, 3340         | S,S(br)   | 18, 19         |
|        | secondary amine, amide     | RNR-H, RCONHR        | 3300-3500          | S(br)     | 20, 21         |
|        | tertiary amine, amide      | $RN(R_3), RCONR_2$   | none               |           | 22, 23         |
| O-H    | alcohols, phenols          | free O-H             | 3620-3580          | W(sh)     | 17, 24, 25     |
|        |                            | hydrogen bonded      | 3600-3650          | S(br)     | 24, 25, 28     |
|        | carboxylic acids           | R(C=O)O-H            | 3500-2400          | S(br)     | 26, 27, 29, 30 |

#### Hydrogen Bonded H-O-R



**Figure IR-27**. Decanoic acid, neat liquid, thin film:  $CH_3(CH_2)_8CO_2H$ 

### Hydrogen Bonded H-O-R



Figure IR-28. 4-Chloro-2-nitrophenol, KBr pellet:



### Hydrogen Bonded H-O-R



Figure IR-29. Benzoic acid; KBr disk





**Figure IR-30.** Benzoic acid, KBr; band distortions and broadening caused by poor grinding, compare to Figure 29.

### When does one see a free –OH in the condensed phase?

Free H-O-R



Figure IR-17. Tri-t-butylmethanol, KBr pellet:



% Transmittance

The –CN triple bond

# A summary of the principle infrared bands and their assignments. R is an aliphatic group.

| Funct. | Туре                       |                      | Frequencies        | Peak      | Examples       |
|--------|----------------------------|----------------------|--------------------|-----------|----------------|
| Group  |                            |                      | $\mathrm{cm}^{-1}$ | Intensity | Figure No.     |
| C-H    | sp <sup>3</sup> hybridized | R <sub>3</sub> C-H   | 2850-3000          | M(sh)     | 6, 18, 22      |
|        | sp <sup>2</sup> hybridized | =CR-H                | 3000-3250          | M(sh)     | 7, 13, 42      |
|        | sp hybridized              | ≡C-H                 | 3300               | M-S(sh)   | 13             |
|        | aldehyde C-H               | H-(C=O)R             | 2750, 2850         | M(sh)     | 14, 15         |
| N-H    | primary amine, amide       | $RN-H_2$ , $RCONH_2$ | 3300, 3340         | S,S(br)   | 18, 19         |
|        | secondary amine, amide     | RNR-H, RCONHR        | 3300-3500          | S(br)     | 20, 21         |
|        | tertiary amine, amide      | $RN(R_3), RCONR_2$   | none               |           | 22, 23         |
| O-H    | alcohols, phenols          | free O-H             | 3620-3580          | W(sh)     | 17, 24, 25     |
|        |                            | hydrogen bonded      | 3600-3650          | S(br)     | 24, 25, 28     |
|        | carboxylic acids           | R(C=O)O-H            | 3500-2400          | S(br)     | 26, 27, 29, 30 |
| C≡N    | nitriles                   | RC≡N                 | 2280-2200          | S(sh)     | 31             |
| C≡C    | acetylenes                 | R-C≡C-R              | 2260-2180          | W(sh)     | 32             |
|        |                            | R-C≡C-H              | 2160-2100          | M(sh)     | 13             |





**Figure IR-31**. *trans*-2-Phenyl-1-cyanoethene, in CHCl<sub>3</sub> solution: Ph-CH=CH-CN





# The C-C triple bond in terminal acetylenes

### **C**≡**C** Triple Bond Stretch



**Figure IR-13.** Phenylacetylene, neat liquid; thin film:





# The C=C triple bond in symmetrical acetylenes

# **C≡C** Triple Bond Stretch

Where is it?



**Figure IR-32**. Diethyl acetylenedicarboxylate; neat liquid:  $C_2H_5OCO-C\equiv C-CO_2CH_2CH_3$ 

## The C=C triple bond in internal acetylenes



## The C=C triple bond when next to a heteroatom



Spectrum in hexanes (50%)