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By Hollis N. Erb

tis unethical to use either too many or

too few animals in research. Using

many more animals than needed is an
abuse of our privilege to use animals and a
waste of research moneys. It also is wrong
to use so few animals that either the data are
unreligble or the smallest important effect
goes unnoticed; in this case, both the ani-
mals and moneys are wasted. Calculating
the optimum nurnber of animals needed for
a study using statistics can prevent this
breach of ethics.

Since many people find statistics con-
founding, I do not present formulas for
calculating sample size in this article. Most
research communities employ a statistician
to perform this function. Instead, this ar-
ticle provides a practical understanding of
how to make decisions about what informa-
tion to convey to the statistician who calcu-
lates the sample.

In order to do so, I will explain the
issues underlying sample size calcula-
tions, including actual elements of sample
size calculations, assessment of the kind
of data, whether the purpose of analysis
is description or comparison, common
sample size mistakes, and ways to de-
crease the sample size. !

Actual Elements of
the Sample Size
Calculations

The elements include such things as the
alpha and beta errors, the smallest differ-
ence or effect that is worth detecting, the
baseline or control group’s count or mea-

surement, and the typical variation that -

would be seen. They appear in the sample
size formulas, and also are needed to find
the right spot in a sample size table or
nomogram.

Willingness to Make a
False Positive or False
Negative Statement

The alpha (type I; false positive) error is
the chance that the investigator is wrong
when he or she says there is a difference,
effect, association, dependence, or correla-
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tion. This error is made when one wrongly
concludes significance. A wrong conclu-
sion could be made because the data are
only a sample and, therefore, subject to
random variation or because of measure-
ment error in the data. The probability of
this error occurring is the level of signifi-
cance, or the P value. In contrast, a beta
error (type II; false negative) occurs when
one wrongly concludes non-significance
and there really is a treatment effect, dif-
ference, or association. The beta error is
especially important because it also indi-
cates the power of the study. The power
{power=1-beta} is the probability that a
difference that truly exists will be de-
tected by the study; larger beta mearns
lower power.

One never can guarantee completely
against alpha and beta errors, but their
chances can be reduced with larger sample
sizes. Alpha often is set at 0.05 or at 0.01-
ata 5 or 1 percent level of significance—but
this is arbitrary, and other alpha levels can
be used. However, levels >10 percent will
tend to alarm reviewers if one finds signifi-
cance, as will levels <0.1 percent if one does
not find significance. Some people have a
rule of thumb that beta should be set to equal
2 alpha or 4 alpha, but this is nonsense. Beta
should not be linked automatically and ar-
bitrarily to alpha; beta should be set in its
own right according to the situation under
study. Beta should be smaller than alpha if
committing a beta error is worse (is more
costly; will cause more problems) than com-
mitting an alpha error. Beta should be
greater than alpha if an alpha error would be
worse than a beta error. Ifit is impossible to
decide which error is worse, then set alpha
roughly equal to beta.

The smaller that alpha and beta are, the
greater the number of animals needed.
Additional animals are the price paid for
increased confidence that an error is un-
likely. Alpha also must be specified for a
descriptive study, if one wishes to calculate
a confidence interval for the value being
estimated, The formulas for confidence
intervals include alpha. The interpretation
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of alpha here is the probability that a large
number of confidence intervals, formed from
random samples similar to the one under
study, would exclude the true population
value being estimated.

Smallest Difference
Worth Detecting

The smallest difference that is worth
detecting must be specified. Clearly, any
larger difference also would be worthwhile,
Although phrased as a difference between
groups, the term also could be thought of as
the smallest worthwhile effect, correlation,
change, oddsratio, and so on. The smallest
difference must be large enough to make
the research useful; this is very much a
“why bother?” specification. In many in-
stances, the worthwhile difference will be
subjective (“We probably could convince
people to substitute this drug as long as it
was xx percent more effective.”). How-
ever, it may be possible to quantify most of
the costs associated with an intervention,
especially in, for instance, food animal
research. The new intervention willhaveto
at least pay off these costs to be useful, so
a starting place for setfing the smallest
worthwhile difference would be the differ-
ence that produces a benefit equal to the
CcOosts.

The smaller the smallest worthwhile
difference is, the harder it will be to
detect—or rule out—and the larger the
sample size must be. This is intuitively
obvious; it is easier to be certain that a big
difference does not exist than it is to be
certain that a small difference does not
exist.

If the sample size is considerably larger
than that needed to find the smallest
worthwhile difference, then the extra
animals were wasted. However, useful
information still will have been obtained,
whether or not significance was found. If
the sample size is considerably smaller
than that needed to find the smallest
worthwhile difference and the results were
nonsignificant, then all the animals were
wasted because there was no useful infor-

mation obtained.

This situation may occur more often
than we realize, Frieman ef al.' reviewed
71 clinical trials involving human patients;
these trials had nonsignificant results and
were published in reputable journals. The
investigators did back-calculations, using
the numbers in the 71 articles, and found
that 67 out of 71 trials had insufficient
patients to detect a 25 percent therapeutic
benefit, and that 50 of 71 could not detect at
50 percent benefit. Although we cannot
know for each trial what the exact costs and
benefits were, it is unlikely that a 50 per-
cent therapeutic improvement would not
have been worthwhile in most of the trials.
The implicaticn is that most of the re-
viewed trials were a waste of time and
money, and put patients at risk without
justification.

Baseline or Control
Value for the OQutcome
The baseline or control value often will
have to be specified in both descriptive and
comparative studies. This value is the best
guess of what the mean, correlation, or
proportion will be in the descriptive study
and the value expected in the baseline
period or in the control group in the com-
parative study. The best guess might be
based on pilot studies, a literature review,
or expert opinion. The control value is
important because the smallest difference

wotth detecting is tested for in relationship

to the control value.

Typical Variation

There is always some variation or im-
precision associated with counting or mea-
suring, This variation can mask true differ-
ences between groups. The larger the ratio
between the smallest difference worth
detecting and the standard deviation of the
outcome, the easier it will be to see that
difference and the fewer the animals that
will be needed. As the ratio gets smaller,
one adds animals to get a “tighter” estimate
of the effect; this decreases the standard
deviation and makes the ratio (worthwhile
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difference to the standard deviation) larger

again. If, however, the ratio gets smaller

and one doesn’t increase the sample size, ,
the beta error increases, and there is a

greater risk of missing a true difference.

Issues That
Determine Which
Sample Size Formula
to Use

Type of Data

The type of data and the objectives of
the research determine, in general terms,
the statistical methods that should be used.
Different statistical methods imply differ-
ent methods for sample size estimations.

Data are either discrete {count type) or
continuous (measurement type). Nominal
discrete data are simply names without any
intrinsic ordering, such as breeds, counties,
or genders, Ordinal discrete data have
intrinsic ordering and are common in scor-
ing systems (e.g., “~,+,++,+++" fluorescent
antibody scores, or 0, 1, 2, 3 for “none,
slight, moderate, severe” illness).

Discrete data can be counted and dis-
played as frequency distributions. Even if
scores appear to be numeric, however, the
numbers are just codes, and one cannot do
arithmetic on them. Therefore, medians
and modes can be calculated, but means are
invalid, because the mean will change if the
code is changed, even if the order in scheme
is noi changed. Nominal and erdinal data
typically will be analyzed by methods such
as chi-square tests, rank tests, or nonpara-
metric correlations.

If data are not discrete, they are continu-
ous. Height, age, daily milk yield, and rate
of gain are examples of continuous data.
With continuous data, one must decide
whether or not they are Gaussian (normal;
bell-shaped curved).

Gaussian data follow abell-shaped curve
when frequency is plotted against measure-
ment. The bell-shaped curve is symmetric
around the high point in the middle, which
is the mean value. Gaussian data are the
only data for which the mean and standard
deviation (SD) are appropriate. The “mean
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+-1,2, or 3 SD” covers roughly the middle
67, 95, or 99 percent of the area under the
bell-shaped curve—this works only with a
curve that is symmetric with a particular
shape around a central peak.

If various descriptive statistics are cal-
culated, one can, in determining whether
the data are Gaussian, make use of the fact
that the bell-shaped curve is symmeiric
around a single peak. Because of this
shape, for Gaussian data the mean, the
median, and the mode will be similar, and
complementary percentiles will be roughly
equidistant from the median (e.g., the dif-
ference between the values of the 25th and
50th percentiles will equal the difference
between the values of the 50th and 75th
percentiles). If the data do not at least
roughly fit these rules of thumb, then the
data probably are not Gaussian. As another
alternative, one always can inspect either a
graph of the frequencies plotted against the
measurements or a histogram of the fre-
quencies against ordered categories of the
measurements to see if the graph looks like
abell-shaped curve. Finally, common sense
often warns that a variable is unlikely to be
Gaussian. For instance, one wdfld expect
the distribution of parities in a dairy herd
would to look like a descending curve, with
lots of first-parity heifers and few aged
cows; distributions of liver enzymes in dis-
eased animals often have very long tails on
the right-hand ¢high) side.

If the continuous data are not Gaussian,
then there are two options for data analysis.
The first option—the one I prefer unless I
need to do a multivariable analysis—is to
use nonparametric methods (e.g., rank sum
instead of t-tests; Kendall’s or Spearman’s
correlation instead of Pearson’s correla-
tion). The other option is to transform the
data. Some transformations are fairly stan-
dard as “first-tries”—such as trying logs on
data with a long rail to the right or square
roots on data with a long tail to the left—but
others may tequire help from a statistician.

There is an additienal, special-case type
of data: very large, essentially unbounded
counts, such as numbers of somatic cells or

bacteria in a ml of milk, or a red blood cell
count on a hemogram. Although techni-
cally these are count-type {discrete) data, in
practice the measurements take so many
different values across such a large range
that such data are treated as if they were
continuous.

Description or
Comparison?

The purpose of the analysis is descrip-
tion if one wants to know, for example, the
proportion dying or the typical litter size.
The purpose is comparison if one tests
whather or not two—or more—values are
equal.

If the purpose is description, then one
needs to decide how precise the description
must be to be useful. For discrete data, such
as the proportion dying, this might mean
specifying the maximum acceptable width
of the confidence interval for the propor-
tion. For continuous data, one might need
to specify a maximum acceptable coeffi-
cient of variation, or an SP no larger than a
certain number of units. The more precise
the description must be, the greater the
number of animals necessary.

If the purpose is comparison, rather'than
mere description, then there are at least
three more questions to answer. One is:
how many different groups will there be?
The groups might be different breeds or
different treatments. The more groups there
are in any comparison, the greater the num-
ber of animals needed. This is because no
matter what the rumber of groups, one will
have to count or measure the outcome in
zach group with some reasonable precision
in order to determine whether the groups
differ.

A second question is: will the groups be
of equal size? Most tables and sample size
formulas assume equal sample sizes, partly
because equal size is mathematically sim-
pler. In fact, precision varies only with the
square root of the sample size, so that it
takes very large increases in sample size to
make important changes in precision. A
second and perhaps more compelling rea-
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son for equal sample sizes is that the inves-
tigator is supposed to behave as if he or she
has no prior preference, prejudice, or bias
for or against any particular treatment.
Given this neutral stance, the sample sizes
should be equal—or close enough to be
within the range of slight imbalances that
occur with simple randomization.

In some cases, however, unequal sample
sizes may be justified. If there are large
differences in treatment costs, one could
increase the number of animals receiving
the cheaper treatment and decrease the
number receiving the costlier treatment.
Or, if there are large differences in expected
losses to follow-up, one could increase
the number of animals in the group that
might have higher losses (without de-
creasing animals in the other groups).
Even sc, Peto ef al.? argued that the allo-
cation ratio should vary by no more than
2:1. If one wishes to adjust sample sizes
by costs, then a statistician probably is
needed. If one wants to adjust for unequal
losses to follow-up, it might be good
enough to calculate the sample sizes
needed if there were equal group sizes and
no losses to follow-up; then, the sample
size for each group can be inflated in
proportion to the expected losses. For
example, 25-33 percent of all dairy cows
are culled each lactation; if information is
needed from two successive lactations on
each of 100 cows, then start with 150
animals. In general, expect io see losses
to follow-up if the animals are followed
for a very long time, if any of the treat-
ments requires a difficult-to-manage ma-
nipulation (e.g., a tricky surgical prepara-
tion), or if the animals are privately owned,
as in a clinical trial with real patients.

The third preliminary question in a com-
parative study is: will a one-tailed test or a
two-tailed test be used? One-tailed (one-
sided) means that the investigator is con-
cerned only about a difference in one direc-
tion (e.g., do pigs on Diet I gain weight
faster than pigs on Diet 27). Two-tailed
means that a difference in either direction
would be important to discover {e.g., do
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pigs on Diet 1 gain weight at a different rate
than pigs on Diet 27).

Two-tailed tests imply greater priorneu-
trality on the part of the investigator and
should be used if there is any doubt about
whether the research question is one-
tailed ot two-tailed. Two-tailed tests
also may be preferred by some editors or
reviewers. Two-tailed tests require greater
sample sizes, because one must check in
both directions for the smallest difference
worth detecting. Therefore, if a one-
sided test can be justified unequivocally,
use it. For example, it may have been
shown already that Drug Al is cheaper to
make and more efficacious than its par-
ent, Drug A. Obviously, Drug Al will be
more desirable than Drug A unless Drug
Al has significantly greater side effects.
The test for side effects is clearly one-
sided; it would be nice to know if Drug Al
has fewer side effects, but the real deci-
sion hinges on whether ornot it has more.

Designation of the
Experimental Unit

The calculated sample size refers to the
number of independent ex&rimental units,
not to subsamples of those units. The
experimental unit is the smallest divisible
unit that can be assigned independently to
a treatment group under the study’s proto-
col. If the treatment is assigned and deliv-
ered to pregnant ewes, then it does not
matter whether the ewes have iriplets, twins,
or singletons. The sample size is based on
ewes even if the effect is measured in the
lambs. Ifthe treatment is delivered to nursing
ewes, the same holds true. If the treatment is,
instead, delivered to the lambs, and lambs of
the same littercanreceive different treatments,
then lambs are the experimental unit. One
especiallymustbe aware ofthis problem when-
ever animals are managed in groups or where
litters are used.

Doing the Sample
Size Estimation

Estimating the sample size is difficult.
Sample size formulas, tables, and com-

puter programs exist for 2 by 2 chi-square
tests, for unconditional odds ratios/rela-
tive risks, for simple Pearson correla-
tions, for t-tests, and for ome-way,
Gaussian analysis of variance (ANOVA).
There are no calculations specific for
generalized 1 x ¢ chi-squares, for mul-
tiple correlations, for multiple regres-
gions, for multiple ANOVA, for nonpara-
metric correlations, or for any other non-
parametric test that relies on ranks.

So what does one do in one of the laiter
sitnations? Calculate the sample size
using the closest, most analogous test for
which a formula is avzilable. Then, rein-
terpret this calculated size based on
whether the real test will have adjust-
ment for other variables (i.e., will be
multiple rather than simple) or whether
the real test will be nonparametric rather
than parametric.

For example, suppose the real test
will be a multiple ANOVA (Gaussian).
Calculate the sample size for each of the
independent factors of primary interest
as if each were to be tested in a one-way
ANOVA. Primary interest would imply
that these factors are central to the re-
search hypothesis. Use the largest of the
calculated sample sizes; this will be ad-
equate for each of the primary factors. if
the secondary factors in the model were
carefully chosen, their inclusion should
decrease the model’s error term. This

means that it should be easier to detect -

association between the primary variables
and the outcome. However, each addi-
tional variable in the model removes at
least one degree of freedom (one animal)
from the sample size available to test the
primary variables, so there is a trade-off.

As another example, suppose the real
test will be Wilcoxon’s rank sum test. The
analogous test with a sample size formula is
the t-test. Make a rough guess at a standard
deviation, and calculate the t-test sample
size. The nonparametric test will need a
sample size at least as big, and probably a
little bigger. Fudge the calcutated sample
size upwards, then go to a table that gives
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critical values for the rank sum test to make
sure that—if everything goes well and there
is a reasonable difference—statistical sig-
nificance is achievable with the fudged-
upwards sample size.

There are tables and nomograms that
give confidence intervals on some descrip-
tive statistics, such as correlations and bi-
nomial proportions. These tables can be
used to get a rough idea of sample size by
using the tables “backwards.” Use the best
guess of what the value is expected to be,
combined with the confidence interval
around that value that is small enough to be
useful. The size of the confidence interval
will be based on either the precision needed
or the smallest difference worth detecting.
The upper and lower confidence limits for
the best-guess value each will have an asso-
ciated sample size. The two sample sizes
read from the table will bound a reasonable
guess at the needed sample size. For ex-
ample, the CRC Handbook® has nomograms
that give 95 and 99 percent confidence belts
onproportions. Suppose that alpha=0.05(95
percent confidence interval), that the best
guess is that the proportion will be 40 per-
cent, and that the confidence interval is to
be within +/- 10 percent. Looking on the 93
percent nomogram at the intersections of
the estimated proportion of 40 percent with
the confidence limits of 30 and 50 percent
brings one roughly to the sample size lines
(belts) for n=100; 100 animals are needed.

There is one note of caution in using
semple size formulas, tables, nomograms,
and so on. Always be careful to read the
description carefully to determine two
things: whether the calculation is for a
one-tailed test or a two-tailed test; and
whether the calculated number is the total
animals that will be needed or whether it
is the number needed in each group. Ifthe
latter is the case, then the total number of
animals needed will be the calculated
number times the number of groups. If
the table is for two-tailed tests, and a one-
tailed test is desirable, look up the sample
size for the alpha level that is twice as
large as wanted.
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Ways to Decrease the
Needed Sample Size

Suppose the sample size calculations
indicate a sample size thatis not practical—
too costly, for example, or perhaps not ob-
tainable within the appropriate time frame.
Before giving up and designing a different
project, there are some other approaches to
try, assuming that the declared alpha, beta,
sidedness, and smallest difference worth
detecting were the results of decisions that
were well-thought-out.

Reduce the Number of
Treatment Groups

Suppose four treatment groups were
originally planned in a one-way ANOVA,
for which the smallest difference equals
0.38 SD, alpha=0.10, and beta=0.05. The
total animals needed would be 200 per group.
If treatments are reduced to three, 45-50
fewer animals per group would be needed.
This might be 2 reasonable approach if, for
instance, the treatments were several differ-
ent doses of the same drug, rather than
several different drugs.

Change from a rd
Dichotomous Outcome
to a Continuous .
Outcome

Discrete data are less powerful than con-
tinuous data; it is easier to find significant
differences with continuous data. Suppose
the original outcome was the proportion of
foals that became ill within the first 30 days
of life. One might analyze instead the
number of days ili per foal, the number of
episodes of illness per foal, or the days to
firstiliness per foal, An easy example of the
savings in sample size is difficult to show,
because changing from  discrete to a con-
tinuous outcome also changes the test that
would be used to compare the groups of
foals—but there should be a reduction in
the number of foals needed.

Decrease the Variability
in the Data
If one decreases the variability, it will

be easier to tell that a difference is signifi-
cant. Alternatively, it will be as easy to
tell that a smaller difference is signifi-
cant, or one could detect the same differ-
ence with the same error rates but with
fewer animals.

One way to decrease variability is to
decrease measurement error by improving
the measuring tool or the measuring tech-
nique. Another way is to decrease the
biologic variability, and this may be easier
to manipulate than inventing a new tool.

Biologic variation also can be decreased
by careful use of repeated measures. For
example, before-and-after counts may be
made to adjust for baseline, several mea-
surements at one point in time might be
taken to improve the precision of the esti-
mate of the effect at that point, or cross-over
designs—which may require help from a
statistician—might be used so that each
treatment is tested in each animal. How-
ever, the sample size still is based on the
experimental unit, not on the number of
measurements. Repeated measures are dis-
cussed by Shott'.

Finally, as mentioned above, one may be
able to add other variables to the model so
that the residual variation—the error tefm—
is decreased.

Some Recommended
References
The following references are recom-
mended for sample size tables and nomo-
grams; numerous other useful references
also exist.
A Beyer’ for confidence limits on pro-
portions;
A Beyer® for confidence limits on
Pearson correlations;
A Aleong and Bartleti® for comparing
two proportions;
A Fleisss for 2 by 2 chi-square tests,
A Beyer’ for t-tests between two
means;
A Glantz’ fort-tests and paired t-tests;
A Kastenbaum et al® for one-way
(Gaussian) analysis of variance; and
A Schlesselman® for odds ratios.
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