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Abstract

In one dimension the classification of continuous polynomial hy-

pergroups is well understood. Although much is known in higher

dimensions, there is as yet no semblance of a complete theory.

Even in two dimensions there are many open questions. An im-

portant tool the development of the two dimensional theory has

been the discovery of families of orthogonal polynomials which

are not products of two one dimensional examples. In this re-

spect the families described by Tom Koornwinder in a series of

four papers in Indagationes Mathematicae in 1974 have been

invaluable. Enough is now understood from these examples to

understand why a two dimensional characterization has been dif-

ficult, and why a three dimensional theory may not be practical.
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1. Notation

• Let H ⊂ R2 be a compact set of full measure, M(H) be the

real-valued Borel measures supported on H.

• Let N0 = {0,1,2, · · · }.

• D = {z | |z| ≤ 1}.

• I = [−1,1]

• x = (x1, x2) ∈ R2
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• k = (k1, k2) ∈ N2
0 and |k| = k1 + k2

• xk = x
k1
1 x

k2
2

• A polynomial of degree |n| in 2 variables is written

pn(x) =
∑

|k|≤|n|
akxk.

Where it is implied that an 6= 0.



The Sociology of polynomials

We will be interested in collections of polynomials of the form

P = {pn(x)}n∈Λ,

where Λ could be a finite set, an infinite set, or even all of N2
0.

The collections may or may not be orthogonal.
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2. P is algebraically complete if

1. P is linearly independent as a vector space.

2. For each k in N0, the elements of P span all polynomials of

degree k.

For polynomials in a single variable, this is trivial, for polynomials

in 2 variables, there must be k +1 polynomials of degree k in P.
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3. A collection of product formulas

The elements of P satisfy a (positive) product formula on H if
for each s, t ∈ H, there exists a (positive) measure µs,t ∈ M(H)
such that

pn(s)pn(t) =
∫

H
pn(x)dµs,t(x).

Characterize the families P which

1. are algebraically complete,

2. and have a positive product formula.
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A better product formula.

P satisfies a strong product formula on H if

1. P satisfies a positive product formula on H.

2. There exists an element e ∈ H, called the identity such that:

(a) µz,e = δz

(b) limw→e diam(supp(µz,w)) = 0 with z, w ∈ H.

8



Product formulas lead to measure algebras.

1. Product formulas can be used to define a convolution, ∗, on
M(H).

2. Positive product formulas make M(H) into a Banach algebra
(M(H), ∗).

3. Strong product formulas give this algebra an identity, δe, and
some control over the structure of H.

4. If (M(H), ∗) satisfies some additional conditions, then the
measure algebra becomes a hypergroup.
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(M(H), ∗) is a compact hypergroup if the following are satisfied

1. If µ and ν are probability measures, so is µ ∗ ν.

2. There is an element e ∈ H such that for all µ ∈ M(H)

µ ∗ δe = δe ∗ µ = µ.

3. There exists an involution x → xg such that e ∈ supp(δx ∗ δy)

if and only if y = xg.

4. (µ ∗ ν)g = νg ∗ µg.
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5. The mapping (x, y) → supp(δx ∗ δy) is continuous from H ×H

into the compact subsets of H topologized with the Hausdorff

metric.

6. The mapping (µ, ν) → µ ∗ ν is weak-∗ continuous.



Convolution and characters

The product formula measures can be used to define the convo-

lution of point masses:

δs ∗ δt ≡ µs,t

and typically the support of µs,t is a set, not a point. And this

can be extended to all of the measures in M(H).

φ is a character for (M(H), ∗) if φ is continuous on H and

∫

H
φ d(δs ∗ δt) = φ(s)φ(t)

for all s, t ∈ H.
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5. Compact polynomial hypergroups

If the family P satisfies a product formula which generates a

hypergroup, (M(H), ∗), then the product formula is called a hy-

pergroup product formula and the elements of P are characters

of this measure algebra.

If P is algebraically complete, then M(H), ∗) is called a compact

polynomial hypergroup.
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6. Hermitian vs. non-Hermitian

If P satisfies a hypergroup product formula on (M(H), ∗), then

either: xg = x, and the hypergroup is called Hermitian, other-

wise the hypergroup is called non-Hermitian.
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The canonical Hermitian hypergroup

Theorem (CS95). Any Hermitian hypergroup which has exactly
two distinct non-constant characters which are first degree poly-
nomials is linearly equivalent to (M(H), ∗) where

1. e = (1,1) ∈ H

2. (x, y)g = (x, y)

3. H ⊆ I2

4. φ1,0(x, y) = x, φ0,1(x, y) = y.
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−1

e

H

Hermitian Case
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Theorem for Hermitian hypergroups

The Jacobi polynomials, Pα,β = {Pα,β
n (x)}, have a product for-

mula for one range of values of the indices, a positive product

formula in a slightly smaller range (Gas71),

EJ = {(α, β) : α ≥ β > −1, and either β ≥ −1

2
or α + β ≥ 0}.

If (M(H), ∗) is a canonical Hermitian hypergroup (as above),

then the elements of P are products of Jacobi polynomials with

indices in EJ if and only if H ∩ (I ∗{1}) and H ∩ ({1}∗ I) are both

infinite sets.
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The canonical non-Hermitian hypergroup

Theorem (CS95). Any non-Hermitian hypergroup which has ex-
actly two distinct non-constant characters which are first degree
polynomials is linearly equivalent to (M(H), ∗), where

1. e = (1,0) ∈ H

2. (x, y)g = (x,−y)

3. H ⊆ D

4. φ1,0(x, y) = (x, y), φ0,1(x, y) = (x,−y).
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1H

−1

Non−Hermitian Case

18



Theorem for non-Hermitian hypergroups

If (M(H), ∗) is a canonical non-Hermitian hypergroup (as above),

then the elements of P are disk polynomials, Dγ, for γ > 0 if

and only if the identity element e = (1,0) is a 2-dimensional

accumulation point of H, and {x ∈ H : |x| = 1} contains at least

seven points.
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7. Issues of orthogonality

In a single variable, an algebraically complete family of orthogo-

nal polynomials is uniquely determined up to multiplicative con-

stants. In several variables this is no longer true. This ambiguity

is the source of some confusion, and stems from the fact that

the orthogonal polynomials that emerge depend on the order

chosen for the original sequence of polynomials that is used to

create the orthogonal sequence.
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Two polynomials are orthogonal

There is no disagreement about what is meant for two polyno-

mial characters to be orthogonal on a given set with respect to

a given weight function (or measure).

Assume that H ⊂ R2, and the positive function w is supported

on H. Then the polynomial characters p, q are orthogonal on

H with respect to the weight w if

〈p, q〉 ≡
∫

H
p(x)q(x)gw(x)dx = 0 p 6= q.

21



Families of orthogonal polynomials

In several variables, there are at least three notions in common

usage.

1.P is called orthogonal if each pair of polynomials is orthogonal.
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2. The definition of Dunkl and Xu.

The algebraically complete family P is called orthogonal if each

polynomial pn of degree |n| is orthogonal to each polynomial qm

for which |m| < |n|. Further, for each m, n, such that |m| = |n|
define sm,n = 〈xm, pn〉. Then the |n|+ 1 × |n|+ 1 matrix (sm,n)

must be non-singular, i.e. det(sm,n) 6= 0

The subspace of polynomials of degree |n| are uniquely deter-

mined, but not the individual polynomials.
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3. Biorthogonality

Given two algebraically complete families P and Q. If both fam-

ilies have the property that 〈pm, pn〉 = 0 if |m| < |n|, and further,

if pm ∈ P and qn ∈ Q then 〈pm, qn〉 = 0 if |m| = |n| and m 6= n,

then the families are called biorthogonal. (Appell and Kampé de

Fériet)
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Characters are orthogonal

Theorem. If p and q are characters of a compact hypergroup,

then either p = q or p is orthogonal to q. (Dunkl 73 and inde-

pendently by others )
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8. Tom Koornwinder’s famous list

Classes I and II. Polynomials in the Disk

-1 -0.5 0.5 1

-1

-0.5

0.5

1

w(x) = (1− x2 − y2)α
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III. the Parabolic Biangle

-1 -0.5 0.5 1

-1

-0.5

0.5

1

w(x) = (1− x)α(x− y2)β
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IV. The Triangle

-1 -0.5 0.5 1

-1

-0.5

0.5

1

w(x) = (1− x)α(x− y)βyγ
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V. The Square

-1 -0.5 0.5 1

-1

-0.5

0.5

1

w(x) = (1− x)α(1 + x)β(1− y)γ(1 + y)δ
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VI. The Parabolic Triangle

-1 -0.5 0.5 1

-1

-0.5

0.5

1

w(x) = (1− 2x + y)α(1 + 2x + y)β(x2 − y)γ
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VII. Steiner’s hypocycloid

-1 -0.5 0.5 1

-1

-0.5

0.5

1

w(x) = [−3(x2 + y2 + 1) + 8(x3 − 3xy2) + 4]α
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9. Hermitian polynomial hypergroups in two variables

1. Polynomials orthogonal in the Parabolic biangle (Class III).

Let

P
α,β
n,k (x, y) = P

α,β+k+1
2

n−k (2x− 1) x
k
2 P

β,β
k (x−

1
2y)

Koornwinder and Schwartz (KS95) showed that this case has a

hypergroup product formula for all α ≥ β + 1
2 ≥ 0
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2. Polynomials orthogonal on the triangle (Class IV).

P
α,β,γ
n,k (x, y) = P

α,β+γ+2k+1
n−k (2x− 1) xk P

β,γ
k (2x−1y − 1)

These polynomials satisfy a hypergroup product formula for

α ≥ β + γ, β ≥ γ ≥ −1

2

(KS95).
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3. Products of Jacobi polynomials on the square (Class V).

Let

P
α,β,γ,δ
n,k (x, y) = P

α,β
n−k(x)P

γ,δ
k (y)

This family has a hypergroup product formula for all

(α, β), (γ, δ) ∈ EJ
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4. Polynomials on the Parabolic Triangle (ClassVI).

The case γ = −1
2 can be obtained by symmetrizing Jacobi poly-

nomials on the unit square, and then by a change of variables,

s = x+y and t = xy we obtain an algebraically complete family of

polynomials which derives its product formula from the product

formula for the constituent Jacobi polynomials. This product

formula is a hypergroup product formula for all (α, β) ∈ EJ and

γ = −1
2. It is not known if there is a product formula for the

other values of α, β, γ, much less one that leads to a hypergroup.
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10. Non-Hermitian polynomial hypergroups in two variables

1. The Disk polynomials(Class I).

Let Dγ be the collection of polynomials of the form

P γ
m,n(z) = Pα,m−n

n (2zz̄ − 1)zm−n m ≥ n

= Pα,n−m
m (2zz̄ − 1)z̄n−m m < n

This family was shown to have a positive convolution for γ ≥ 0

by Annabi and Trimeche (AT74) and Kanjin (Kan76) and oth-

ers. These polynomials are the characters of a non-Hermitian

hypergroup for γ > 0. See (CS91)and (GS95)

36



2. Another orthogonal family on the disk (Class II)

The collection of polynomials

Pα
n,k(x, y) = P

α+k+1
2,α+k+1

2
n−k (x) (1− x2)

k
2 P

α,α
k ((1− x2)−

1
2y)

have not been fully studied. If it has a product formula, it can

not lead to a hypergroup because the first degree characters and

the identity do not agree.
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3. Polynomials orthogonal in Steiner’s hypocycloid (Class VII)

Let Pα
m,n(z, z̄) = zmz̄n + p(z, z̄) where it is assumed that deg(p) <

m + n, where p is chosen so that Pα
m,n is orthogonal to every

polynomial of lower degree, and in fact can be turned into a

family of orthogonal polynomials.

These polynomials have been studied extensively by Koornwinder.

It is not known if this family has a product formula for other than

some special geometric cases. It was shown that in the so called

”Chebyshev” case of α = −1
2, that there is a discrete product

formula, and this product formula generates a non-Hermitian

hypergroup.(Con03).
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11. Conclusion

There is clearly much more to do. The basic classification

scheme into Hermitian and non-Hermitian has been extended

to higher dimensions. several of the examples here have ready

generalizations to this setting, for example the simplex polynomi-

als. On the other hand until we have a better understanding of

which families in two dimensions have positive product formulas,

we have little hope of a final theory.
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