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ABSTRACT. Using nonparametric descriptive tools developed by Duranton and Over-
man (2005, Review of Economic Studies, 72, 1077–1106), we show that both new and old
auto supplier plants are highly concentrated in the eastern United States. Conditional
logit models imply that much of this concentration can be explained parametrically by
distance from Detroit, proximity to assembly plants, and access to the interstate highway
system. New plants are more likely to be located in zip codes that are close to existing
supplier plants. However, the degree of clustering observed is still greater than implied
by the logit estimates.

1. INTRODUCTION

The North American automobile industry has been remarkably concen-
trated since its inception. Assembly operations are characterized by significant
scale economies in production. Only a small number of assembly plants are
required to serve the entire continent, and these plants tend to be located in
the center of the country. Although prominent exceptions to this rule were once
operating on both the east and west coasts, many of these outlying plants have
been closed in recent years as the industry has re-trenched toward the middle
of the U.S. and lower Ontario.

These trends, which are documented in Rubenstein (1992) and Klier and
McMillen (2006), have been accompanied by changes in the geographic distribu-
tion of auto supplier plants. Though supplier plants are often part of compara-
tively small firms, their operations are also subject to internal scale economies.
A supplier plant may serve several assembly plants. Moreover, the rise of just-
in-time inventory practices has increased the incentive for suppliers to locate
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close to assemblers. Supplier plants thus tend to cluster near assemblers, and
suppliers too have re-trenched toward the center of the country in recent years.
Maps of assembly and supplier operations show a growing concentration of auto
suppliers along an axis running southward from Detroit. Whereas, the industry
once was concentrated in a corridor running from Chicago to New York, it now
has a north-south orientation.

In this paper, we use both parametric and nonparametric techniques to
document the changing geographic structure of the American auto supplier in-
dustry. We focus on suppliers rather than assemblers because their much larger
number makes them more amenable to statistical analysis. Of the 2,627 sup-
plier plants in our dataset, 431 opened after 1990. Using a nonparametric ap-
proach developed by Duranton and Overman (2005), we begin by documenting
the degree of localization exhibited by this industry. Both new and old supplier
plants are far more concentrated than would be expected by pure randomness,
and this result holds whether we define randomness as an equal chance that a
plant might locate in any zip code in the eastern U.S. or we weight the probabil-
ity by the level of employment in the zip code. This descriptive analysis suggests
that the geographical distribution of new and old plants is remarkably similar
given the amount of change undergone by the auto industry during this time.

The next step in our analysis is a parametric investigation of the determi-
nants of auto supplier locations. We model the location decision of individual
plants using a conditional logit model. The availability of plant-level data al-
lows us to utilize the zipcode level of geography. We find that both new and old
plants are more likely to be located in zip codes that are near assembly plants,
close to Detroit, and are served by interstate highways. In addition, we find that
new plants are more likely to be located in zip codes that are close to existing
supplier plant locations. The changing geographic orientation of the industry
is evident in the conditional logit estimates: new plants are more likely than
existing plants to locate in the East South Central region. However, the similar-
ities are more striking than the differences. As new plants open in the southern
United States, they tend to follow a location pattern similar to the plants that
have preceded them in the region.

In the final step of our analysis, we use the predicted probabilities from the
conditional logit models as the base for the Duranton and Overman (2005) mea-
sure of concentration. We find that actual plant locations are even more concen-
trated than implied by the conditional logit estimates. However, new plant loca-
tions are not more concentrated than would be implied by a simple random
choice from existing plant locations. This result reinforces our finding that new
plants follow a location pattern similar to existing plants. We also find that
Duranton and Overman’s (2005) nonparametric procedure is useful as a diag-
nostic tool: the conditional logit models, while apparently fitting the data well,
fail to account adequately for the degree of clustering exhibited in practice.

Whether the focus is on new or old plants, our results portray a highly
clustered auto supply industry. Plants opening after 1990 are more likely than
older plants to locate along an axis running south from Detroit. But both new
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and old plants are highly concentrated, locating close to assembly plants, near
highways, and near other supplier plants. Although the geographic orientation
has moved south, the industry is neither more nor less concentrated now than
prior to 1990.

2. THE U.S. AUTO INDUSTRY

In the 1890s, during the beginnings of the U.S. auto industry, more than
half of the producers of automobiles were located in the northeast between
Philadelphia and Boston.1 Soon afterwards, during the first decade of the twen-
tieth century, southeastern Michigan emerged as the hub of auto production in
the U.S. It attracted or retained the most successful motor vehicle producers
because many of the industries from which automotive technology is derived,
such as the production of engines and carriages, were already thriving in the
region.2 Subsequently, automakers and suppliers could tap into a rich pool of
skilled mechanics and engineers. According to the 1904 Census of manufac-
turers, 42 percent of all cars were made in Michigan, as the industry’s leading
producers and their major facilities were based in Michigan by then.

Over time, the location of auto assembly and auto parts plants evolved
differently. The Ford Motor Company developed a system of branch assembly
plants which was quickly copied by the other major producers of vehicles. It
was based on the fact that auto assembly is a classic weight-gaining industry:
it is cheaper to produce finished vehicles near the centers of population than to
ship finished vehicles from a central location to many destinations across the
country. Motor vehicle parts, on the other hand, continued to be produced in
the Midwest and then shipped to the various assembly plants located across
the country. A quickly growing industry was well-suited for a branch assembly
plant system as production runs for the best-selling vehicles were large enough
to support more than one assembly plant. This combination of decentralized as-
sembly plants combined with the concentration of parts production in Michigan
and its neighboring states of Indiana and Ohio continued until the 1980s.

The forces leading to a re-structuring of the auto industry geography be-
gan during the 1960s. In response to increased sales of smaller cars by foreign
producers, the U.S. producers introduced a number of smaller platforms over
the years, for example, “subcompact,” “compact,” and “intermediate” cars. As
a result the growth of product variety outpaced the growth of overall demand,
leading to substantially smaller production runs, even for the best-selling mod-
els. Subsequently, no individual model sold enough to justify production at

1This section draws heavily on Rubenstein (1992).
2Bicycle manufacturing, the third major contributor to the early development of the auto-

mobile, proved the exception as the country’s largest bicycle manufacturers were located in the
Northeast. According to Rubenstein (1992), bicycle manufacturers contributed to the emergence of
southeastern Michigan as the industry’s hub by failing to recognize the automobile’s potential and
thereby losing their early technological lead in the face of rapid technological innovation.
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more than one, or at most two, assembly facilities. This development led to
a re-concentration in the geography of auto production. In conjunction with the
recessions induced by the 1970s oil crises and an increase in motor vehicle im-
ports, domestic auto producers reduced capacity and shut down some of their
production facilities. Specifically, assembly plants located on the coasts were
increasingly abandoned in favor of locations in the center of the country. As a
result, the location of assembly plants began to re-concentrate in the Midwest.

Starting in the early 1980s, foreign producers began producing vehicles
in the United States.3 They strongly preferred locations in the interior of the
country. Yet the foreign producers extended the auto region to the south by
opening plants in Kentucky and Tennessee, and most recently as far south as
Mississippi and Alabama (see Klier and McMillen, 2006).

The auto industry has experienced a significant southward extension even
as the Midwest re-emerged as the center of vehicle production after the demise
of the branch plant system in vehicle assembly. This movement southward
has been driven primarily by the location of foreign-owned assembly plants
during the 1980s and 1990s. Incidentally, most of these plants are located at
greenfield sites, some distance from traditional manufacturing locations. Today,
the preferred locations for motor vehicle assembly are defined by a north-south
region that is often referred to as the I-65–I-75 corridor, as it is rather well
defined by two of the major north-south interstate highways, extending south
from Michigan to Tennessee and beyond.

Thus, North American auto supplier plants have been remarkably con-
centrated for a long time (Klier and McMillen, 2006). When the industry got
its start just over 100 years ago, raw materials and worker skills available in
the upper Midwest, between Chicago and Buffalo, furthered the development
of this industry. Auto suppliers remained concentrated in the upper Midwest
during the branch (assembly) plant era, as it was cheaper to ship parts than
finished vehicles from a central location. During the early 1980s the U.S. auto
industry was shaped by the arrival of foreign producers who brought with them
the Just-in-time production system as well as a substantial number of foreign
suppliers. The 1980s also witnessed the emergence of the auto corridor, a re-
gion extending south from Detroit into Kentucky and Tennessee, with fingers
reaching into Mexico and Canada. During this time new parts plants showed a
tendency to locate farther south, reinforcing the north-south orientation of the
auto region.

This brief overview of the geography of the U.S. auto industry shows a
long-clustered industry that now remains highly clustered after a recent major
re-orientation southward.4 The spatial concentration of today’s industry

3The exception is Volkswagen, which started producing cars in Westmoreland, PA, in 1978.
The company’s spell of producing cars in the U.S. did not last very long. That plant closed in 1989.

4Klier and McMillen (2006) trace in some detail the re-orientation of the auto industry
geography by comparing location choices for assembly and supplier plants during the 1980s and
1990s. They also compare the location patterns of domestic and foreign plants. Woodward (1992)
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Source: ELM International, state manufacturing directories, supplier company websites, Harbour
Consulting (2003), and Maptitude. This figure appears in color in the online version of the
article [DOI: 10.1111/j.1467-9787.2007.00549.x]

FIGURE 1: Distribution of Old Auto Supplier Plants.

(Ellison and Glaeser, 1997) is reinforced by tightly linked supply chains that
require most suppliers to be within a day’s shipping distance of their assem-
bly plant customers. Figures 1 and 2 illustrate the changing geography of auto
supplier plants. Both maps are based on the data used later in our statistical
models. The maps show an industry concentrated in the eastern half of the
U.S., where the vast majority of plants producing auto parts destined for vehi-
cle assembly are located. Figure 1 shows the distribution of “old” auto supplier
plants. The most densely populated zip codes define a north-south auto region,
with southern Michigan, Indiana, and Ohio as its hub. Yet the industry covers
a much larger area as its plants are well represented in almost every state in
the eastern part of the United States. Though Figure 2 is based on a much
smaller number of plants (1/5 of the number of plants represented in Figure 1),
it clearly illustrates the formation of a rather well-defined auto region that ex-
tends south from Michigan to northern Alabama and Georgia, reaching into the
Carolinas. These maps clearly show that auto supplier plants that opened be-
tween 1991 and 2003 re-trenched toward the center of the country.

and Smith and Florida (1994) find evidence that vertical linkages as well as the presence of highway
infrastructure influence plant location decision of Japanese plants in the United States.

C© Blackwell Publishing, Inc. 2008.
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Source: ELM International, state manufacturing directories, supplier company websites, Harbour
Consulting (2003), and Maptitude. This figure appears in color in the online version of the
article [DOI: 10.1111/j.1467-9787.2007.00549.x]

FIGURE 2: Distribution of New Auto Supplier Plants.

3. DATA

A Michigan-based vendor, ELM International, provided the primary data
for our analysis. The ELM database, which covers the entire North American
auto industry, includes suppliers that ship directly to assembly plants as well
as suppliers that ship indirectly (via other suppliers) to assembly plants. Our
analysis pursues only plants located in the eastern United States. As Figures 1
and 2 illustrate, the geography of the 48 contiguous states is substantially
larger than the geography of the U.S. auto supplier industry. In fact, the auto
industry is absent from large expanses of the western United States. Whereas,
the eastern Unites States can be treated conceptually as an integrated market
area, the western states appear to be quite distinct. Therefore, we limit our
analysis to the eastern United States. While we include states that border the
western bank of the Mississippi River in order to include large concentrations
of plants in places such as St. Louis we omit states to the west which include
very few plants.5 The 31 states represented in our definition of the eastern
United States form a reasonably compact and integrated economic area.

The ELM database includes data at the plant and company level. However,
plants that produce machine tools or raw materials and those that produce

5The boundary of our area of study is indicated in Figures 1 and 2 by the accentuated line
of state borders running north from Texas’ eastern border.
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primarily for the aftermarket are not part of the database. The data include
information on “captive” supplier plants, which are parts operations that as-
semblers own and operate themselves, such as engine and stamping facilities.
The database includes information on a plant’s address, products, employment,
parts produced, customer(s), union status, as well as square footage. Records
were cross-checked with state manufacturing directories to obtain information
on the plant’s age, and information on captive plants was obtained from Har-
bour (2003). We then geocoded the data to the zip code level and verified the
accuracy of the data whenever possible by checking individual company’s web-
sites and through phone calls.

The dataset includes data for 3,298 supplier plants in the eastern United
States.6 Of these plants, 431 are “new,” which we define as having opened
since 1991. For 671 observations we could not obtain data on plant age. The
relevant characteristics of the locations of these plants differ from both the lo-
cations of existing and new plants (see Table 1). Since it is unclear whether
these plants are old or new, we adopted a conservative strategy of dropping
them from our analysis altogether. We refer to the remaining 2,196 observa-
tions, which began operation before 1991, as “existing” or “old” plants. Since
the dataset is cross-sectional in nature, the age variable applies only to sur-
viving establishments. Although this focus on survivors may lead us to un-
derstate the extent to which “old” plants are concentrated near Detroit, it
provides an accurate view of the geographic distribution of new plants and
it allows us to test whether the distribution differs from that of surviving older
plants.

Using 1991 as the starting date for new plants allows us to determine
whether the major changes undergone by the American auto industry in the
1980s fundamentally altered the geographic distribution of the industry. A fur-
ther advantage of focusing on plant openings from after 1990 is that it allows
us to match the plant openings with explanatory variables from the 1990 U.S.
Census. Moving the date forward by 1 year from the time of the census ensures
that these explanatory variables can be taken as exogenous.

Table 1 presents descriptive statistics for the variables used in our analysis.
Separate sets of statistics are presented for the new and old plant samples. In
addition, we present descriptive statistics for samples of randomly chosen alter-
native locations. These alternative locations comprise the rejected alternatives
for our conditional logit models. To identify these alternatives, we match each
plant with five randomly chosen zip codes that (1) are different from the plant’s
actual zip code, and (2) are different from each other. Candidate alternatives
include any zip code in the eastern United States, including those with neither
a new nor old supplier plant. The alternative for one plant may include a zip
code that already has another plant.

6In comparison, the 2002 version of County Business Patterns reports 4,000 plants in the
motor vehicle parts sector (NAICS 3,363), which suggests that our database has very good coverage
of this industry.
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Table 1 includes descriptive statistics for explanatory variables for the con-
ditional logit models. Having an interstate highway run through a zip code in-
creases the likelihood of having a plant, and the effect is stronger for new plants.
Zip codes with either new or old plants are more likely than randomly chosen
alternatives to be near assembler plants. Variables drawn from the 1990 U.S.
Census include population density, the proportion of the zip code’s white popu-
lation, the proportion who have graduated from high school, and the proportion
who work in manufacturing jobs. We also include regional dummy variables and
a variable indicating whether the zip code is located in a metropolitan area. Fi-
nally, we include a variable measuring the distance in from Detroit. Plants are
much more likely to be located close to Detroit and in the base region, the East
North Central region.

4. THE GEOGRAPHIC DISTRIBUTION OF SUPPLIER PLANTS

In this section, we use the methodology developed by Duranton and Over-
man (2005) to compare the geographic concentration of existing and new auto
supplier plants in the eastern United States. Our dataset is geocoded down to
the zip code level. Using the geographic coordinates, we begin by calculating
the distance between every pair of plants. With n plants, there are n(n − 1)
distance pairs. Using a standard kernel density function (Silverman, 1986), we
can calculate the density of bilateral distances at any target distance d as:

K(d) = 2
n(n − 1)h

n−1∑
i=1

n∑
j=i+1

f
(

d − di, j

h

)
(1)

where di,j is the distance between observations i and j, h is the bandwidth, and f
is the kernel function. As in Duranton and Overman (2006), we use a standard
Gaussian kernel with an optimal bandwidth.7 All distances are measured in
straight-line miles. Following Duranton and Overman, we refer to the estimated
functions as K-densities.

As written, equation (1) will produce positive density estimates at negative
distances, which means that the estimated function does not integrate to one
over the relevant set of distances. Following Duranton and Overman (2005),
we use Silverman’s (1986) reflection method to impose zero densities at nega-
tive densities. This method involves supplementing each observation with its
negative value, −di, j , to form a pseudo data with twice the original number of
observations. The revised formula for the K-density estimate simplifies to:

7To calculate the optimal bandwidth, we first calculate the standard deviation (s) of the
n(n − 1) bilateral distances. Following Silverman (1986), the optimal bandwidth for a Gaussian
kernel is 1.06sn−.2.
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FIGURE 3: Densities for Existing and New Supplier Plants.

K(d) = 2
n(n − 1)h

n−1∑
i=1

n∑
j=i+1

[
f
(

d − di, j

h

)
+ f

(−d − di, j

h

)]
for d > 0

K(d) = 0 for d ≤ 0.

(2)

This formula ensures that the estimated densities integrate to one by producing
higher estimates at low distances.

We calculate separate K-densities for new and existing plants. We calculate
equation (2) at 41 evenly spaced target points between d = 0 and d = 800. The
results are shown in Figure 3. The striking feature of Figure 3 is the similarity
between the estimated densities. Both density functions have twin peaks at
distances of about 135 miles and 250 miles. The densities rise rapidly to the
first peak and trail off slowly at distances beyond 250 miles. The most common
distances between plants are in the range of about 100–300 miles. Given the size
of the eastern United States, these distances are not small. Most importantly,
the distribution of distances between plants has not changed significantly since
1991. Plants are not substantially closer to one another now than they were
before 1991.
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Although Figure 3 shows that the K-densities are similar for new and old
plants, it does not show directly whether the auto supplier industry is heavily
concentrated. Measuring geographic concentration requires a base model of
possible locations. To measure concentration, Duranton and Overman (2006)
compare actual K-densities to the density that would be expected if plants were
located randomly across space. Using a different but related approach, Ellison
and Glaeser (1997) compare actual locations to the locations expected if plants
were assigned to locations based on the an area’s share of total manufacturing
employment.

In this section, we use three base models of possible locations to measure
geographic concentration. In the first model, the probability that a zip code is
chosen as a plant location is pi = 1/nz, where nz is the number of zip codes.
In the second model, the probability for zip code i is pi = Ei/(� iEi), where Ei
represents total employment in zip code i. Analogously to Ellison and Glaeser
(1997) and Duranton and Overman (2005), the probabilities in the third model
are based on the share of total manufacturing employment, pi = Emi/(� iEmi),
where Emi represents zip code i’s manufacturing employment. Of the 28,036
zip codes in the eastern United States, 19,506 have some employment while
19,151 have some manufacturing employment.8

After assigning a probability of pi to each zip code, we make n draws with-
out replacement from the set of zip codes to construct our base model set of
locations. We then calculate the distance between every actual plant location
and the randomly drawn set of replacement locations. We then re-calculate the
K-density as:

K(d) = 1
n2h

n∑
i=1

n∑
j=1

[
f
(

d − di, j

h

)
+ f

(−d − di, j

h

)]
(3)

where di,j denotes the distance between the actual plant location i and the
randomly drawn location j. There are now n2 distances to calculate—n base
plant locations and n zip code draws. However, we maintain h at the value used
in equation (2) to keep the level of smoothing at the same level as before. We
use this bootstrap re-sampling procedure to generate 2,000 new estimates of
the K-density functions. Each estimated function is estimated at each of the 41
target distances.

Let K̂b(d) represent the estimated K-density at target distance d for boot-
strap sample b, where b = 1, . . . , B and B = 2,000. Standard 95 percent boot-
strap confidence intervals can be calculated by ordering the values of K̂b(d) from
smallest to largest and choosing the 50th and 1950th largest values. Duranton
and Overman (2005) refer to the result of this calculation as a local confidence
interval. At each target distance d, 95 percent of the estimated K-densities fall

8Our approach differs slightly from Duranton and Overman (2005), who base their counter-
factual density on the presence of manufacturing firms rather than the number of manufacturing
employees. Our approach implies that zip codes with large firms are more likely to attract new
firms than sites with low levels of employment.
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within the interval. However, the full K-density functions have 41 values, one
for each target distance. A function lying within the local confidence interval at
one target distance may well fall outside the local interval at another distance.
Duranton and Overman (2005) propose an alternative procedure to construct a
global confidence interval, which takes into account the fact that the each func-
tion is estimated simultaneously at multiple target points. The objective of the
global confidence interval is to find a band such that no more than 95 percent
of the estimated density functions have even a single value that lies outside the
interval at any of the target distances.9

The construction of the local confidence intervals can be expressed mathe-
matically as follows. At each target location d, the lower bound for the 95 percent
confidence interval is the value l1(d) such that

∑B
b=1 I(K̂b(d) < l1(d)) ≤ 0.025B,

where I(•) is a function indicating that the condition is true. The upper bound
of the 95 percent local confidence interval at location d is the value h1(d) such
that

∑B
b=1 I(K̂b(d) > h1(d)) ≤ 0.025B. In contrast, the global confidence inter-

vals, [l2(d), h2(d) ], treat each of the B estimated density functions as single ob-
servations. If the estimated density function for bootstrap draw b falls below the
global lower bound at any of the target distances, then max I(K̂b(d) < l2(d)) = 1.
The lower bound for the global 95 percent confidence interval is defined as a
set of D values for l2(d) such that

∑B
b=1max I(K̂b(d) < l2(d)) ≤ 0.025B, where

D is the number of target distances (D = 41 in our application). Similarly, the
upper bound for the global confidence interval is a set of D values h2(d) such
that

∑B
b=1max I(K̂b(d) > h2(d)) ≤ 0.025B.

The global confidence intervals are clearly larger than the local intervals.
Whereas the local intervals are found by sorting the values of K̂b(d) and choosing
the 0.025B and 0.975B largest values, the search for the global bands moves
outward from these critical points. After ordering the K̂b(d) from smallest to
largest, define �c(d) as entry c. For the lower bound, we begin by calculat-
ing

∑B
b=1max I(K̂b(d) < �50(d)). If this value exceeds 0.025B, we move to entry

c = 49 (i.e., 0.025B − 1), and test whether
∑B

b=1max I(K̂b(d) < �49(d)) exceeds
0.025B. Thus, the critical points are being lowered congruently for each of the
D target distances. The critical points continue to be lowered until we find the
value of c, denoted by c∗, such that

∑B
b=1max I(K̂b(d) < � ∗

c (d)) ≤ 0.025B. The
lower bound at each d is simply entry c∗ of the ordered vector of K̂b(d), i.e.,
l2(d) = � ∗

c (d). Analogous calculations are made for the upper bound to ensure
that

∑B
b=1max I(K̂b(d) > �c(d)) ≤ 0.025B: starting at entry 0.975B of the or-

dered vector of K̂b(d), raise the critical point to entry 0.975B + 1, 0975B + 2,
and so on until we find the critical value that makes the inequality hold.10

9We are indebted to Gilles Duranton and Henry Overman for their patient explanation of
their procedure for calculating global confidence intervals.

10In our application, the critical values hover near entries 3 and 1998 of the ordered bootstrap
K-density values. Although the critical values come close to the limits of 1 and 2,000, the resulting
global confidence intervals are quite close to the local intervals.
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FIGURE 4: New Supplier Plant Density and Confidence Interval-
Random Choice of Any Zip Code.

Figure 4 shows the actual new supplier plant K-density (the solid line) and
the 95 percent bootstrap global confidence interval for the K-density based on
the uniform probabilities pi = 1/nz. Given the large area covered by the eastern
United States, simply assigning 431 new plants randomly across space would
lead to a density function with a peak at a distance of roughly 500 miles. Instead,
the actual K-density function has twin peaks at about 135 miles and 250 miles.
The actual K-density function is well above the 95 percent global confidence
interval from distances of zero to 350 miles. Figure 4 provides clear visual
evidence that new supplier plants are highly concentrated geographically.

Figures 5 and 6 show comparable confidence intervals for the new-plant K-
density function based on the total employment probabilities Ei/(� iEi) and the
manufacturing employment probabilities Emi/(� iEmi). The 95 percent global
confidence intervals are virtually identical because the two sets of probabilities
are highly correlated.11 The only difference between these figures and Figure 4

11Across all 28,036 zip codes, the correlation between the total and manufacturing employ-
ment shares is 0.87. The correlation is 0.86 for the 19,151 zip codes that have some manufacturing
employment.
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FIGURE 5: New Supplier Plant Density and Confidence Interval-
Total Employment.

is that the area where the actual K-density function is above the 95 percent con-
fidence interval extends a bit farther—to 390 miles rather than 350. Whether
we use uniform probabilities or weight the probabilities by employment shares,
the K-densities imply a highly concentrated distribution of auto supplier plants
in the eastern United States.

5. CONDITIONAL LOGIT MODELS OF PLANT LOCATIONS

In this section, we present conditional logit models explaining the proba-
bility that an auto supplier plant is located in a zip code. The primary question
is whether we can explain the geographic concentration of supplier plants with
such key explanatory variables as distance from Detroit, the presence of a high-
way, and proximity to assembly plants. Our analysis is not the first attempt to
model the location decision of auto supplier plants. Woodward (1992) and Smith
and Florida (1992) use county-level data to establish the importance of high-
way transportation as a determinant of plant location. However, our analysis
is unique in the level of geographic detail and the use of a conditional logit
approach in place of a simple multinomial logit. With 28,036 zip codes, 2,627
plants, and plant openings as recent as 2003, our dataset is unusually detailed.
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FIGURE 6: New Supplier Plant Density and Confidence Interval-
Manufacturing Employment.

The existing literature uses county-level data and multinomial logit mod-
els to determine the effect of county characteristics on the probability of plant
location. In contrast, the conditional logit model operates at a more micro level.
For each plant, we know the characteristics of rejected zip codes as well as the
characteristics of the chosen location. The conditional logit model combines the
chosen and rejected locations to produce a much more efficient set of coeffi-
cient estimates. Implicitly, each plant faces 28,036 potential location choices.
However, we follow Ben-Akiva and Lerman (1985) and randomly choose five
rejected alternatives when estimating the model. Since the rejected alterna-
tives are chosen randomly, the resulting coefficients estimates are consistent
and more efficient than a simple county-level multinomial logit model.12

12The alternative would be to estimate a simple binomial logit model in which the dependent
variable equals one if a plant is located in a county. The assumption behind the standard binomial
logit model is that the presence of plant in one county is independent of any information from other
counties. Since plants are implicitly choosing among counties, adding information from rejected
counties allows the conditional logit model to more accurately identify a variable’s effect on the
decision process. In practice, the marginal-effect estimates from conditional and standard logit
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The resulting dataset has 6n observations. The dependent variable equals
1 for the first observation for each plant and the explanatory variables in-
clude the characteristics for the chosen plant location. The dependent variable
equals zero for the next five observations for each plant and the explanatory
variables include the characteristics for the randomly chosen rejected locations.
The standard errors are adjusted for the clustering that is implicit in having
six observations for each plant.

The results are shown in Table 2. For existing plants—those that opened
prior to 1991—the results imply that a zip code is more likely to be chosen as a
plant location if an interstate highway runs through it,13 assemblers are nearby,
it is in a metropolitan area, and it is in a right to work state.14 The probability
of an existing plant is higher when the zip code is near Detroit, has a high-
population density and a high proportion of manufacturing in employment. All
of the regional dummy variables are significant except East South Central,
whose negative coefficient is not significantly different from zero.

In the second column of results in Table 2, the specification for new plant lo-
cations is similar to the model of existing plant locations. However, we add as an
explanatory variable the number of existing supplier plants within 100 miles.
This variable can reasonably be taken as exogenous for the new-plant model.
Unfortunately, the number of assemblers and the number of suppliers are very
highly correlated: the correlation between these two variables is 0.91 in the
zip codes with new plants. This multicollinearity makes it difficult to separate
the effects of proximity to assemblers and to existing supplier plants. In the
last column of results, we present the results when the model is re-estimated
after keeping only the more influential variable, the number of existing sup-
plier plants. Making allowances for the smaller sample size, the results for new
plants are very similar to the results for existing plants. A zip code is more
likely to have a new plant if it is served by an interstate highway, is close to
an assembler, has a high proportion of employment in manufacturing, and is
close to Detroit. We also find that new plants are more likely to choose zip codes
that are within 100 miles of existing industry plants, both models also suggests
that, for new supplier plant locations, proximity to the nearest assembly plant
matters instead of the number of assembly plants that are within 100 miles.
This variation in the way existing assembly plant locations affect the choices of
supplier plants is consistent with evidence of tighter linkages between assem-
blers and suppliers during the 1990s. An increasing number of logistics and

models do not differ greatly, although the additional precision of the conditional model results in
lower standard errors. Though the results do not vary substantially, we prefer the conditional logit
approach because it more closely matches the firm’s choice problem in asking why a county was
chosen over a set of alternative locations.

13Conceptually, the presence of transportation infrastructure supports linkages between as-
semblers and suppliers as well as among suppliers.

14In states with right to work laws, a worker does not have to join a union as a condition for
working in a unionized plant. Since nearly all right to work states are in the South, it is sometimes
difficult to distinguish the effects of this variable from regional indicators.
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TABLE 2: Conditional Logit Models

Existing plants New plants New plants

Interstate highway 0.6957∗ 1.2154∗ 1.2154∗

(0.0609) (0.1450) (0.1450)
Distance to nearest assembler (100 miles) −0.0114 −0.4203∗ −0.4126∗

(0.0604) (0.1470) (0.1435)
Number of assemblers within 100 miles 0.0340∗ −0.0068

(0.0060) (0.0281)
Population density (1,000s per sq. mile) 0.0115∗ −0.0037 −0.0037

(0.0051) (0.0219) (0.0220)
Proportion white −0.2627 0.2647 0.2625

(0.1815) (0.4076) (0.4078)
Proportion high school graduates 1.6900∗ 0.9358 0.9576

(0.2928) (0.6804) (0.6749)
Proportion manufacturing 5.4731∗ 5.7246∗ 5.7663∗

(0.3194) (0.7976) (0.7790)
Metropolitan 0.2154∗ 0.3009 0.2996

(0.0681) (0.1611) (0.1610)
New England −0.7605∗ −0.6020 −0.6151

(0.1739) (0.5987) (0.5960)
Middle Atlantic −1.5705∗ −1.2945∗ −1.3213∗

(0.1160) (0.3577) (0.3400)
West North Central −0.7301∗ 0.0557 0.0326

(0.1552) (0.4063) (0.3944)
South Atlantic −0.9349∗ 0.4681 0.4489

(0.1337) (0.3053) (0.2943)
East South Central −0.1737 1.4789∗ 1.4686∗

(0.1363) (0.2755) (0.2719)
West South Central −0.6324∗ −0.0625 −0.0759

(0.2714) (0.7443) (0.7415)
Right to Work state 0.4255∗ 0.2678 0.2712

(0.1249) (0.2801) (0.2796)
Distance from Detroit (100 miles) −0.2782∗ −0.2770∗ −0.2818∗

(0.0309) (0.0891) (0.0868)
Number of existing supplier 0.0022 0.0019∗

plants within 100 miles (0.0014) (0.0007)
Pseudo-R2 0.3532 0.4076 0.4076
Number of observations 13,176 2,586 2,586

Notes: Standard errors are in parentheses. An asterisk indicates significance at the 5% level.

supplier functions must be performed in very close proximity to the assembly
location. In a number of cases, this tendency has led to the construction of a
supplier park immediately adjacent to an assembly plant.

With pseudo-R2s in the range of 0.35–0.41, the models fit the data well
by the standards of discrete choice models. The models suggest the roots of
geographic concentration lie in (1) highway access, (2) the desire to locate near
assembly plants, and (3) the strong influence of Detroit on location decisions
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in the auto industry. In addition, we find that existing supplier plants appear
to have some influence on the location of new plants. However, the models
are not able to determine whether existing plants exert a causal influence on
new plants due to direct agglomerative forces or if existing plant locations are
serving as a proxy for missing variables that influence both new and existing
plant location choices.

6. K-DENSITIES BASED ON LOGIT PROBABILITY ESTIMATES

The estimated probability estimates from the conditional logit models can
be used as the basis for K-density confidence intervals. The implied base model
asks a different question than before: are actual plant locations more concen-
trated geographically than implied by the estimated logit models? If we base
the analysis of new-plant K-densities on the new-plant logit probabilities, we
have what amounts to a specification test of our conditional logit model. If the
model adequately accounts for the determinants of new plant locations, then
the actual K-densities for new plants should lie within the 95 percent confidence
interval implied by the estimated probabilities. The question is somewhat dif-
ferent, if we base the confidence intervals for new-plant K-densities on the
estimated probabilities produced by the logit model of existing plant locations.
In this case, the question is whether new plants effectively follow the decision
rule that is implied by the existing plant model. New plants may seek out lo-
cations that have a high probability of having an existing plant even if a plant
has not yet located there. In this case, the K-densities for new plants may lie
within the 95 percent confidence interval implied by the existing plant logit
model even if it differs from the distribution of actual existing plant distance
densities.

To calculate the 95 percent global confidence interval for the new-plant
K-densities based on the estimated logit models, we again draw randomly with-
out replacement from the set of actual zip codes. The probabilities are based
on the estimated conditional logit models. Thus, equation (3) again forms the
basis for the bootstrap K-density. Unlike binomial logit, the conditional logit
model does not produce an intercept. Instead, separate intercepts are implied
for each plant.15 Many zip codes are not represented in either the set of ac-
tual plant locations or the randomly drawn alternatives. To construct proba-
bilities for every zip code in the eastern United States, we take the sample
of 6n observations and re-estimate the model using simple logit. In the re-
estimated model, the dependent variable equals one for n observations and
zero for the remaining 5n observations. The resulting coefficient estimates
are consistent but not as efficient as the models that take into account the

15As noted above, the data set includes five rejected alternatives for each plant. To account for
the implied clustering, each plant is represented by its own dummy variable. Thus, the conditional
choice model has a distinct intercept for each plant.
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FIGURE 7: New Supplier Plant Density and Confidence Interval-
Estimated Probability of a New Plant.

clustering by plant group. However, the re-estimated logit model includes an
intercept, and the coefficients can be used to calculate probabilities for every zip
code.16

Figure 7 shows the actual K-density for new supplier plants and the boot-
strap global confidence interval implied by the probabilities estimated using
the model of new plant locations.17 Comparing the confidence intervals across
Figures 4–7, we see that a much lower degree of concentration is implied by
comparing actual densities to the densities implied by the new plant logit model.
The actual K-density function is still above the 95 percent global confidence in-
terval in Figure 7, but it is much closer than was the case when the confidence
intervals were based on zip code employment levels or uniform draws from all
zip codes. Thus, the logit model has succeeded in explaining much of the ten-
dency toward geographic concentration. Explaining the degree of concentration

16Apart from the intercept, the coefficients of the conditional logit model and the multinomial
re-estimated model are nearly identical.

17The probabilities are based on the model without the variable indicating the number of
assemblers within 100 miles.
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FIGURE 8: New Supplier Plant Density and Confidence Interval-
Estimated Probability of an Existing Plant.

further would require more explanatory variables or a model that explicitly
takes account of spatial autocorrelation.18

As shown in Figure 8, calculating confidence intervals for the K-density
function based on the existing plant logit probabilities produces a diagram
that is virtually identical to Figure 7. This result is not surprising since the
correlation between the two estimated sets of probabilities is 0.90. Figure 9
shows the global confidence intervals when we replace the estimated old-plant
logit probabilities with actual old-plant locations. To construct these confidence
intervals, we randomly draw samples of 431 locations from the 2,196 actual
old-plant locations. We then measure the distance of the 431 actual new plants
to the randomly drawn sample of locations. Aside from minor differences, the
resulting 95 percent global confidence interval contains the new-plant density
function. In other words, the distribution of new-plant distances is nearly the

18The literature on discrete choice models with spatial autocorrelation is still largely undevel-
oped. Relevant models include those proposed by Beron and Vijverberg (2004), Case (1992), LeSage
(2000), McMillen (1992), and Pinkse and Slade (1998). Currently, the models are only practicable
for relatively small datasets because they involve inverting large weight matrices.
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FIGURE 9: New Supplier Plant Density and Confidence Interval-
Actual Locations of Existing Plants.

same as what would be expected if new plants locations were simply drawn
randomly from the sites of old plants. This result does not imply, of course, that
new plants actually locate in the same sites as old plants. The importance of
the result is that new plants show no additional tendency to cluster beyond the
level of concentration of old plants. As the auto industry changed its orientation
southward, the overall level of concentration remained essentially the same as
before.

7. CONCLUSION

For the past century, the U.S. auto industry has been characterized by a
small number of assembly plants and a large number of clustered supplier
plants. Detroit remains the hub of the industry even as foreign plants have
become more prominent. As American companies closed plants on the coasts
and re-trenched toward the middle of the company, the industry has spread
southward. The geographic distribution of auto supplier plants now displays a
north-south orientation, with a concentration of plants along a corridor run-
ning from Detroit southward through Ohio, Kentucky, Tennessee, and into
Alabama.
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In this paper, we use a combination of nonparametric and parametric tech-
niques to characterize the geographic distribution of auto supplier plants in
the eastern United States. Using a nonparametric procedure developed by Du-
ranton and Overman (2005), we find that auto supplier plants are much more
concentrated than would be implied by random location choice. We then inves-
tigate the roots of this geographic concentration using parametric conditional
logit models. We find that the location choices of the U.S. auto supplier plants
are well explained by a small set of variables: the probability that a zip code has
a plant is higher if the zip code has good highway access, is close to Detroit, and
is near assembly plants. We also find that new supplier plants—those that have
opened since 1991—are more likely to locate in zip codes that are near existing
concentrations of supplier plants. Despite the recent change in the geographic
orientation of the industry, both the nonparametric and parametric procedures
suggest that the distribution of plants has not changed significantly over time.
Although plant openings have been concentrated in the area south of Detroit,
the new location pattern mimics the distribution of existing plants in the area.

Our results also suggest the usefulness of Duranton and Overman’s (2005)
procedure as a specification test for the conditional logit models. Although the
logit models fit the data well, we find that plant locations are more concentrated
geographically than is implied by the predicted logit probabilities. This result
calls for the development of discrete choice models that explicitly take account
of spatial clustering.
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