ESE 523
 Information Theory

Joseph A. O'Sullivan
 Samuel C. Sachs Professor

Electrical and Systems Engineering
Washington University
211 Urbauer Hall
2120E Green Hall
314-935-4173
jao@wustl.edu

Outline

$$
\begin{aligned}
& (p, 1-p) \Rightarrow \\
& H(p)=-p \log p-(1-p) \log (1-p)
\end{aligned}
$$

\square Entropy
\square Joint Entropy
\square Conditional Entropy
\square Relative Entropy
\square Mutual Information

$$
\begin{aligned}
& H(X)=-\sum_{x \in X} p(x) \log p(x) \\
& H(X, Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x, y)
\end{aligned}
$$

$$
H(X \mid Y)=-\sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x \mid y)
$$

$$
D(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

$$
I(X ; Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

Notation

- X: Random variable (R.V.)
\square Alphabet (discrete): $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
- Probability mass function:
$P\left(X=x_{i}\right)=p_{i}=p(i)=p\left(x_{i}\right)$
$p_{i} \geq 0, \quad \sum_{x \in X} p_{i}=1$
$\square \log =\log _{2}$
\square Biased coin flip: $\mathcal{X}=\{\mathrm{h}, \mathrm{t}\} ; \mathrm{p}(\mathrm{x})=(\mathrm{p}, 1-\mathrm{p})$
\square Two dice:

$$
\begin{aligned}
& \chi=\{2,3,4,5,6,7,8,9,10,11,12\} ; \\
& p(x)=(1,2,3,4,5,6,5,4,3,2,1) / 36
\end{aligned}
$$

\square Powerball:

$$
p(x)=\left[\binom{59}{5} 39\right]^{-1}=\frac{1}{195,249,054}
$$

Measure of Information: Entropy

\square The entropy of $X, H(X)$ is:

$$
H(X)=-\sum_{x \in X} p(x) \log p(x)
$$

\square Units are "bits"
\square Measure of uncertainty of a R.V.

$$
\begin{aligned}
H(X) & =E[-\log p(X)] \\
& =E\left[\log \frac{1}{p(X)}\right]
\end{aligned}
$$

"... the eerily self-referential expectation..." Cover and Thomas, p. 14

Entropy

- Example 1: Deterministic R.V.

$$
\begin{aligned}
& p\left(x_{i}\right)=1 \text { and } p\left(x_{j}\right)=0 \quad \forall j \neq i \\
& H(X)=0
\end{aligned}
$$

\square No information gained from observing the outcome

$$
\begin{aligned}
& 1 \cdot \log (1)=1 \cdot 0=0 \\
& 0 \log 0 \triangleq \lim _{\varepsilon \rightarrow 0^{+}} \varepsilon \log \varepsilon=0
\end{aligned}
$$

Proof uses l'Hôpital's rule:
$\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon \log \varepsilon=\lim _{\varepsilon \rightarrow 0^{+}} \frac{-\log (1 / \varepsilon)}{1 / \varepsilon}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1 / \varepsilon}{-1 / \varepsilon^{2}} \log e=0$

Entropy

Example 2: Flip a "fair" coin
 $$
\chi=\{\mathrm{h}, \mathrm{t}\} ; \quad p(\mathrm{~h})=p(\mathrm{t})=\frac{1}{2}
$$
 $$
H(X)=-\frac{1}{2} \log \frac{1}{2}-\frac{1}{2} \log \frac{1}{2}
$$
 $$
=1 \mathrm{bit}
$$

Entropy

Example 3: Flip a fair coin n times

$$
\mathcal{X}=\{(\mathrm{h}, \mathrm{~h}, \ldots \mathrm{~h}),(\mathrm{h}, \mathrm{~h}, \ldots \mathrm{t}), \ldots(\mathrm{t}, \mathrm{t}, \ldots \mathrm{t})\}
$$

$$
p\left(x_{i}\right)=\frac{1}{2^{n}} \quad i=1,2, \ldots 2^{n}
$$

$$
H(X)=-\sum_{i=1}^{2^{n}} \frac{1}{2^{n}} \log \frac{1}{2^{n}}
$$

$$
=n \text { bits }
$$

Entropy

Example 4: Powerball, or any other uniform distribution.

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots, x_{M}\right\} ; \quad p\left(x_{i}\right)=\frac{1}{M}, \text { for all } i \\
& H(X)=\sum_{i=1}^{M} \frac{1}{M} \log M=\log M
\end{aligned}
$$

$$
H(\text { Powerball })=\log (195249054)=27.5407
$$

Entropy

Example 5: Flip a fair coin 2 times and add the number of heads

$$
\begin{aligned}
& X=\{0,1,2\} ; \quad p(0)=p(2)=\frac{1}{4}, p(1)=\frac{1}{2} \\
& H(X)=-\frac{1}{4} \log \frac{1}{4}-\frac{1}{2} \log \frac{1}{2}-\frac{1}{4} \log \frac{1}{4} \\
& =\frac{3}{2} \text { bits }
\end{aligned}
$$

Properties and Remarks

\square Entropy is the expected number of binary questions one needs to ask to determine the value of a R.V.

- Last example: on average how many yes-no questions to determine outcome? Answer: 1.5 questions
\square Entropy is nonnegative
\square Base change: other units

$$
\begin{gathered}
H_{b}(X)=E\left[-\log _{b} p(x)\right]=\log _{b} a \cdot E\left[-\log _{a} p(x)\right] \\
\text { "nats" for base } e
\end{gathered}
$$

J. A. O'Sullivan, ESE 523, Lecture 2-6

Binary Entropy Function

$\mathcal{X}=\{0,1\} ; \quad p(1)=p$
$H(X)=-p \log p-(1-p) \log (1-p)=H(p)$

Binary Entropy Function

Matlab Function entropy.m

function ent=entropy(p)
np=size(p);
if length(np)>1, $p=r e s h a p e(p, p r o d(n p), 1) ;$
end
ip = find (and $(p>0, p<1))$;
$p p=p(i p) / s u m(p(i p))$;
hhp=-pp.*log2(pp);
ent=sum(hhp);

Matlab Function plotbinentropy.m

```
\(\mathrm{p}=0.0025: 0.0025: 1-0.0025\);
onep \(=1-\mathrm{p}\);
ent=-p.*log2(p)-onep.*log2(onep);
ent=[0 ent 0];
\(\mathrm{p}=\left[\begin{array}{lll}0 & \mathrm{p} & 1\end{array}\right]\);
figure1=figure;
axes1 = axes('FontSize',16,'Parent',figure1);
title(axes1,'Binary Entropy Function');
xlabel(axes1,'Probability of One');
ylabel(axes1,'Entropy');
box(axes1,'on');
hold(axes1,'all');
plot(p,ent,'LineWidth',2)
```


Example 6: Entropy as Answer to

Combinatorics Question, Lecture 1

\square Assume $|X|=m$.
\square There are n trials.
\square How many ways are there to get $k_{1}, k_{2}, \ldots k_{m}$ of the elements $\left(k_{1}+k_{2}+\ldots\right.$ $+k_{m}=n$)?
\square Operational role of entropy for a combinatorics question.

$$
\begin{aligned}
& \binom{n}{k_{1} k_{2} \ldots k_{m}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} \\
& =2^{n\left(-\frac{k_{1}}{n} \log \frac{k_{1}-\frac{k_{2}}{n} \log \frac{k_{2}}{n} \ldots-\frac{k_{m}}{n} \log \frac{k_{m}}{n}+o(n)}{}\right.} \\
& =2^{n h\left(\frac{k_{1}}{n}, \frac{k_{2}}{n}, \ldots, \frac{k_{m}}{n}\right)+n o(n)} \\
& \Rightarrow \text { Theorem: } \\
& \frac{1}{n} \log \left(k_{k_{1}} k_{2} \ldots k_{m}\right) \underset{n \rightarrow \infty}{\rightarrow} h\left(p_{1}, p_{2}, \ldots, p_{m}\right) \\
& \text { if } \frac{k_{1}}{n} \underset{n \rightarrow \infty}{\rightarrow} p_{1}, \frac{k_{2}}{n} \underset{n \rightarrow \infty}{\rightarrow} p_{2}, \ldots, \frac{k_{m}}{n} \underset{n \rightarrow \infty}{\rightarrow} p_{m}
\end{aligned}
$$

Definitions

\square The joint entropy of R.V.'s X and Y is:

$$
\begin{aligned}
H(X, Y) & =-\sum_{x \in X, X \in \mathcal{Y}} \sum_{i, y} p(x, y) \log p(x, y) \\
& =E[-\log p(X, Y)]
\end{aligned}
$$

\square The conditional entropy of Y given X is:

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{x \in X} p(x) \sum_{y \in \mathcal{Y}} p(y \mid x) \log p(y \mid x) \\
& =E[-\log p(Y \mid X)]
\end{aligned}
$$

Entropies

Theorem: $H(X, Y)=H(X)+H(Y \mid X)$

$$
=H(Y)+H(X \mid Y)
$$

Proof:

$$
\begin{aligned}
& p(x, y)=p(x) p(y \mid x) \\
\Rightarrow & \log p(x, y)=\log p(x)+\log p(y \mid x) \\
\Rightarrow & \sum_{x, y} p(x, y) \log p(x, y)=\sum_{x, y} p(x, y) \log p(x)+\sum_{x, y} p(x, y) \log p(y \mid x) \\
\Rightarrow & \sum_{x, y} p(x, y) \log p(x, y)=\sum_{x} p(x) \log p(x)+\sum_{x, y} p(x, y) \log p(y \mid x) \\
\Rightarrow & H(X, Y)=H(X)+H(Y \mid X)
\end{aligned}
$$

Definition

\square The relative entropy between probability distribution functions $p(x)$ and $q(x)$ is:

$$
D(p \| q)=\sum_{x \in \mathbb{X}} p(x) \log \frac{p(x)}{q(x)}=E_{p}\left[\log \frac{p(X)}{q(X)}\right]
$$

\square Not a true distance:

$$
D(p \| q) \neq D(q \| p)
$$

Matlab Function relentropy.m

function relent=relentropy (p, q)
$\mathrm{np}=\operatorname{size}(\mathrm{p})$;
nq=size(q);
if $n p \sim=n q$,
errormess='Matlab function relentropy error: dim mismatch' return
end
if length(np) >1,
$\mathrm{p}=$ reshape($\mathrm{p}, \mathrm{prod}(\mathrm{np}), 1)$;
$\mathrm{q}=\mathrm{reshape}(\mathrm{q}, \operatorname{prod}(\mathrm{np}), 1)$;
end
$\mathrm{ip}=$ find $(\operatorname{and}(p>0, q>0))$;
$r p q=p(i p) . * \log 2(p(i p) . / q(i p)) ;$
\% Gives the wrong answer if $\mathrm{q}(\mathrm{k})=0$ and $\mathrm{p}(\mathrm{k}) \sim=0$ relent=sum(rpq);

Matlab Function plotrelentropy.m

function re=plotrelentropy(q);
$p=0.0025: 0.0025: 1-0.0025$;
onep=1-p;
re=p.*log2(p/q)+onep.*log2(onep/(1-q));
re=[-log2(1-q) re -log2(q)];
$\mathrm{p}=\left[\begin{array}{lll}0 & \mathrm{p} & 1\end{array}\right]$;
figure1=figure;
axes1 = axes('FontSize',16,'Parent',figure1);
title(axes1,strcat('Binary Relative Entropy $q=$ =',num2str(q)));
xlabel(axes1,'Probability p');
ylabel(axes1,'Relative Entropy D(p\|q)');
box(axes1,'on');
hold(axes1,'all');
plot(p,re,'LineWidth',2) grid

Image of Relative Entropy Function

Binary Relative Entropy $\mathrm{D}(\mathrm{p} \| \mathrm{q})$

Definition

\square The mutual information between X and Y is:

$$
\begin{aligned}
I(X ; Y) & =D(p(x, y) \| p(x) p(y)) \\
& =\sum_{x \in X} \sum_{y \in Y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
\end{aligned}
$$

\square Some Properties:

1) $I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)$
2) $I(X ; Y)=H(X)+H(Y)-H(X, Y)$
3) $I(X ; Y)=I(Y ; X)$
4) $I(X ; Y) \geq 0$

Properties of Mutual Information

1) $I(X ; Y)=H(X)-H(X \mid Y)$

$$
=H(Y)-H(Y \mid X)
$$

Proof: $I(X ; Y)=E\left[\log \frac{p(X, Y)}{p(X) p(Y)}\right]$

$$
=E\left[\log \frac{1}{p(X)}\right]+E[\log p(X \mid Y)]
$$

$$
=E\left[\log \frac{1}{p(X)}\right]-E\left[\log \frac{1}{p(X \mid Y)}\right]
$$

$$
=H(X)-H(X \mid Y)
$$

Matlab Function mutualinformation.m

function info=mutualinformation(p)
$p=p /$ sum(sum(p));
$p x=\operatorname{sum}(p, 2)$;
$p y=\operatorname{sum}(p, 1)$;
info=entropy(px)+entropy(py)-entropy(p);

$$
\text { 2) } \begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(X)-[H(X, Y)-H(Y)] \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

Last Class

Outline

$$
\begin{aligned}
& (p, 1-p) \Rightarrow \\
& H(p)=-p \log p-(1-p) \log (1-p)
\end{aligned}
$$

Binary Entropy Function

\square Entropy
\square Joint Entropy
\square Conditional Entropy
\square Relative Entropy
\square Mutual Information

$$
\begin{aligned}
& H(X)=-\sum_{x \in X} p(x) \log p(x) \\
& H(X, Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x, y)
\end{aligned}
$$

$$
H(X \mid Y)=-\sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x \mid y)
$$

$$
D(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

$$
I(X ; Y)=\sum_{x \in \mathcal{X}} \sum_{y \in Y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

Example: Entropy and Mutual

Information

$$
\begin{aligned}
& p(x, y)=\left[\begin{array}{ccc}
\frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\
0 & \frac{1}{4} & \frac{1}{8} \\
0 & 0 & \frac{1}{8}
\end{array}\right] ; \text { values of } x \text { in columns, } y \text { in rows } \\
& p(x)=\left[\begin{array}{lll}
\frac{1}{8} & \frac{1}{2} & \frac{3}{8}
\end{array}\right] ; p(y)=\left[\begin{array}{lll}
\frac{1}{2} & \frac{3}{8} & \frac{1}{8}
\end{array}\right] \\
& H(X)=H(Y)=-\frac{1}{8} \log \frac{1}{8}-\frac{1}{2} \log \frac{1}{2}-\frac{3}{8} \log \frac{3}{8}=2-\frac{3}{8} \log 3 \\
& H(X, Y)=-4\left(\frac{1}{8} \log \frac{1}{8}\right)-2\left(\frac{1}{4} \log \frac{1}{4}\right)=2.5
\end{aligned}
$$

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)=1.5-0.75 \log 3=0.31278124 .25
$$

Telescoping Sums: Entropy

Theorem: $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots X_{1}\right)$
\square Proof:
$-E\left[\log p\left(X_{1}, X_{2}, \ldots X_{n}\right)\right]$
$=-E\left[\log \left(p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{2}, X_{1}\right) \ldots p\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right)\right)\right]$
$=-\sum_{i=1}^{n} E\left[\log p\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)\right]$
\square Comments:

- Generalization of two variable case

$$
H\left(X_{1}, X_{2}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)
$$

- Example for three $H\left(X_{1}, X_{2}, X_{3}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)$ variables

$$
+H\left(X_{3} \mid X_{2}, X_{26} X_{1}\right)
$$

Telescoping Sums: Mutual Information

\square Definition: $\quad I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)$
\square Theorem: $I\left(X_{1}, X_{2}, \ldots X_{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{i-1}, \ldots X_{1}\right)$
\square Proof: $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots X_{1}\right)$

$$
H\left(X_{1}, X_{2}, \ldots, X_{n} \mid Y\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots X_{1}, Y\right)
$$

Towards Jensen's Inequality: Convex and Concave Functions

\square Definition: A function f is convex over (a, b) if for any $x_{1}, x_{2} \in$ (a, b) and $\lambda \in[0,1]$,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

\square A function f is concave if $-f$ is convex. f is strictly convex or concave if the inequalities are strict for $\lambda \neq 0$ or 1 .

Jensens Inequality

Towards Jensen's Inequality: Sufficient Condition for Convexity

\square Theorem: Suppose that f is twice continuously differentiable. If $d^{2} f / d x^{2}$ is nonnegative (positive) everywhere, then f is convex (strictly convex).
\square Proof: Using a Taylor series approximation,

$$
f(x)=f\left(x_{0}\right)+\frac{d f}{d x}\left(x_{0}\right)\left(x-x_{o}\right)+\frac{1}{2} \frac{d^{2} f}{d x^{2}}\left(x^{*}\right)\left(x-x_{o}\right)^{2}
$$

where x^{*} is some value between x and x_{0}. Take

$$
\begin{aligned}
& x_{0}=\lambda x_{1}+(1-\lambda) x_{2} \\
& f\left(x_{1}\right) \geq f\left(x_{0}\right)+\frac{d f}{d x}\left(x_{0}\right)\left(x_{1}-\lambda x_{1}-(1-\lambda) x_{2}\right) \\
& f\left(x_{2}\right) \geq f\left(x_{0}\right)+\frac{d f}{d x}\left(x_{0}\right)\left(-\lambda x_{1}+\lambda x_{2}\right) \\
& x_{2}-x_{0}=\lambda\left(x_{2}-x_{1}\right) \\
& \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(x_{0}\right)=f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)
\end{aligned}
$$

Convex and Concave

Function Examples

$\square f(x)=\log x$ is strictly concave.

- Proof: $d f / d x=\log e / x ; d^{2} f / d x^{2}=-\log e / x^{2}<0$ 妾
$\square f(x)=-x \log x$ is strictly concave.

- Proof: $d f / d x=-\log x-\log e ; d^{2} f / d x^{2}=-\log e / x<0$
- Comment: This implies concavity of entropy $H(X)=-\Sigma p(x) \log p(x)$
- x^{m} for $m \geq 1$ is convex for $x>0$
$\square e^{x}$ is strictly convex
\square Comment: several information inequalities can be derived from

$$
x-1 \geq \ln x \geq 1-\frac{1}{x}
$$

\square Relative entropy is nonnegative

$$
D(p \| q)=E_{p}\left[\log \frac{p(X)}{q(X)}\right] \geq \log e E_{p}\left[1-\frac{q(X)}{p(X)}\right]=0
$$

J. A. O'Sullivan, ESE 523, Lecture 2-6

Jensen's Inequality

\square Theorem (Jensen's Inequality): If f is convex over (a, b) and X is a random variable taking values in (a, b), then
$E[f(X)] \geq f(E[X])$
If f is strictly convex, then equality implies that $X=E[X]$ with probability one.

Proof of Jensen's Inequality

Proof by induction. Let $|\mathcal{X}|=2, \mathcal{X}=\left\{x_{1}, x_{2}\right\}$. Then $p f\left(x_{1}\right)+(1-p) f\left(x_{2}\right) \geq f\left(p x_{1}+(1-p) x_{2}\right)$, by definition.
Assume $|\mathcal{X}|=k$ and that for any set of cardinality $k-1$ the theorem holds. Then
$\sum_{i=1}^{k} p_{i} f\left(x_{i}\right)=p_{k} f\left(x_{k}\right)+\left(1-p_{k}\right) \sum_{i=1}^{k-1} \frac{p_{i}}{1-p_{k}} f\left(x_{i}\right)$
$\geq p_{k} f\left(x_{k}\right)+\left(1-p_{k}\right) f\left(\sum_{i=1}^{k-1} \frac{p_{i}}{1-p_{k}} x_{i}\right)$, by induction hypothesis
$\geq f\left(p_{k} x_{k}+\left(1-p_{k}\right)\left(\sum_{i=1}^{k-1} \frac{p_{i}}{1-p_{k}} x_{i}\right)\right)=f(E[X])$, by definition. \square

Relative Entropy is Nonnegative

\square Theorem: $\mathrm{D}(p \| q) \geq 0$ with equality if and only if (iff) $p=q$.
\square Proof uses Jensen's inequality. The function $\log x$ is strictly concave so - $\log x$ is strictly convex.

$$
\begin{gathered}
D(p \| q)=E_{p}\left[\log \frac{p(X)}{q(X)}\right]=E_{p}\left[-\log \frac{q(X)}{p(X)}\right] \\
\geq-\log \left[E_{p}\left(\frac{q(X)}{p(X)}\right)\right]=-\log (1)=0
\end{gathered}
$$

Refinement: Need to restrict sums to $A=\{x \in \mathcal{X} \mid p(x)>0\}$

Relative Entropy is Nonnegative

Theorem: $\mathrm{D}(p \| q) \geq 0$ with equality iff $p=q$.
Proof uses Jensen's inequality. $-\log x$ is strictly convex.
$D(p \| q)=E_{p}\left[\log \frac{p(X)}{q(X)}\right]=\sum_{x \in \mathcal{A}} p(x)\left[-\log \frac{q(x)}{p(x)}\right]$
$\underset{(a)}{\geq-\log }\left[\sum_{x \in \mathcal{A}} p(x)\left(\frac{q(x)}{p(x)}\right)\right]=-\log \left[\sum_{x \in \mathcal{A}} q(x)\right]$
$\geq-\log (1)=0$
where $\mathcal{A}=\{x \in \mathcal{X} \mid p(x)>0\}$,
(a) follows from Jensen's Inequality, and
(b) follows from $\sum_{x \in \mathcal{A}} q(x) \leq 1$.

Start Here Sept. 8, 2011

Outline

\square Concavity of entropy
\square Log-sum inequality
\square Convexity of relative entropy
\square Conditioning reduces entropy
\square Convexity and concavity of mutual information (toward optimization)
\square Data processing inequality
\square Chapter 3: Asymptotic equipartition property

Entropy is Concave and Bounded

\square Theorem: Entropy is concave and bounded above by the log of the cardinality of the set, with equality iff the random variable is uniformly distributed.
\square Proof: Concavity follows from concavity of $-x \log x$.

$$
\begin{aligned}
H(X) & =E_{p}\left[\log \frac{1}{p(X)}\right] \underset{\uparrow}{\uparrow} \log \left[E_{p} \frac{1}{p(X)}\right]
\end{aligned}=\log \left[\sum_{x \in X} \frac{p(x)}{p(x)}\right]=\log |X|
$$

Log Sum Inequality

Theorem: For any nonnegative numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$, with $\sum_{i=1}^{n} b_{i}>0$. Assume that if $b_{i}=0$ then $a_{i}=0\left(0 \log \frac{0}{0}=0\right)$. Then
$\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq\left(\sum_{i=1}^{n} a_{i}\right) \log \frac{\left(\sum_{i=1}^{n} a_{i}\right)}{\left(\sum_{i=1}^{n} b_{i}\right)}$
Equality iff $a_{i} / b_{i}=$ constant
Proof: By Jensen's inequality
$\sum_{i=1}^{n} \frac{b_{i}}{\left(\sum_{l=1}^{n} b_{l}\right)} \underbrace{\left(\frac{a_{i}}{b_{i}} \log \frac{a_{i}}{b_{i}}\right)} \geq\left(\sum_{i=1}^{n} \frac{b_{i}}{\sum_{l=1}^{n} b_{l}} \frac{a_{i} \text { is convex }}{b_{i}}\right) \log \left(\sum_{i=1}^{n} \frac{b_{i}}{\sum_{l=1}^{n} b_{l}} \frac{a_{i}}{b_{i}}\right) . .$.
Expected value

Convexity of Relative Entropy

\square Theorem: $D(p \| q)$ is convex in the pair (p, q). \square Proof: By the log sum inequality

$$
\begin{aligned}
& D\left(\lambda p_{1}+(1-\lambda) p_{2} \| \lambda q_{1}+(1-\lambda) q_{2}\right)= \\
& \sum_{x \in \mathcal{X}}\left[\lambda p_{1}(x)+(1-\lambda) p_{2}(x)\right] \log \frac{\lambda p_{1}(x)+(1-\lambda) p_{2}(x)}{\lambda q_{1}(x)+(1-\lambda) q_{2}(x)} \leq \begin{array}{l}
\text { Log-sum } \\
\text { inequality }
\end{array} \\
& \lambda \sum_{x \in \mathcal{X}} p_{1}(x) \log \frac{p_{1}(x)}{q_{1}(x)}+(1-\lambda) \sum_{x \in X} p_{2}(x) \log \frac{p_{2}(x)}{q_{2}(x)}= \\
& \lambda D\left(p_{1} \| q_{1}\right)+(1-\lambda) D\left(p_{2} \| q_{2}\right)
\end{aligned}
$$

Concavity of Entropy Revisited

\square Let $u(x)$ be a uniform distribution. Then

$$
H(p)=\log |X|-D(p \| u)
$$

Proof:

$$
\begin{aligned}
& D(p \| u)=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{1 /|X|} \\
& =\log |X|+\sum_{x \in X} p(x) \log p(x) \\
& =\log |X|-H(p)
\end{aligned}
$$

\square Convexity of relative entropy implies concavity of entropy.

Jensen's Inequality Summary

\square Theorem (Jensen's Inequality): If f is convex over (a, b) and X is a random variable taking values in (a, b), then

$$
E[f(X)] \geq f(E[X])
$$

If f is strictly convex, then equality implies that $X=\mathrm{E}[X]$ with probability one.
Corollary: $\mathrm{D}(p \| q) \geq 0$ with equality iff $p=q$.
\square Corollary: $\mathrm{I}(X ; Y) \geq 0$, with equality iff $p(x, y)=p(x) p(y)$; that is, iff X and Y are independent.
\square Corollary: Conditioning reduces entropy. $\mathrm{I}(X ; Y) \geq 0 \rightarrow \mathrm{H}(X) \geq \mathrm{H}(X \mid Y)$.
\square Comment: We often use this corollary in proofs.

Mutual Information Concavity and Convexity Motivation

\square Channel capacity and its computation

- Maximize mutual information over input probability distribution
- Maximization problems are better-behaved for concave functions
- To show: mutual information is concave in the input probability distribution
\square Rate-distortion functions and their computation
- Minimize mutual information over channel transition probabilities
- Minimization problems are better-behaved for convex functions
- To show: mutual information is convex in the channel probabilities
\square Computations and properties of mutual information in multiterminal information theory
- Current research problems

Mutual Information

\square View mutual information as a function of $p(x)$ and of $p(y \mid x)$. Then mutual information is

- a concave function of $p(x)$ (for $p(y \mid x)$ fixed) and
- a convex function of $p(y \mid x)$ (for $p(x)$ fixed).
\square Proofs follows from concavity of entropy and convexity of relative entropy.

$$
\begin{array}{ll}
I(X ; Y)=H(Y)-\sum_{x \in X} p(x) H(Y \mid X=x) & \text { Concavity of } H(Y) \rightarrow \text { concavity wrt } p(x) \\
I(X ; Y)=D(p(x, y) \| p(x) p(y)) & \\
\text { Consider } p(y \mid x)=\lambda p_{1}(y \mid x)+(1-\lambda) p_{2}(y \mid x) \\
p(x, y)=p(x)\left[\lambda p_{1}(y \mid x)+(1-\lambda) p_{2}(y \mid x)\right] & \\
=\lambda p_{1}(x, y)+(1-\lambda) p_{2}(x, y) & \begin{array}{l}
\text { Convexity of relative entropy } \\
p(y)=\lambda p_{1}(y)+(1-\lambda) p_{2}(y) \\
D(p(x, y) \| p(x) p(y)) \leq \lambda D\left(p_{1}(y \mid x) p(x) \| p(x) p_{1}(y)\right)+(1-\lambda) D\left(p_{2}(x, y) \| p(x) p_{2}\left(y_{4}\right)\right) \\
\text { J. A. O'Sullivan, ESE 523, Lecture 2-6 }
\end{array}
\end{array}
$$

Data Processing Inequality

\square Definition: The random variables X, Y, and Z form a Markov chain in that order if $p(z \mid x, y)=p(z \mid y)$.
\square Then $p(x, y, z)=p(x) p(y \mid x) p(z \mid y)$. Also, X and Z are conditionally independent given Y.

$$
p(x, z \mid y)=\frac{p(x, y) p(z \mid y)}{p(y)}=p(x \mid y) p(z \mid y)
$$

\square Write $X \rightarrow Y \rightarrow Z$.

Data Processing Inequality

\square Theorem: If $X \rightarrow Y \rightarrow Z$, then $\mathrm{I}(X ; Y) \geq \mathrm{I}(X ; Z)$.
\square Note that this says Y gives more information about X than Z does.
\square Proof: $I(X ; Y, Z)=I(X ; Y)+I(X ; Z \mid Y)$

$$
=I(X ; Z)+I(X ; Y \mid Z)
$$

\square But $\mathrm{I}(X ; Z \mid Y)=0$, so $\mathrm{I}(X ; Y) \geq \mathrm{I}(X ; Z)$.
\square Comment: $H(X)-H(X \mid Y) \geq H(X)-H(X \mid Z)$

$$
H(X \mid Z) \geq H(X \mid Y)
$$

Chapter 3:

Asymptotic Equipartition Property

\square Strong law of large numbers \rightarrow weak law
\square Asymptotic equipartition property (AEP)

- All highly likely sequences are equally likely
- The set of highly likely sequences is the typical set
- The cardinality of the typical set is determined by entropy
\square Data compression result:
- Number of bits required to represent sequences on average equals entropy times the length of the sequence
- Number of bits per symbol, on average, equals entropy

(Strong Law of Large Numbers)

\square Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of i.i.d. RVs. Let $f: \mathcal{X} \rightarrow \mathcal{R}$ be an arbitrary function such that $\mathrm{E}[f(X) \mid]$ is finite. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left[\sum_{i=1}^{n} f\left(X_{i}\right)\right]=E[f(X)]
$$

with probability one. If the variance of $f(X)$ is finite, this convergence is in the mean also.
\square Comment: In either event, we get convergence in probability

$$
P\left(\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-E[f(X)]\right|>\varepsilon\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

In fact (3.1) $P\left(\left\lvert\, \frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-E[f(X)]>\varepsilon\right.\right) \leq \frac{\sigma^{2}}{n \varepsilon^{2}}$ where $\sigma^{2}=\underset{47}{\operatorname{var} f(X)}$

Theorem

\square If $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. with distribution $p(x)$, then

$$
-\frac{1}{n} \log p\left(X_{1}, X_{2}, \ldots, X_{n}\right) \rightarrow H(X) \text { in probability. }
$$

\square Proof: $p\left(X_{l}, X_{2}, \ldots, X_{n}\right)=p\left(X_{l}\right) p\left(X_{2}\right) \ldots p\left(X_{n}\right)$
Set $f(x)=-\log p(x)$ in the previous theorem.

$$
E[f(X)]=E\left[\log \frac{1}{p(X)}\right]=H(X) .
$$

Comment: Again $-\log p(x)$ is a function of the realization.

Typical Sets

\square Definition: The typical set is

$$
\mathcal{A}_{\varepsilon}^{(n)}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{X}^{n}:\left|-\frac{1}{n} \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right)-H(X)\right| \leq \varepsilon\right\}
$$

\square Comment: This is the set of sequences whose normalized log-probability is close to entropy.

- Theorem

$$
\begin{aligned}
& 2^{-n(H(X)+\varepsilon)} \leq p(x) \leq 2^{-n(H(X)-\varepsilon)} \text { for } x \in \mathcal{A}_{\varepsilon}^{(n)} \\
& P\left\{X \in \mathcal{A}_{\varepsilon}^{(n)}\right\}>1-\varepsilon \text { for } n \text { sufficiently large } \\
& \left|\mathcal{A}_{\varepsilon}^{(n)}\right| \leq 2^{n(H(X)+\varepsilon)} \\
& \left|\mathcal{A}_{\varepsilon}^{(n)}\right| \geq(1-\varepsilon) 2^{n(H(X)-\varepsilon)} \text { for } n \text { sufficiently large }
\end{aligned}
$$

Typical Sets

\square Definition: The typical set is

$$
\mathcal{A}_{\varepsilon}^{(n)}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{X}^{n}:\left|-\frac{1}{n} \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right)-H(X)\right| \leq \varepsilon\right\}
$$

\square Comment: This is the set of sequences whose normalized log-probability is close to entropy.
\square Theorem

$$
\begin{aligned}
& 2^{-n(H(X)+\varepsilon)} \leq p(x) \leq 2^{-n(H(X)-\varepsilon)} \text { for } x \in \mathcal{A}_{\varepsilon}^{(n)} \\
& P\left\{X \in \mathcal{A}_{\varepsilon}^{(n)}\right\}>1-\delta \text { for } n \text { sufficiently large } \\
& \left|\mathcal{A}_{\varepsilon}^{(n)}\right| \leq 2^{n(H(X)+\varepsilon)} \\
& \left|\mathcal{A}_{\varepsilon}^{(n)}\right| \geq(1-\delta) 2^{n(H(X)-\varepsilon)} \text { for } n \text { sufficiently large }
\end{aligned}
$$

Proof

\square First line is definition of typical set.
\square Second line follows from previous theorem.
\square Third and fourth lines:

$$
\begin{aligned}
1 & =\sum_{x \in X^{n}} p(x) \geq \sum_{x \in \mathcal{A}_{\varepsilon}^{(n)}} p(x) \\
& \geq \sum_{x \in \mathcal{A}_{\varepsilon}^{(n)}} 2^{-n(H(X)+\varepsilon)}=\left|A_{\varepsilon}^{(n)}\right| 2^{-n(H(X)+\varepsilon)} \\
& \Rightarrow\left|\mathcal{A}_{\varepsilon}^{(n)}\right| \leq 2^{n(H(X)+\varepsilon)}
\end{aligned}
$$

For the fourth line,
$P\left\{X \in \mathcal{A}_{\varepsilon}^{(n)}\right\}>1-\delta$ for n sufficiently large \Rightarrow

$$
1-\delta<\sum_{x \in \mathcal{A}_{\varepsilon}^{(n)}} p(x) \leq\left|\mathcal{A}_{\varepsilon}^{(n)}\right| 2^{-n(H(X)-\varepsilon)}
$$

Typical Sets and the AEP

\square Theorem $2^{-n(H(X)+\varepsilon)} \leq p(x) \leq 2^{-n(H(X)-\varepsilon)}$ for $x \in \mathcal{A}_{\varepsilon}^{(n)}$
$P\left\{X \in \mathcal{A}_{\varepsilon}^{(n)}\right\}>1-\delta$ for n sufficiently large
$\left|\mathcal{A}_{\varepsilon}^{(n)}\right| \leq 2^{n(H(X)+\varepsilon)}$
$\left|\mathcal{A}_{\varepsilon}^{(n)}\right| \geq(1-\delta) 2^{n(H(X)-\varepsilon)}$ for n sufficiently large
\square Comments:

- The typical set has probability arbitrarily close to 1 .
- The log-cardinality of the typical set is upper bounded by entropy plus ε
- The log-cardinality is lower bounded by entropy minus ε (for n large enough)

$$
H(X)+\varepsilon \geq \frac{1}{n} \log \left|\mathcal{A}_{\varepsilon}^{(n)}\right| \geq H(X)-\varepsilon+\frac{1}{n} \log (1-\delta)=H(X)-\varepsilon^{\prime}
$$

Data Compression

\square Idea: Partition all outcomes X^{n} into the typical and nontypical sets for some ε. Design a reasonable code for the typical set and do anything else for the rest.
\square Definition: A binary code is a mapping from X^{n} to binary sequences.
\square Theorem: Let X_{i} be i.i.d. with probability distribution $p(x)$ and let $\varepsilon>0$. Then there exists a binary code that is one-to-one and

$$
E\left[\frac{1}{n} l\left(X^{n}\right)\right] \leq H(X)+\varepsilon \text { for } n \text { sufficiently large, }
$$

where $l(\mathbf{x})$ is the length of a binary codeword assigned to \mathbf{x}.

Proof

\square To every sequence in the typical set, assign a codeword of length less than or equal to $n(H(X)+\varepsilon)+1$.
\square To every sequence not in the typical set, assign a codeword of length less than or equal to $n \log |X|+1$
\square Then the expected length satisfies

$$
\begin{aligned}
E\left[\frac{1}{n} l\left(X^{n}\right)\right] & \leq H(X)+\varepsilon+\frac{1}{n}+\delta \log |X|+\frac{1}{n} \\
& =H(X)+\varepsilon^{\prime} \\
\varepsilon^{\prime} & =\varepsilon+\frac{2}{n}+\delta \log |X|
\end{aligned}
$$

Chapter 4 Outline

\square Entropy Rates of Stochastic Processes
\square Two expressions: equal for stationary processes
\square Markov chains

- entropy rates
\square Next Class: Markov chains
- decreasing conditional entropy
- second law of thermodynamics

Entropy Rates of a Stochastic Process

\square Entropy rates in bits per symbol
\square Stochastic process: $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ a random sequence X_{i} is a RV; $x_{i} \in \mathcal{X}$; possibly confusing notation $P\left(X_{i}=x_{i}\right)$
\square Structure of the random sequence must be assumed to make progress
\square Definition: A stochastic process $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is stationary if the joint distribution is invariant to shifts; for all $l \geq 0$,
$P\left\{X_{1}=\alpha, X_{2}=\beta, \ldots, X_{n}=\gamma\right\}=P\left\{X_{1+l}=\alpha, X_{2+l}=\beta, \ldots, X_{n+l}=\gamma\right\}$

Entropy Rates

\square Definition: The entropy rate of a stochastic process $\left\{X_{i}\right\}$ is

$$
H(X)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

when the limit exists.
\square Proposition: If X_{i} are i.i.d., then $H(X)=H\left(X_{1}\right)$
\square Proof: $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i}\right)=n H\left(X_{1}\right)$
\square Comments:

- If X_{i} are independent, but not identically distributed, the first equality holds. However the limit $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} H\left(X_{i}\right) \quad$ may or may not exist
- A second possible definition for entropy rate is $H^{\prime}(\mathcal{X})=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right)$, when the limit exists.

Entropy Rates

\square Theorem: For a stationary stochastic process, $H(X)$ and $H^{\prime}(X)$ exist and are equal.
\square Proof: There are three parts: $H^{\prime}(X)$ exists; a technical result (Cesáro mean); and $H(X)$ exists and equals $H^{\prime}(X)$.
$\square H^{\prime}(X)$ exists:

$$
\begin{aligned}
0 & \leq H\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots X_{1}\right) \\
& \leq H\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots X_{2}\right) \text { conditioning reduces entropy } \\
& =H\left(X_{n-1} \mid X_{n-2}, X_{n-3}, \ldots X_{1}\right) \text { by stationarity }
\end{aligned}
$$

\square Thus $H\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots X_{1}\right)$ is a nonincreasing sequence of nonnegative numbers. Thus it has a limit.

Proof continued

\square Cesáro mean: If $a_{n} \rightarrow a$ and $b_{n}=\left(a_{1}+a_{2}+\ldots a_{n}\right) / n$, then $b_{n} \rightarrow a$.
\square Completion:

$$
\begin{aligned}
\frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =\frac{1}{n} \sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, X_{i-2}, \ldots, X_{1}\right) \\
b_{n} & =\frac{1}{n} \sum_{i=1}^{n} a_{i}
\end{aligned}
$$

$$
\text { Thus, } H(X)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

$$
=\lim _{i \rightarrow \infty} H\left(X_{i} \mid X_{i-1}, X_{i-2}, \ldots, X_{1}\right)=H^{\prime}(X)
$$

Applications

\square All results from Chapter 3 hold in this context, including definitions of typical sets, the AEP, and the data compression.
\square Also

$$
\begin{aligned}
\frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =\frac{1}{n} \sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, X_{i-2}, \ldots, X_{1}\right) \\
& \geq H\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right) \\
\frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right) & \leq \frac{1}{n-1} H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)
\end{aligned}
$$

Outline September 15, 2011

\square Markov Chain Properties, Classification
\square Entropy rate of Markov chains
\square Markov chains

- Decreasing conditional entropy
- Second law of thermodynamics

Information Diversion of the Day

James Gleick: The Information: A History, a Theory, a Flood

- http://www.thedailybeast.com/articles/2011/ 03/01/the-information-by-james-gleick-review-by-nicholas-carr.html
- http://boingboing.net/2011/03/24/james-gleicks-tour-d.html
- http://www.nytimes.com/2011/03/20/books/ review/book-review-the-information-by-james-gleick.html?pagewanted=all
- http://around.com/the-information
\square The Information is so ambitious, illuminating and sexily theoretical that it will amount to aspirational reading for many of those who have the mettle to tackle it. Don't make the mistake of reading it quickly. Imagine luxuriating on a Wi-Fi-equipped desert island with Mr. Gleick's book, a search engine and no distractions. The Information is to the nature, history and significance of data what the beach is to sand.
- -Janet Maslin, The New York Times

Markov Chains

\square Definition: A stochastic process $\left\{X_{i}\right\}$ is a Markov chain if

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \ldots, X_{1}=x_{1}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right)
$$

\square For a Markov chain,

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \ldots p\left(x_{n} \mid x_{n-1}\right)
$$

\square Definition: A Markov chain is time-invariant if the transition probabilities do no depend on n.

$\square X_{n}$ is called the state at time n.
If $|X|=m$ is finite, the probability transition matrix is
$\mathbf{P}=\left\lfloor P\left(X_{n+1}=x_{j} \mid X_{n}=x_{i}\right)\right\rfloor$
$\mathbf{p}_{n}=\left[\begin{array}{llll}P\left(X_{n}=x_{1}\right) & P\left(X_{n}=x_{2}\right) & \ldots & P\left(X_{n}=x_{m}\right)\end{array}\right]$
$\mathbf{p}_{n+1}=\mathbf{p}_{n} \mathbf{P}$
If $\mathbf{p}_{n+1}=\mathbf{p}_{n}=\mu$, then μ is a stationary distribution.
If for all $n \geq 1, \mathbf{p}_{n}=\mu$, then the Markovchain is a stationary stochastic process.

Markov Chain Properties

\square Definition: If for all i and j, there is a k such that

$$
\left(\mathbf{P}^{k}\right)_{i, j}>0
$$

the Markov chain is irreducible (connected). If there is a k such that

$$
\left(\mathbf{P}^{k}\right)_{i, j}>0
$$

for all i and j, the Markov chain is strongly connected
(irreducible and aperiodic).
\square Comment: strongly connected \rightarrow irreducible (connected)

Three-State

$$
\mathbf{P}=\left[\begin{array}{ccc}
0 & q & 1-q \\
1-r & 0 & r \\
1 & 0 & 0
\end{array}\right]
$$

Example

$\square \underset{q}{q=r=1 \rightarrow \text { irreducible, }} \quad q=r=1 \Rightarrow \mathbf{P}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] ; \mathbf{P}^{2}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$; periodic with period 3
$\square q=1 ; r=0.5 \rightarrow$
irreducible and aperiodic (strongly

$$
\mathbf{P}^{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ; \quad \mathbf{P}^{4}=\mathbf{P}
$$

$$
q=1 ; r=\frac{1}{2} \Rightarrow \mathbf{P}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0
\end{array}\right] ; \mathbf{P}^{2}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 1 & 0
\end{array}\right] ;
$$

$$
\mathbf{P}^{3}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right] ; \mathbf{P}^{4}=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right] ; \mathbf{P}^{5}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{3}{8} & \frac{1}{2} & \frac{1}{8} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right]_{\overline{\mathrm{CB}}}
$$

Two-State Example

Let $\quad \mathbf{P}=\left[\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right]$
\square If either $\alpha=0$ or $\beta=0$, the Markov chain is not connected. For $\alpha \neq 0$ and $\beta \neq 0$, the stationary distribution is $\mu=\left[\begin{array}{ll}\frac{\beta}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta}\end{array}\right]$
\square If $\alpha=\beta=1$, the Markov chain is connected, but not strongly connected.

Entropy rates of Markov chains

\square Theorem: Let $\left\{X_{i}\right\}$ be a stationary Markov chain. Then the entropy rate is $H(X)=-\sum_{i} \sum_{j} \mu_{i} P_{i j} \log P_{i j}$

$$
\begin{aligned}
H(X) & =\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) \\
& =H\left(X_{n} \mid X_{n-1}\right) \\
& =\sum_{i} P\left(X_{n-1}=x_{i}\right)\left[-\sum_{j} P\left(X_{n}=x_{j} \mid X_{n-1}=x_{i}\right) \log P\left(X_{n}=x_{j} \mid X_{n-1}=x_{i}\right)\right] \\
& =-\sum_{i} \sum_{j} \mu_{i} P_{i j} \log P_{i j}
\end{aligned}
$$

Entropy rates of Markov chains

\square Theorem: Let $\left\{X_{i}\right\}$ be a time-invariant Markov chain that is irreducible and aperiodic. Then the entropy rate is
$H(X)=-\sum \sum \mu_{i} P_{i j} \log P_{i j}$ where μ is the stationary distribution.
\square Proof: $H(X)=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right)$

$$
=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}\right)
$$

$$
=\lim _{n \rightarrow \infty} \sum_{i} P\left(X_{n-1}=x_{i}\right)\left[-\sum_{j} P_{i j} \log P_{i j}\right]
$$

Proof continued

All that remains to be shown is that

$$
\left\{\begin{array}{l}
P\left(X=x_{i}\right) \rightarrow \mu_{i} \text { as } n \rightarrow \infty, \text { or } \\
\mathbf{p}_{n} \rightarrow \mu
\end{array}\right.
$$

Note that

$$
\mathbf{p}_{n}=\mathbf{p}_{n-1} \mathbf{P} \text { and } \mu=\mu \mathbf{P} . \text { Thus, }
$$

The inequality is the log sum inequality; get equality iff $\mu_{i} P_{i j}=p_{n-l}\left(x_{i}\right) P_{i j}$ for all i and j, or $\mu_{i}=p_{n-1}\left(x_{i}\right)$ for P strongly connected.
This is an informationtheoretic proof of convergence.

$$
\begin{aligned}
& D\left(\mu \| \mathbf{p}_{n}\right)=\sum_{j=1}^{m} \mu_{j} \log \frac{\mu_{j}}{p_{n}\left(x_{j}\right)} \\
& =\sum_{j=1}^{m}\left(\sum_{i=1}^{m} \mu_{i} P_{i j}\right) \log \frac{\left(\sum_{i=1}^{m} \mu_{i} P_{i j}\right)}{\left(\sum_{i=1}^{m} p_{n-1}\left(x_{i}\right) P_{i j}\right)} \\
& \leq \sum_{j=1}^{m} \sum_{i=1}^{m} \mu_{i} P_{i j} \log \frac{\mu_{i} P_{i j}}{p_{n-1}\left(x_{i}\right) P_{i j}}=D\left(\mu \| \mathbf{p}_{n-1}\right)
\end{aligned}
$$

Markov Chains and Time

- Let $X_{1}, X_{2}, \ldots, X_{n} \ldots$ be a Markov chain. Suppose that $p\left(x_{n} \mid x_{n-1}\right)$ does not depend on n (time). Let μ_{n} be a distribution at time n. Then

1. The relative entropy between two distributions decreases with n
2. The relative entropy between a distribution and a stationary distribution decreases with n
3. Entropy increases with n if the stationary distribution is uniform ($2^{\text {nd }}$ Law of Thermodynamics)

The relative entropy between two distributions decreases with n.

Suppose two possible probability distributions at time n are given
$p_{n}(i)=P\left(X_{n}=x_{i}\right) \quad$ and $\quad \pi_{n}(i)$.
There are two corresponding probability distributions at time $n+1$
$p_{n+1}(j)=\sum_{i=1}^{m} p_{n}(i) P_{i j} \quad$ and $\quad \pi_{n+1}(j)=\sum_{i=1}^{m} \pi_{n}(i) P_{i j}$.
The goal is to prove that $D\left(p_{n+1} \| \pi_{n+1}\right) \leq D\left(p_{n} \| \pi_{n}\right)$. To show this,
$D\left(p_{n}(i) P_{i j} \| \pi_{n}(i) P_{i j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{m} p_{n}(i) P_{i j} \log \frac{p_{n}(i) P_{i j}}{\pi_{n}(i) P_{i j}}$
$=\sum_{i=1}^{m}\left[\left(\sum_{j=1}^{m} P_{i j}\right) p_{n}(i) \log \frac{p_{n}(i)}{\pi_{n}(i)}\right]=D\left(p_{n} \| \pi_{n}\right)$
$D\left(p_{n}(i) P_{i j} \| \pi_{n}(i) P_{i j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{m} p_{n+1}(j) \frac{p_{n}(i) P_{i j}}{p_{n+1}(j)}\left[\log \frac{p_{n}(i) P_{i j} / p_{n+1}(j)}{\pi_{n}(i) P_{i j} / \pi_{n+1}(j)}+\log \frac{p_{n+1}(j)}{\pi_{n+1}(j)}\right]$
$\geq D\left(p_{n+1} \| \pi_{n+1}\right)$

The relative entropy between a distribution and a stationary distribution decreases with n

Let $\pi_{n}(i)=\mu_{i}$ be the stationary distribution. Then
$\pi_{n+1}(j)=\sum_{i=1}^{m} \mu_{i} P_{i j}=\mu_{j}$ and from the previous
result,
$D\left(p_{n+1} \| \mu\right) \leq D\left(p_{n} \| \mu\right)$.

$2^{\text {nd }}$ Law of Thermodynamics:

Entropy increases with n if the stationary distribution is uniform

Let $\pi_{n}(i)=\mu_{i}=\frac{1}{|\mathcal{X}|}$ be the stationary distribution. Then
$D\left(p_{n} \| \mu\right)=\sum_{i=1}^{|X|} p_{n}(i) \log \frac{p_{n}(i)}{1 /|X|}=\log |X|-H\left(p_{n}\right)$
$D\left(p_{n+1} \| \mu\right) \leq D\left(p_{n} \| \mu\right) \Rightarrow H\left(p_{n+1}\right) \geq H\left(p_{n}\right)$

