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Course Description 
 Textbook:  Thomas M. Cover and Joy A. 

Thomas, Elements of Information Theory, 
Second Edition, New York: Wiley and Sons, 
2006.  

 Time and place:  TuTh 8:30-10:00 a.m., 
Green Hall 0159 

 Office hours:  TBD 
 Catalog Description 

 Discrete source and channel model, definition 
of information rate and channel capacity, 
coding theorems for sources and channels, 
encoding and decoding of data for transmission 
over noisy channels. Corequisite: ESE 520 or 
equivalent.  

 Problem Set Solutions 
 Solutions will be made available. Use of back 

files of any kind in the solution of problem sets 
is strictly forbidden. See Course Policy 
Statement.  
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Tentative Schedule 
 Chapter 1 and preview, Lecture 1  
 Chapter 2: Entropy, relative entropy, and mutual 

information 3 lectures  
 Chapter 3: Asymptotic equipartition property, 1 lecture  
 Chapter 4: Entropy rates of a stochastic process, 2 lectures  
 Chapter 5: Data compression, 3 lectures  
 Chapter 6: Gambling and data compression, 2 lectures  
 Chapter 7: Channel capacity, 3 lectures  
 Chapter 8: Differential entropy, 1 lecture  
 Chapter 12: Maximum entropy, 1 lecture  
 Chapter 9: Gaussian channel capacity, 2 lectures  
 Chapter 10: Rate-distortion theory, 2 lectures  
 Chapter 11: Information theory and statistics, 4 lectures  
 Chapter 13: Universal source coding, 2 lectures  
 Chapter 15: Network information theory, 1 lecture 
 Total:  28 lectures?! 
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Schedule Comments 

 Mostly we work straight through 
the book. We skip some sections.  

 Chapter 6: Gambling is fun 

 Chapter 14: Kolmogorov 
complexity is hard  

 Chapter 15:  Network 
information theory continues to 
be a hot research area  
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J. L. Kelly, Jr.; 
See also Ed Thorp 

Andrey Kolmogorov 



What is information theory? 

 Information Theory contributes to and draws 
results from a number of other fields including:  

 Communication Theory  

 Probability Theory  

 Statistics: Estimation and Detection Theory  

 Physics  

 Computer Science  

 Economics  
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 Shannon 1948.  The Mathematical Theory of 
Communication.  BSTJ. 

 Channel capacity:  fundamental bound on bits per second; 
channel coding deals with approaching this rate 

 Source encoding:  bound on number of bits to compress a 
source 

 Rate-distortion theory:  bound on number of bits to 
compress a source subject to a distortion constraint 

 Separation theorem 

Origins in Communication  Theory 

Source 
Channel 
Encoder 

Source 
Encoder 

User 
Channel 
Decoder 

Source 
Decoder 

Channel 

Channel 
Modulator 

Channel 
Demodulator 
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Complexity Theory 

 Time-complexity 

 Space-complexity 

 Kolmogorov complexity 

 More closely related to information theory and 
equals the length of the smallest program that can 
be written to reproduce the data.  

 This is not computable. 

 For random data, this quantity is approximately 
equal to the entropy.  
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Physics 

 In statistical physics (statistical mechanics), the 
fundamental quantities studied are energy and 
entropy 

 Second Law:  Entropy of systems must increase 
(subject to other constraints) 

 Quantum Information Theory 

 Information theory and black holes: apparently 
information is preserved in the event horizon 
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Statistics 

 The Fisher information determines a lower bound 
on the variance of any estimator. 

 Relative entropy determines the exponent in the 
probability of error in optimal detection 
algorithms as the data set grows.  

 Large deviations quantifies the probability of rare 
events. 
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Combinatorics 

 Given a discrete alphabet with m elements 

 n independent and identically distributed (i.i.d.) 

elements are drawn (sampling with replacement) 

 How many ways are there to get k1, k2, … km of the 
elements (k1+k2+ … +km=n)? 

 Call this a type.  What is the probability of getting 
one outcome in such a type? 

 What is the probability of getting a type? 

 What type is most likely? 

 What is the probability of getting a type far from 
the most likely? 
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Combinatorics:  Answers part 1 

 How many ways are 
there to get k1, k2, … km 

of the elements 
(k1+k2+ … +km=n)? 

 What is the probability 
of getting one 
outcome in such a 
type? 

 Lemma:  
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Combinatorics:  Answers part 1 
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• Entropy of empirical distribution 
determines the number of 
elements in a type (exponent is 
the entropy) 

• Probability of one outcome is 
determined by the type and the 
probability of each outcome 

 How many ways are 
there to get k1, k2, … km 

of the elements 
(k1+k2+ … +km=n)? 

 What is the probability 
of getting one 
outcome in such a 
type? 
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Combinatorics :  Answers part 2 
 What is the probability of 

getting a type?  Answer:  
determined by relative entropy 
between type and probability 

 What type is most likely? 
Answer:  p=q 

 What is the probability of 
getting a type far from the 
most likely?  Answer:  
determined by the relative 
entropy to the closest type in 
the unlikely set 
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• Relative entropy between 
empirical distribution and 
probability distribution determines 
probability of a type (exponential 
in relative entropy) 



Combinatorics :  Experiments 

 Bernoulli p (binary, 
P(Xi=1)=p 

 50 i.i.d. draws 

 Repeat 1,000,000 
times 

 See Matlab Code 
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Matlab Code 

 
function [histout]=binhist(p,n,m) 
%  histout=binhist(p,n,m) 
%  p=Bernoulli probability 
%  n=length of vector 
%  m=number of trials 
%  Program runs m trials and compares the normalized log histogram 
%  to the relative entropy that bounds the probability of large devaiations. 
% 
%   This file was created by Joseph A. O'Sullivan 
%   August 28, 2003 
%   copyright 2003 
x=rand(n,m); 
y=(sign(x-1+p)+1)/2; 
ky=sum(y,1)/n; 
q=0:1/n:1; 
histout=hist(ky,q); 
figure 
subplot(2,2,1) 
plot([1:m],ky) 
xlabel('Trial Number') 
ylabel('Fraction of Successes') 

continued … 
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Matlab Code 

 
subplot(2,2,2) 
plot(q,histout) 
xlabel('Fraction of Successes') 
ylabel('Histogram') 
titlestring=['Probability: ', num2str(p), ' Length:  ', num2str(n), ' Trials:  ', num2str(m)]; 
title(titlestring) 
subplot(2,2,3) 
loghist=max(min(log2(p),log2(1-p)),log2(histout/m)/n); 
plot(q,loghist) 
xlabel('Fraction of Successes') 
ylabel('Normalized Log-Histogram') 
subplot(2,2,4) 
dpq=q(2:n).*log2(q(2:n)/p)+(1-q(2:n)).*log2((1-q(2:n))/(1-p)); 
dpq=[-log2(1-p) dpq]; 
dpq=[dpq -log2(p)]; 
plot(q,dpq,'r') 
hold on 
plot(q,-loghist) 
xlabel('Fraction of Successes') 
ylabel('D(q||p) and Negative Log-Histogram') 
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Example Result 
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 Histogram of 
fraction of 
successes looks 
reasonable 

 Probability of 
large deviations is 
exponentially 
small 
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