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Course Description 
 Textbook:  Thomas M. Cover and Joy A. 

Thomas, Elements of Information Theory, 
Second Edition, New York: Wiley and Sons, 
2006.  

 Time and place:  TuTh 8:30-10:00 a.m., 
Green Hall 0159 

 Office hours:  TBD 
 Catalog Description 

 Discrete source and channel model, definition 
of information rate and channel capacity, 
coding theorems for sources and channels, 
encoding and decoding of data for transmission 
over noisy channels. Corequisite: ESE 520 or 
equivalent.  

 Problem Set Solutions 
 Solutions will be made available. Use of back 

files of any kind in the solution of problem sets 
is strictly forbidden. See Course Policy 
Statement.  
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Tentative Schedule 
 Chapter 1 and preview, Lecture 1  
 Chapter 2: Entropy, relative entropy, and mutual 

information 3 lectures  
 Chapter 3: Asymptotic equipartition property, 1 lecture  
 Chapter 4: Entropy rates of a stochastic process, 2 lectures  
 Chapter 5: Data compression, 3 lectures  
 Chapter 6: Gambling and data compression, 2 lectures  
 Chapter 7: Channel capacity, 3 lectures  
 Chapter 8: Differential entropy, 1 lecture  
 Chapter 12: Maximum entropy, 1 lecture  
 Chapter 9: Gaussian channel capacity, 2 lectures  
 Chapter 10: Rate-distortion theory, 2 lectures  
 Chapter 11: Information theory and statistics, 4 lectures  
 Chapter 13: Universal source coding, 2 lectures  
 Chapter 15: Network information theory, 1 lecture 
 Total:  28 lectures?! 
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Schedule Comments 

 Mostly we work straight through 
the book. We skip some sections.  

 Chapter 6: Gambling is fun 

 Chapter 14: Kolmogorov 
complexity is hard  

 Chapter 15:  Network 
information theory continues to 
be a hot research area  
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J. L. Kelly, Jr.; 
See also Ed Thorp 

Andrey Kolmogorov 



What is information theory? 

 Information Theory contributes to and draws 
results from a number of other fields including:  

 Communication Theory  

 Probability Theory  

 Statistics: Estimation and Detection Theory  

 Physics  

 Computer Science  

 Economics  
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 Shannon 1948.  The Mathematical Theory of 
Communication.  BSTJ. 

 Channel capacity:  fundamental bound on bits per second; 
channel coding deals with approaching this rate 

 Source encoding:  bound on number of bits to compress a 
source 

 Rate-distortion theory:  bound on number of bits to 
compress a source subject to a distortion constraint 

 Separation theorem 

Origins in Communication  Theory 

Source 
Channel 
Encoder 

Source 
Encoder 

User 
Channel 
Decoder 

Source 
Decoder 

Channel 

Channel 
Modulator 

Channel 
Demodulator 
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Complexity Theory 

 Time-complexity 

 Space-complexity 

 Kolmogorov complexity 

 More closely related to information theory and 
equals the length of the smallest program that can 
be written to reproduce the data.  

 This is not computable. 

 For random data, this quantity is approximately 
equal to the entropy.  
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Physics 

 In statistical physics (statistical mechanics), the 
fundamental quantities studied are energy and 
entropy 

 Second Law:  Entropy of systems must increase 
(subject to other constraints) 

 Quantum Information Theory 

 Information theory and black holes: apparently 
information is preserved in the event horizon 
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Statistics 

 The Fisher information determines a lower bound 
on the variance of any estimator. 

 Relative entropy determines the exponent in the 
probability of error in optimal detection 
algorithms as the data set grows.  

 Large deviations quantifies the probability of rare 
events. 
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Combinatorics 

 Given a discrete alphabet with m elements 

 n independent and identically distributed (i.i.d.) 

elements are drawn (sampling with replacement) 

 How many ways are there to get k1, k2, … km of the 
elements (k1+k2+ … +km=n)? 

 Call this a type.  What is the probability of getting 
one outcome in such a type? 

 What is the probability of getting a type? 

 What type is most likely? 

 What is the probability of getting a type far from 
the most likely? 
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Combinatorics:  Answers part 1 

 How many ways are 
there to get k1, k2, … km 

of the elements 
(k1+k2+ … +km=n)? 

 What is the probability 
of getting one 
outcome in such a 
type? 

 Lemma:  
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Combinatorics:  Answers part 1 
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• Entropy of empirical distribution 
determines the number of 
elements in a type (exponent is 
the entropy) 

• Probability of one outcome is 
determined by the type and the 
probability of each outcome 

 How many ways are 
there to get k1, k2, … km 

of the elements 
(k1+k2+ … +km=n)? 

 What is the probability 
of getting one 
outcome in such a 
type? 
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Combinatorics :  Answers part 2 
 What is the probability of 

getting a type?  Answer:  
determined by relative entropy 
between type and probability 

 What type is most likely? 
Answer:  p=q 

 What is the probability of 
getting a type far from the 
most likely?  Answer:  
determined by the relative 
entropy to the closest type in 
the unlikely set 
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• Relative entropy between 
empirical distribution and 
probability distribution determines 
probability of a type (exponential 
in relative entropy) 



Combinatorics :  Experiments 

 Bernoulli p (binary, 
P(Xi=1)=p 

 50 i.i.d. draws 

 Repeat 1,000,000 
times 

 See Matlab Code 
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Matlab Code 

 
function [histout]=binhist(p,n,m) 
%  histout=binhist(p,n,m) 
%  p=Bernoulli probability 
%  n=length of vector 
%  m=number of trials 
%  Program runs m trials and compares the normalized log histogram 
%  to the relative entropy that bounds the probability of large devaiations. 
% 
%   This file was created by Joseph A. O'Sullivan 
%   August 28, 2003 
%   copyright 2003 
x=rand(n,m); 
y=(sign(x-1+p)+1)/2; 
ky=sum(y,1)/n; 
q=0:1/n:1; 
histout=hist(ky,q); 
figure 
subplot(2,2,1) 
plot([1:m],ky) 
xlabel('Trial Number') 
ylabel('Fraction of Successes') 

continued … 
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Matlab Code 

 
subplot(2,2,2) 
plot(q,histout) 
xlabel('Fraction of Successes') 
ylabel('Histogram') 
titlestring=['Probability: ', num2str(p), ' Length:  ', num2str(n), ' Trials:  ', num2str(m)]; 
title(titlestring) 
subplot(2,2,3) 
loghist=max(min(log2(p),log2(1-p)),log2(histout/m)/n); 
plot(q,loghist) 
xlabel('Fraction of Successes') 
ylabel('Normalized Log-Histogram') 
subplot(2,2,4) 
dpq=q(2:n).*log2(q(2:n)/p)+(1-q(2:n)).*log2((1-q(2:n))/(1-p)); 
dpq=[-log2(1-p) dpq]; 
dpq=[dpq -log2(p)]; 
plot(q,dpq,'r') 
hold on 
plot(q,-loghist) 
xlabel('Fraction of Successes') 
ylabel('D(q||p) and Negative Log-Histogram') 
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Example Result 
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 Histogram of 
fraction of 
successes looks 
reasonable 

 Probability of 
large deviations is 
exponentially 
small 
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