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What is Network Information Theory? 

We have come to know that Information Theory is the branch of probability theory which 

includes the application of communication systems. This branch of mathematics and 

computer science was introduced by communication scientist studying statistical structures 

of electrical communication equipment. So again we pose the question, what is Network 

Information Theory? It involves the fundamental limits of communication and Information 

Theory in networks with multiple senders and receivers and optimal coding techniques and 

protocols which achieve these limits. It extends Shannon’s point-to-point information theory 

to networks with several sources and destinations. An important goal is to characterize the 

capacity region or optimal rate which is the set rate of the ordered list of elements in which 

there exist codes with reliable transmissions. These rates of tuples are known to be 

achievable. Although a complete theory is yet to be developed and the characterization of the 

regions of capacity is generally a difficult problem there have been positive results for 

multiple classes of networks. Computer networks are examples of large communication 

networks.  

Even within a lone computer there are various computers that talk to each other. These large 

networks coupled with the advent of the internet and supported by advancements in 

semiconductor technology, error correction, compression, computer science and signal 

processing revived an interest in a subject which was somewhat dormant through the period 

from the mid 1980’s up to the mid 1990’s. Since the mid 1990’s there has been a large scale 

interest in the activities of this subject. Not only has there been progress made on past 

problems, there has also been work dealing with new network models, scaling laws and 

capacity approximations and fresh approaches to coding for networks and subjects 

intersecting information theory and networking. 

 In Networking Information Theory successive refinement of information, successive 

cancelation decoding, multiple description and network coding are some of the 

methodologies expounded and implemented in the real world of networks. A good example 

of a multi-users would consist of U stations or users, where U = 1, 2… u, wishing to 

communicate with a familiar satellite over a familiar channel, known as a multiple access 

channel. The questions posed are, what rates of communication are achievable 

simultaneously? How do the users cooperate with each other when sending information to 

receiver? What are the limitations of interference among the users placed on the total rate? 

There are satisfying answers for the above questions. Reversing the network we can consider 

another example, one television station sending information to U TV receivers. The 

questions that arise here are what rates of information are sent to the different receivers? 

How does the sender encode information meant for different receivers in a signal that is 

common?   



The answers are only known in special cases for this contrast channel. There are also other 

channels to consider as special cases of general communication network consisting of N 

nodes (connection points trying to communicate with one another). Those channels are the 

relay channels, two-way channels and interference channels. For these channels there are 

only some answers to the questions regarding the coding strategies and communication rates. 

Non-deterministic sources are associated with some of the nodes in the network. If there are 

independent sources then the nodes sends independent messages. We also must allow the 

source to be dependent also.  

This brings to light additional questions, with the channel transition function and the 

probability distribution; can we transmit these sources over the channel and recover the 

sources at the destination with suitable distortion? How can we beneficially use the 

dependence to diminish the sum of information transmitted? We will consider some of these 

network communication special cases. We first will look at the problem of source coding 

when the channels are noiseless and there is no interference. In these cases the problem is 

reduced to locating a set of rates that are associated with the sources in which the required 

sources are decoded at the destination with a low error probability.  

Slepian-Wolf 

We now introduce the Slepian-Wolf source.  Slepian and Wolf were two information theory 

researchers.  

 

David Slepian                                         Jack K. Wolf 

                                     

David Slepian (June 30, 1923 – November 29, 2007) was an American mathematician born 

in Pittsburgh, Pennsylvania.  Jack Kein Wolf (March 14, 1935 – May 12, 2011) was an 

American researcher in information theory and coding theory and was born in Newark, New 

Jersey. Slepian and Wolf worked together to discover a fundamental result in the distributed 

source coding.  



The Slepian-Wolf source coding problem is the simplest case for source distribution coding. 

This involves having two sources that are separately encoded, but encoded at the common 

node. This example is shown in the figure below. 

 

For two correlated streams, such systems employ the Slepian-Wolf coding which is a form of 

distributed source coding. Compared to an encoder that assumes that the data streams are 

independent, the separated encoders can achieve better compression rates by making use of 

the fact that the data systems are complementary. A surprising result is that the Slepian-Wolf 

coding can achieve the same compression rate as an optimal single encoder that has all 

correlated data streams as inputs. Even when the encoder has access to multiple correlated 

data streams, the Slepian-Wolf theorem has practical applications. For example, in order to 

diminish the complexity of image and video compression for cell phones, the stream may be 

encoded separately without reducing the compression rate. 

Slepian-Wolf Theorem 

The systems effectiveness is measured by the rates of encoded bits per source symbol of the 

compressed data streams which are outputs by the encoders. The Slepian-Wolf Theorem 

defines the set of rates that allows the decoder to reconstruct the correlated data streams with 

an arbitrarily small probability of error. Taking another look at the above figure, encoder 1, 

observes X1 and sends a message to the decoder that is a number from the set {1, 2, 3,.........  

2 nR1}. Encoder 2, which observes X2, sends a message to the decoder that is a number set {1, 

2…2nR2}. The outputs from the two encoders are from the inputs to the single decoder. Upon 

receiving these two inputs, the decoder outputs two n-vectors X*1 and X*2 which are 

estimates of X1 and X2. We are interested in those systems which the probability X*1 does 

not equal X1 or X*2 does not equal X2 can be made small as desired by choosing a 

sufficiently large n. This system is known as an admissible system and the rate pair (R1, R2) 

for and admissible system is an admissible rate pair. The set closure of all the admissible rate 

pairs is known as the admissible rate region. We can obtain the following entropies for the 

pair of variables X1 and X2 with joint probability distributions of P (X1 = x1, X2 = x2): 

 

H (X1, X2), H (X1|X2), H (X2|X1), H(X1) and H(X2) 



The admissible rate region, which we have indicated to be the set closure of all admissible 

rate pairs, is the set of points (R1, R2) satisfying three inequalities:  

R1 ≥ H (X1 | X2) + 

R2  ≥ H (X2 | X1) 

R1 +  R2  ≥ H (X2 , X1) 

 

The admissible rate region is shown in the figure below.  

 

 

The importance of the Slepian-Wolf Theorem is realized by the comparison with the entropy 

bound for single source compression. Separated encoders that ignore the source correlation 

achieve rates only of R1 + R2 ≥ H (X1) + H(X2). Yet with the Slepian-Wolf coding, the 

separated encoders are able to achieve their knowledge of the correlation to accomplish the 

same rates as an optimal joint encoder, R1 + R2 ≥ H (X1, X2). 

 

Slepian-Wolf Theorem Proof 

The condition of the aforementioned three inequalities follows by considering a system 

change where the source pair sequences, X1 and X2 are inputs to a separated encoder. The 

separated encoder’s output rate must at least equal H(X1, X2), giving:  R1 + R2 ≥ H (X1, X2).  



If the encoder knows X1 and X2 and the decoder also knows X2, the encoder will need a code 

rate at least H (X1|X2) giving R1 ≥ H (X1 | X2). The remaining inequality, R2 ≥ H (X2 | X1) 

follows symmetrically.  Showing the adequacy of the three inequalities we consider the rate 

pair, R1 = H (X1|X2), R2 = H(X2) on the boundary region of the admissible rate region. If R2 = 

H(X2) then the output of encoder 2 satisfies the reconstructed X2, so the block diagram 

shown in the below figure  

 

reduces to the diagram shown in the figure below 

 

 

 

The initial construction of the admissible system at the rate point R1 = H (X1|X2), R2 = H(X2) 

was determined for the statistical model of the correlated source pair, called the twin binary 

symmetric source. A twin binary symmetric source is a memory less source with outputs X1 

and X2. These outputs are binary random variables with values 0 and 1 represented by: 

P (X1 = 0) = P (X1 = 1) = 1/2, 

P (X2 = 0| X1 = 1) = P (X2 = 1 | X1 = 0) = p, 

P (X2 = 0| X1 = 0) = P (X2 = 1|X1 = 1) = (1 – p) 

where p is the parameter satisfying 0 ≤ p ≤ 1. We see that, 

P (X2 = 0) = P (X2 = 1) =1/2 

Defining h2 (p) = - [p log 2 (p) + (1 – p) log2 (1- p)]. 

 



For the twin binary symmetric source we obtain: 

H (X1) = 1, 

H (X2) = 1, 

H (X2|X1) = h2 (p), 

H (X1|X2) = h2 (p), 

H (X1, X2) = 1 + h2 (p). 

 

For the twin binary symmetric source, the rate point of interest has R1 = H (X1|X2) = h2 (p) 

and R2 + H(X2) = 1. To resolve the problem of compressing X1 we can think of the twin 

binary symmetric source model as if X1 were passes through a (BSC) binary symmetric 

channel with a bit error probability, p, to obtain X2. For large n, a parity code exists for the 

BSC with approximately 2n (1-h2 (p)) code words. A decoder that sees the output channel, X2, 

will be able to tell which code word was at the channel’s input.  

The problem that arises when applying this idea to the source code problem is that the input 

to the channel, X1does not have to be one of the 2n(1-h2(p)) code words of the parity check code 

since X1 can be any of the 2n binary n -vectors. Another idea is necessary which comes from 

the fact that the co-set decomposition of the group of 2n binary n -vectors in terms of the 

subgroup code words. A co-set of this subgroup is formed by taking various binary n -vector 

that  is not in the subgroup and adding it bit by bit, mod 2 , to each vector in the subgroup to 

form a new set of 2n(1-h2(p)) vectors.  

Repeat the process choosing a vector to be added, a binary vector that has not been added 

before, from either the original subgroup or any previous constructed co-sets. The process is 

completed when all 2n binary vectors have surfaced in either the original group or in the co-

sets. The co-sets are now either identical or disjoint and every binary n -vector appears in 

only one co-set when considering the subgroup as a co-set.  

Given a code block of length n with 2n (1-h2 (p)) code words, we have 2nh2 (p) co-sets since,  

2nh2 (p)   = 2n/2n (1-h2 (p)). 

Also the set of vectors in each co-set have similar error correction properties as the original 

linear code since the vectors in any co-set are translated versions of the original code words. 

These codes are called the co-set code.  

 



After relating this to the problem, X1 must be in one of the co-sets of the code group. When 

the source encoder transmits to the decoder the identity of the co-set which includes X1, the 

decoder can locate X1 from this knowledge and the knowledge of X2 by using a decoder for 

the code’s co-set that worked on the received X2 word. Because there are 2nh2 (p) co-sets, the 

encoder transmits n h2 (p) binary digits. The rate of transmission is h2 (p) = H (X1|X2). The 

admissibility of the rate point equals: 

 

R1 = H (X1|X2) = h2 (p) and R2 = H(X2) = 1. 

 

Now the complete admissible rate region follows from time-sharing, wasted bits and 

symmetry. We will next consider some Gaussian examples of basic channels of Network 

Information Theory. 

 

 

Gaussian Broadcast Channels 

The concept of Gaussian processes is named after Carl Friedrich Gauss because it is based on 

the notion of the normal distribution.  

Carl F. Gauss 

 

Carl Gauss (April 30, 1777 – February 23, 1855) was a German 

mathematician and physical scientist who contributed to many fields, 

including number theory, algebra, statistics, analysis, differential 

geometry, geodesy ( a branch of applied mathematics and earth 

science), geophysics, electrostatics, astronomy and optics. He was 

sometimes referred to as the prince of mathematicians, or the 

foremost mathematician and the greatest mathematician since 

antiquity. Gauss is ranked as one of our history’s most influential mathematicians. He 

referred to mathematics as the queen of science.   

 

 



We will now define the broadcast channel; the broadcast channel is a communication 

channel which there is one sender and two or more receivers. The figure below illustrates the 

broadcast channel. 

 

 

 

The simplest example of a broadcast channel would be a radio or television station. The 

station wants everyone tuned in to receive the same information. The capacity is Max p(x) and 

Mini I(X; Yi). This may be less than the capacity of the worst receiver. The information can 

be arranged so that better receivers will receive additional information, thereby producing a 

better sound and picture. The worse receiver will continue to receive more basic information.  

Since the introduction of High Definition TV it may be required to encode information so 

that poor receivers will receive regular TV signals and better receivers will receive the 

additional information to obtain the High Definition signal. We assume we have a sender 

with a power of P and two receivers, one with Gaussian noise of power N1 and the other with 

Gaussian noise of power N2. We also assume N1 < N2, so receiver Y1 is less noisy than 

receiver Y2. The model for this channel is Y = X + Z1 and Y2 = X + Z2, where Z1 and Z2 are 

correlated Gaussian random variables with a variance of N1 and N2 respectively. All Gaussian 

broadcast channels belong to the degraded broadcast channel class. The capacity region of 

the Gaussian broadcast channel is Yi = Xi + Zi, where i =1, 2, 3… and where Z are Gaussian 

random variables with variance N and a mean equal to 0. The signal X = (X1, X2, … Xn). The 

power constraint equals:  

                                             

 



The Shannon capacity C is determined by maximizing I (x, y) over all the random variables 

X such that EX2 ≤ P and is given by, 

C = ½ log (1 + P/N) bits per transmission. 

The Gaussian broadcast channel is illustrated in the below figure. 

                                       

 

 One output is a degraded version of the other output. All Gaussian broadcast channels are 

equal to this type of degraded channel, 

Y1 = X + Z1, 

Y2 = X+ Z2 = Y1 + Z’2, 

where Z1 ~ N (0, N1) and Z’2 ~ N (0, N2 – N1).  The capacity region of this channel is given 

by:  

R1 < C (α P / N1)    and     R2 < C ((1- α) P / α P + N2 ) 

where α equals (0 ≤  α ≤ 1). 

Converse for Gaussian Broadcast Channel 

Since the Gaussian Broadcast Channel’s capacity region is the same as the physically 

degraded Gaussian Broadcast Channel, we can prove the converse for the physically 

degraded Gaussian Broadcast Channel. Using Fano’s inequality (also known as Fano 

converse and the Fano lemma, relates the average information lost in a noisy channel to the 

probability of the categorized error. Derived by Robert Fano professor emeritus of Electrical 

Engineering and Computer Science at Massachusetts Institute of Technology).  

nR1 ≤ I (M1; Y
n
1 |M2) + n ε n, 

nR2 ≤ I (M2; Y
n
2) + n ε n, 

We next need to show that there exist an α ε [0, 1] such that 

I (M1: Y
n
1|M2) ≤  nC (α S1) = nC (α P / N1) 

http://en.wikipedia.org/wiki/Professor
http://en.wikipedia.org/wiki/Electrical_Engineering
http://en.wikipedia.org/wiki/Electrical_Engineering
http://en.wikipedia.org/wiki/Computer_Science
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology


and I (M2; Y
n

2) ≤ nC (α S2 / α S2 + 1) = nC (α P / α P +  N2), 

Consider 

I (M2; Y
n
2) = h(Yn

2) – h(Yn
2|M2) ≤  n/2  log (2 πe  ( P +  N2)) – h (Yn

2 | M2) 

Since 

n/2  log  (2 πe  N2) = h (Zn
2) = h(Yn

2|M2, X
n) ≤  h (Yn

2 | M2) ≤ h (Yn
2) ≤ n/2  log (2 πe ( P +  

N2)), 

there must exist an α Ɛ [0, 1] such that 

h (Yn
2|M2) = n/2 log (2 πe  ( P +  N2)). * 

Next we consider  

I (M1; Y
n
1|M

2) = h (Yn
1|M2) – h (Yn

1|M1, M2) 

= h (Yn
1|M2) – h (Yn

1|M1, M2, X
n) 

= h (Yn
1|M2) – h (Yn

1| – h (Yn
1) 

= h (Yn
1|M2) – n/2 log (2 πe  N1). 

Now using the conditional entropy we obtain 

                              h (Yn
2|M2) = h (Yn

1 + Zn
2 | M2) 

                                                   ≥ n/2  log (22h(Yn1 | M2)/n + 22h(Zn2 | M2)/n) 

                                                   = n/2 log (22h(Yn1 | M2)/n + 2 πe  (N2 – N1). 

Combining this inequality with the above equation marked with a * implies that 

(2 πe  (αP + N2) ≥  22h(Yn1 | M2)/n + 2 πe  (N2 – N1). 

Thus, h (Yn
1|M2) ≤  (n/2 )log (2 πe  ( P +  N1)) and hence 

I (M1; Y
n
1|M2) ≤   n/2 log (2 πe (αP + N1)) – n/ log (2 πe  N1 ) – nC (αP / N1)) 

This completes the proof. 

. 

 



Gaussian Interference Channels 

There are two senders and two receivers with the Gaussian interference channel. Sender 1 

wishes to send information to receiver 1. Sender 1 does not care what receiver 2 receives. 

The same holds true for sender 2 and receiver 3. Each channel interferes with one another. 

The channel is illustrated in the below figure.  

 

 

Since there is only one receiver for each sender it is not quite a broadcast channel, nor is it a 

multiple access channel since each receiver is interested only in what is being sent by the 

similar transmitter. We obtain a symmetric interference of, 

 

Y1 = X1 + aX2 + Z1 

Y2 = X2 + aX1 + Z2 

 

where Z1 and Z2 are both independent random variables N (0, N). This is one channel that 

has not been generally solved even in the Gaussian case. But in the case of high interference, 

it can be remarkably shown that the region of the capacity of this channel is the same as if 

there were no interference at all. To achieve this, two code books are generated, each having 

a power of P and a rate of C (P / N). Each sender then chooses a word from his book and 

sends it. Now given interference a, which satisfies C (a2 P / (P + N)) > C (P / N) then the first 

transmitter understands perfectly the index of the second transmitter. The index is found by 

looking for the code word closest to his received signal.  



Once the signal is found it is subtracted from the received waveform that now presents a 

clean channel between the first sender and the second sender. The sender’s code book is 

searched to locate the closest code word which is then declared the code word that was sent. 

 

Gaussian Two Way Channel 

The only difference between the interference channel and the two way channel is that the two 

way channel’s sender1 is attached to receiver 2 and sender 2 is attached to receiver 1. This is 

shown in the below figure. 

 

 

This allows sender1 to use information from receiver 2 symbols previously received to 

determine what to send next. The two way channel also introduces another fundamental 

condition of Network Information Theory. This condition is called feedback. Feedback 

allows the sender to use limited information that each has about the other message to concur 

with one another. The two way channel’s capacity region is not known in general, although 

Shannon obtained upper and lower bounds of the region. These two bounds coexist for 

Gaussian channels and the region’s capacity is known. The Gaussian two-way channel 

separates into two independent channels. We let the powers of transmitters1 and 2 equal P1 

and P2 and the noise variances of the two channels equal N1 and N2. Then the rates are equal 

to, 

R1 < C (P1 / N1) 

R2 < C (P2 / N2) 

this can be accomplished by the methods of the interference channel. So with this case we 

would generate two code books with rates R1 and R2. Sender1 sends a code word from code 

book 1. Receiver 2 receives the sum of the code words sent by two senders plus some noise. 

Receiver 2 simply cuts out sender 2 code word which gives him a clean channel from 

sender1 (with only the variance N1 noise). So the two way Gaussian channel separates into 

two independent Gaussian channels. This is not the general case of the two way channel; in 

general there will be a tradeoff between the two senders so that the both of them cannot send 

optimal rates simultaneously. 



Bibliography 

 

Wolf, K. Jack and Kukoski, M. Brian. "Slepian-Wolf coding.” 21 October 2011,  04:16  

<http://www.scholarpedia.org/article/Slepian-Wolf_coding> 

Cover, M. Thomas. Elements of Information Theory. Chapter 14 Network Information 

Theory. New York: Wiley-Interscience; 26 August, 1991 

“Gaussian Process”. Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 4 May 

2013 at 13:16. Web. 3 May.2012 

Gama, E. Abbas and Kim, H. Young.  Network Information Theory. New York: Cambridge 

University Press ; January 16, 2012 

“Robert Fano”. Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 31 March 

2013 at 21:09.. Web. 3 May.2013 

“David Slepian”. Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 07 March 

2013 at 21:09. Web. 3 May.2013 

“Jack K. Wolf”. Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 17 

February 2013 at 21:09.. Web. 3 May.2012 

“Carl F. Gauss”. Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 04 May 

2013 at 21:09.. Web. 3 May.2012 

 

  

 

 


