Set Theory and Metric Spaces

                          I am interested in Theories not Theorems.

                                                                           Samual Eilenberg
                                          during a talk on Category Theory at Haverford College in 1965



(1789-1857 )
  1. Background
  1. Some Interesting Subsets of the Plane
  2. Continuity
  1. Mathematical Arguments
  2. The Barber's Paradox

(1831-1916 )

(1845-1918)

(1862-1943)                 

(1872-1970)

(1871-1953)
      Informal Set Theory
  1. Sets, Classes, and Russell's Paradox
  2. Axiomatic Set Theory - A very brief overview
  3. Set Theory for the Natural Numbers - Cardinality
  4. Set Theory for the Natural Numbers - Order
    Interlude - A Natural Numbers Cheat Sheet
  5. The Algebra of Sets
  6. Posets and Lattice
  7. Cardinal Numbers
    continued -The Continuum of Real Numbers
    The Mid-semester Examination
    will be on February 23.
  8. Zorn's "Lemma"
  9. Ordered Sets
  10. Well Ordered Sets

(1891-1965)

(1906-1993)

(1906-1978)

(1934- )

(1892-1945)
      Foundations
  1. The Axiom of Choice
  1. Continuity Continued - Density
  1. Consistency and Independence
  2. Alternative Set Theories
  3. Category Theory
  4. Abstract and Concrete Categories
    The Joy of Cats
    Jiri Adamek, Horst Herrlich,
    and George E. Strecker

(1902-1983)

(1882-1935)

(1913-1998)

(1909- )




(1868-1942 )
      Metric Spaces
  1. Some Interesting Subsets of the Plane(revisited)
  2. Continuity(revisited)
  3. Continuity Continued - Density(revisited)
  4. The Category of Complete Metric Spaces
  5. Compact Metric Spaces
  6. Every Metric Space can be Isometrically
    Embedded in a Complete Metric Space - I
  7. The Lebesgue Number of a Covering
  8. The Banach Fixed Point Theorem
  9. Every Metric Space can be Isometrically
    Embedded in a Complete Metric Space - II

(1881-1966 )

The Textbook for this course is:

Set Theory and Metric Spaces
Kaplansky
Chelsea Publishing Company
2nd. Edition 1977