
36 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

37i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

Developing a Strategic Framework for
Prototyping Hardware-Software
Interaction

Handspring’s communicators are a
series of innovative products that
require considerable upfront design

investment to develop because they combine
the functions of both a cell phone and a per-
sonal digital assistant (PDA). Communica-
tors are handheld computers that have both a
standard keyboard and a touch screen as
input and are small enough to fit in a shirt
pocket. Interaction prototyping is especially
interesting because it requires merging two
different design paths (cell phone and PDA).

Through the design process, we have
learned that hardware-software interaction
prototyping is a challenge that is more com-
plex than other types of prototyping. For
example, prototyping interaction in a soft-
ware application can assume a standard key-
board and mouse as controls. Similarly,
prototyping hardware products, such as
toasters, is relatively simple because they gen-
erally don’t require any navigation and they
are tangible embodiments, not abstract con-
cepts. In contrast, hardware-software proto-
typing is challenging because it involves
complex software functionality that needs to
be integrated with customized physical con-
trols and interaction. As wireless and embed-
ded computing becomes more widespread
within the consumer market, the need to

overcome these hardware-software prototyp-
ing challenges will increase.

Prototyping the hardware-software sys-
tem is further complicated because it
requires bringing together two different
organizations in the development process:
product design and product marketing.
Each of these organizations has its own
established approach to both design and
prototyping. By working cross-organization-
ally, hardware-software prototyping address-
es significant issues that would have
otherwise been missed by the departments
working individually.

The Buck is a physical prototyping device
designed to address the hardware-software
interface. This term evolved within Hand-
spring to refer to the functional physical
model. This system has many advantages over
paper, software-only, or hardware-only proto-
typing that we will explore in this article. In
the following discussion, we will describe an
overview of the interaction prototyping
process, the product lifecycle constraints we
started with, how we address those issues by
selecting prototyping tools, and the user
testing process. Further, we will share what
lessons we learned and what opportunities
exist for developing future interaction proto-
typing tools.

Celine Pering

Handspring, Inc.

cpering@stanfordalumni.org

in hardware development environments; in
software development it is relatively new [1].
Lastly, some companies have a unified design
group and others have separate design groups
broken down by product divisions [9].

Handspring shares many aspects of these
other processes and cultures. The company
has both specification and prototyping
cultures, which fall along department lines.
The hardware product design team proto-
types more often and more formally than the
team that designs the software user interface.
Handspring is, however, different from other
companies in that it does not have a single
unified design group; the two groups exist in
different organizations. This is also different
from larger companies that have design
groups dedicated to product divisions. Hand-
spring is a relatively small company, of
around 400 people, and its emphasis is on
both hardware and software. In addition,
Handspring’s interaction design process more
closely resembles a software process in that
the prototyping media are predominantly
digitally created. For example, no sketches,

Interaction Prototyping:
Introducing the Buck
At Handspring, prototyping the hardware-
software interface has several main compo-
nents to it: Paper, Screen, Buck, and Alpha
(see Figure 1). These processes represent only
a subset of the complete product lifecycle; dif-
ferent parts of the product have additional
processes (e.g., industrial design) and are not
represented in this figure.

Prototyping processes vary across
companies. Large companies that need to
coordinate lots of information and many
different types of users are often specification-
driven, whereas small entrepreneurial
companies are more frequently prototype-
driven. Some companies have a more formal
process, and others have an informal proto-
typing process. Further, certain companies
have a fixed number of prototypes per product
cycle, and others prototype more
opportunistically. Prototyping media also
range according to industry; for example, the
automobile industry uses tools such as
sketches, computer-aided-design drawings,
and clay forms to model ideas [11]. In
general, prototyping has been commonly used

PERMISSION TO MAKE DIGITAL OR

HARD COPIES OF ALL OR PART OF THIS

WORK FOR PERSONAL OR CLASSROOM

USE IS GRANTED WITHOUT FEE PRO-

VIDED THAT COPIES ARE NOT MADE

OR DISTRIBUTED FOR PROFIT OR COM-

MERCIAL ADVANTAGE AND THAT

COPIES BEAR THIS NOTICE AND THE

FULL CITATION ON THE FIRST PAGE.

TO COPY OTHERWISE, TO REPUBLISH,

TO POST ON SERVERS OR TO REDIS-

TRIBUTE TO LISTS, REQUIRES PRIOR

SPECIFIC PERMISSION AND/OR A FEE.

© ACM 1072-5220/99/1100 $5.00

38 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

Figure 1. Interaction prototyping of hardware–software devices. Design questions are answered
iteratively with the technique that best addresses them. Each approach leverages a different prototyping tool
with an increasing degree of functionality (shown in italics with the square) and requires different types of user
evaluation (shown within the ellipses).

39i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

Screen Prototyping
Screen prototyping in Microsoft PowerPoint
involves animating a series of screens to allow
simulating the user’s path to accomplish a task
(see Figure 3). It is often used creatively as a
design exploration tool, as well as in design
meetings to facilitate a discussion. Screen-
based prototyping is adopted within our
design process as a quick way for simulating
interaction. In our experience, branching of
buttons allowed enough flexibility to mock up
interaction paths, making it a method
particularly suited for catching users’ real-time
reaction to navigation, focus, and logic. Given

that the mockups reveal
issues in end-user screen
interaction without requir-
ing development of hard-
ware interaction, it is a
major benefit to leverage
this approach and provides
considerable time and cost
savings.

Buck Prototyping
Issues that are complex or
that the team felt required
usability testing as indicated
in the specification are pro-
totyped in Flash and
tested using the Buck sys-
tem (see Figure 4). This
approach provides a more
complete testing environ-
ment that can be evaluated

foam, or clay model techniques are used. This
diversity of process and culture within Hand-
spring means that our prototypes frequently
provide a lingua franca that allows people
involved in the design process with a useful
mechanism to effectively communicate [3].

Paper Prototyping
Based on a specification, quick paper
prototyping is used initially to provide a
visually explicit representation of a design. To
illustrate the interaction, a user interface map
is created that illustrates a nonlinear
storyboard of user interaction possibilities
(see Figures 2a & 2b). Arrows connect the
screens and communicate the interaction
paths that be might taken by a user who
clicked a given button. These prototypes are
used for test driving by the design team, as
distinct from usability testing, which in con-
trast involves people who are not involved in
the design process. This method also provided
a useful technique for heuristic evaluations [8]
and cognitive walkthroughs [10] through the
design, and helps one catch problems with
organization, terminology, semantics, and lay-
out. These paper prototypes also have the
added advantage that the screen shots can be
added back into the specification as the plan
of record.

Figure 2a. Paper prototyping. In this example, arrows indicate navigation
paths and highlighting is explicitly demonstrated so that designers can test-
drive their proposals in design meetings.

Figure 2b. Screen shot. Screen shots
created in Adobe Photoshop are used in the paper
prototyping process to walk through design
functionality. These screen shots are used in the
user interface map (see Figure 2a).

Alpha Validation
Alpha validation is often one of the first points
at which software can be used on
functional hardware (see Figure 5). Although
Alpha code is not really prototyping, it is used
to experiment with design issues as usage
issues are identified. Internal beta testing
occurs in this phase, in which participants are
asked to use their own data in the device for
extended periods of time. This is distinct from
usability testing because it is based on real use
rather than a series of tasks conducted by a
facilitator. Without the Buck, most of the
hardware-software interaction validation
would only now take place. However, even
after prototyping with the Buck, certain issues
can be caught only here. In particular, issues
of repeated use or problems that are most
visible with a user’s own data will mainly be
caught in this phase of development.

Maximizing Prototyping Payoff
One of the biggest challenges of
prototyping is to be efficient with the full
spectrum of tools. Each step in prototyping
has an increasing level of functionality that
can be tested, and the more the level of
functionality, the more time it takes to
implement (see Figure 6). Thus it is disadvan-
tageous to wait until real software code is
developed to try out certain parts of a design,
which is an expensive mistake companies
often make. It is important to take advantage
of each tool at the appropriate point in the
design process.

The art of prototyping includes first
knowing the prototype goals, the schedule for
making a decision, and what questions can be
answered within a given prototyping medium
(e.g., Photoshop, PowerPoint, Flash, Buck).
The medium that can answer questions in the
least amount of time should be chosen. It is
also important to manage the process of
working with different tools simultaneously
and be able to upgrade to the next level of
media if needed. Another common problem is
becoming too comfortable using only one
type of prototyping tool. This familiarity can
constrain prototyping to addressing only the
issues that can be addressed with that tool. It

formally with external users [6]. This is the
first point in our interaction design process at
which external users are exposed to a design. A
user’s press of a hardware button communi-
cates actions and sends a key press signal to
the software. The software interprets the sig-
nal appropriately (up, down, option, shift,
etc.). This provides the visual feedback associ-
ated with user behavior. Prototyping at this
stage is effective in catching problems with
timing, ergonomics, and task-based flow.

40 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

Figure 4. Buck prototyping. The Buck device is
tethered to a laptop or workstation through the
keyboard port. The software user interface
information is read entirely from the laptop screen,
whereas the hardware icons and labels are read from
the Buck’s hardware interface.

Figure 3. Screen prototyping. Screens are
animated in PowerPoint using invisible
buttons that allow for simple branching of navigation.
The designer can use the buttons to click through dif-
ferent paths, allowing the test driving of specific ideas
as well as sharing within the design team.

41i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

To prototype the system, we developed the
Buck, which combined the physical device
prototype with software running on a laptop
computer. After exploring many development
and animation tools available on the market
[5], we chose Macromedia Flash as the
software base, mainly because of its graphical
flexibility and ability to interface with
keyboard events. To simulate interaction, we
added electronics to the physical model and
connected these circuits to the laptop’s
keyboard port using a simple microcontroller
interface. The combination of this functional
model and a responsive software interface
provided a system that became the basis for
prototyping. Within the dimensions of “fideli-
ty” that often are used to classify prototyping
techniques [7], this system is in the midrange
of interactivity and functionality.

In our typical Buck prototyping process,
designs begin on paper and are then animated
in Flash using a user interaction map to
understand the navigation paths (see Figure 2a
and 2b). To use this system, a designer first
describes a problem in text or with screen

shots. Those screen shots are imported into or
recreated in Flash. Key presses controlled by
the Buck device drive the animation’s events.

What interaction elements do we typically
prototype? On the basis of previous product
designs and experience, important issues are
flagged in the body of the specification for
prototyping, usability testing, or both. Gen-
erally, if the issue is a problem with past

is important to have access to a full spectrum
of tools in a wide range so that each is used at
the appropriate time to ensure the maximum
efficiency in prototyping.

Prototype effectiveness for hardware-
software prototyping is different from more
conventional prototyping environments
(e.g., Web and PC applications). The time-
functionality relationship has a more gradual
ascent with conventional environments
because there are less dimensions of
interactivity (such as input controls and
physical embodiments). Accordingly, with
more conventional environments, paper-
based and screen-based prototyping can be
leveraged for a larger portion of the
development cycle.

Prototyping Constraints and Tools
Prototyping is constrained by the
development history. For example, when we
started interaction prototyping for the Treo
communicators, we had access to physical
models but existing software didn’t fully
support the new hardware. Additionally, the
basic industrial design was complete, and the
software user interface design was still in the
specification stage. Therefore, we could
modify the software specification but not
easily change the physical device. Ideally, we
wanted a system to help us create a prototype
of the hardware-software interaction that
several designers could learn without much
programming experience and that could be
easily distributed to a large audience for
testing.

Figure 5. Alpha validation.
Early versions of software
code are implemented on
a Treo device for internal
beta testing with real data
and use over time, often a
period of weeks.

Figure 6. Prototyping effectiveness. Each
prototyping step allows for a greater level of
functionality and takes more time to implement.

42 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

product development and is identified
internally by quality assurance or externally
by customers it is flagged for the next product
cycle. Furthermore, if the design is experi-
mental or complex it is likely to be flagged for
validation. By focusing on these highlighted
areas, we address the most “risky” features
without having to completely deploy all the
capabilities of the device.

Prototyping is also useful in the role of
tie-breaking at design meetings. In the past,
some design discussions became very long, as
people had strong differences of opinion
about what users
would find confusing.
Some discussions got
to the point where it
was much faster to
prototype and test an
idea than to discuss it.
Prototyping as a solu-
tion became part of
the decision-making
process.

Issues Captured
with the Buck
With the Buck, we
were able to prototype
dozens of task-based
scenarios. The Buck
provides many advan-
tages over hardware-
only, software-only, or
paper prototyping pro-
cesses. Since it com-
bines hardware and
software into one system, the Buck is able to
catch many subtle interaction problems, such
as the following:

● Catching two-handed use problems.
The Buck allows users to drive the soft-
ware interaction using real buttons.
Accordingly,
we were able to find double-handed use
problems. For example, to scroll sometimes
the user had to hold the option key while
pressing the scroll buttons. The impact of

the user’s experience with this design
choice would not have been caught with
paper or on-screen prototyping, because
users are otherwise constrained with the
use of a single mouse in a desktop
environment.

● Graphical connections between the
screen and the keys. By combining the
hardware buttons with software function-
ality, users instinctively looked at the
keyboard as well as the screen for visual
clues about navigation and control. This
type of connection was made clear when

users had to learn
a new function.
The physicality of
the Buck interface
allows associations
from other physi-
cal experiences to
be explored, like
similarities to a
TV remote con-
trol or a landline
phone.
● Timing and
feedback associat-
ed with the key-
board controls.
Experimenting
with key-press
interactions such
as a long press
versus a short
press versus a
double press
could not be done

with paper prototyping. This type of
interaction is laden with expectations set
by other products and is often hard to
pinpoint without physically going through
the motions and understanding the unex-
pected outcome of a particular sequence.

● Ergonomic issues with button
placement. When participants were using
the Buck to navigate menus and screens,
ergonomic issues became apparent from
the strain caused by repeated use. In
addition, having users with different-sized

Prototyping
is useful

in the role of
tie-breaking

at design
meetings.

43i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

hands revealed constraints of button
placement as buttons were accidentally
pressed. These issues would have been
revealed only by repeated use of a device
that provided visual feedback from button
access.

User Testing
The Buck allows for effective user testing.
Depending heavily on task-based scenarios,
we use a “think-aloud” protocol that
includes sitting next to the participant and
guiding him through the various aspects of
the system. The scenarios use a mix of
canned data and real-time user input, creat-
ing a realistic experience graphically and
interactively. The main caveat is that we
were not using the participant’s own data,
which creates a somewhat artificial experi-
ence. For example, we might ask people to
look up phone numbers and demonstrate
dialing, but the participant did know any of
the people in the phone book.

On the whole, users felt comfortable with
our Buck testing setup (see Figure 7). Gen-
erally, the Buck makes the testing experience
more concrete than that with paper-only or
screen-only testing. Users are able to explore
and simulate using the device for their own
needs. Often we found users discovering
functions on their own. We found this posi-
tive, and it meant that we merely had to
guide them to the areas that we were inter-
ested in evaluating. The device is robust
enough to allow for exploration and never
broke. As a result, the testing assumed a

much more observational quality than
paper-only evaluation because it did not
depend so heavily on a facilitated
experience.

One challenge of user testing with Treo
communicators was testing the two-way
interaction of callers and receivers. The
Buck system was not set up for multiple
devices to interact, so we could not have two
physical devices allowing sender and receiv-
er participants to interact in real time.
Additionally, the time to set up the devices
would be too costly for our schedule. We
addressed this in two ways: First, we use a
Wizard of Oz approach [2], in which we
verbally act out the part of the receiver. For
example, the caller makes the phone call and
we act out the part of the receiver answering
the phone. Second, we digitally simulate the
interaction of one of the parties. For exam-
ple, when we were testing a messaging appli-
cation, we simulated a two-way conversation
by timing a two-second reaction to the user’s
input. After a user typed “did you get the
spec?” plus a eturn character, that would
trigger the simulation of another person’s
response, “yeah thanks.” In this example, we
took whatever input the user typed and
made it fit the scripted dialog. So even if the
participant typed “bla bla bla,” our system
would turn it rinto “did you get the spec?”
We then instructed the user to go with the
flow of the conversation. This worked as a
technique for simulating communication
sufficiently enough for us to evaluate the
interaction.

Figure 7. Buck user testing. A participant
holds the functional model in his hands to
control the animation on screen. The device
is tethered to a laptop for usability testing in
various locations.

44 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

Limitations and Opportunities
Although Buck prototyping allows a level of
interaction validation that was not available
previously, its major limitation is that the
iterative part of prototyping occurs only in the
software user interface. We did not modify the
hardware user interface except the mappings of
particular buttons. Why was this? How many
times have software designers wanted to "just
add one button" to do a certain task?

Constraints of modifying the hardware user
interface are due to both organizational and
financial factors, limi-
tations that offer
opportunities for both
the extension of the
process and the refine-
ment of tools. As is
typical of product
development, differ-
ent parts of the design
operate on somewhat
different schedules.
Because the hardware
manufacturing pro-
cess is long, the hard-
ware design is often
defined earlier than
the software design
and is relatively fixed
by the time the soft-
ware user interface is
prototyped. The cost
of each hardware
model is also much
more expensive than
each software itera-
tion. As a consequence of the imbalance
between hardware user interface and software
user interface, the interaction iteration
occurred only within software. This doesn’t
mean that hardware wasn't continuing to pro-
totype button snap or fit, but that the interac-
tion design was not being explored further.
From an overall cost perspective, the Buck sys-
tem required a team of five engineers to con-
struct (mechanical, hardware, electrical,
software, and industrial), because it involved
developing a custom board. On the next itera-
tion, it would be much cheaper to make, but it
still would require many resources.

These issues suggest an opportunity for the
human-computer interaction community.
How can interaction design truly iterate over
the hardware user interface and software user
interface design simultaneously? What are the
key ingredients for a hardware-software inter-
action prototyping setup?

Ideal Attributes
In our experience, we have identified
several ideal attributes for an interaction

prototyping setup.
These features are dif-
ferent from those
found in other proto-
typing toolkits pro-
posed [4], in that they
address the hardware
interface design as
well. Accordingly, a
system with these
aspects would allow
designers to begin to
iterate over both the
hardware and the
software user inter-
face elements.

Our ideal attributes
are the following:

● Graphic design.
The ability to mod-
late the graphical
design would help
designers to exper-
ment with user inter-

face elements. Designers could try novel
button shapes, icons, and dialog windows,
for example.

● New functional controls. The capability
to rearrange the hardware user interface
by adding new functional controls and
buttons would facilitate more interaction
variation before the hardware is relatively
fixed. The ability to swap in and out
controls such as buttons, jog rockers,
scroll wheels, and touch pads while
retaining functionality would help.

● Remapping existing controls. Being
able to remap the hardware controls to

Prototyping
occurs with
more invest-

ment in
resources and

addresses
issues of both

design risk
and design
validation.

45i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

have different functions would provide
flexibility. Having the ability to change an
action from the “option key + scroll
down” to the “jog rocker” instead would
allow more fine-tuning iteration in the
hardware user interface.

● Timing and feedback. Controlling but-
ton-press timing and feedback is critical
for a smooth experience. Being able to
change a button press from a “long
press” to a “short tap” or to “two short
taps” provides the ability to adjust
important interactions as they indicate
different actions
to users.

● Ease of program-
ming. The ability
to develop the
prototype relative-
ly easily would
allow multiple
people to
participate. The
fewer technical
skills required
by a tool, the
more designers
will be able to
use the tool,
providing greater
access within a
design group.

● Low cost. Organi-
zations will use
the tools more
widely if the cost
is relatively
inexpensive. Cost is based on the price of
the product and the time needed to learn
technical tools, which can make invest-
ment prohibitive
for many designers.

The Buck system that we developed
addressed all the above issues except the
ability to rearrange the hardware, fully
remap existing controls (our system only
allowed partial remapping), and allow
ease of programming. These hardware-
related issues are the most challenging to
incorporate.

Conclusion
Hardware-software interaction prototyping is
a challenge. Its complexity lies in what it is
trying to demonstrate (various controls,
navigation paths, and timing issues), and the
organizational structures upon which the
prototyping process stands are diverse.

The difference between the hardware and
software development cycles provides timing
implications for hardware-software interac-
tion prototyping. Because hardware tooling is
relatively costly, frequent hardware prototyp-
ing occurs early because changes later are

extremely expensive
and can cause the
schedule to slip. Soft-
ware is often more
flexible and can be
changed later in a
design process. Time
and cost are impor-
tant to both groups,
but their flexibility
is different. Under-
standing the design
schedule and where
each group is flexible
is critical to planning
when to prototype.

Prototyping cul-
ture is also a major
factor in organiza-
tions’ approaches to
design [10]. Some
organizations have
a p r o t o t y p i n g -
approach, and others

have a more specification-based approach;
each has its advantages. Using a prototyping
approach to design, a team may build several
variations on a concept and choose one. Pro-
totyping occurs with more investment in
resources and addresses issues of both design
risk and design validation. Designs are more
bottom-up and provide potentially more cre-
ativity because more people are involved early
in the design process. Conversely, a specifica-
tion approach to design begins by fleshing out
the text in a specification using paper screen-
shots as examples and prototyping the major
issues that are flagged in this process. Design-

Using a
prototyping

approach
to design,

a team may
build several

variations
on a concept
and choose

one.

the user testing. I would like to thank Heiko
Sacher for the inspiration for this article, as
well as Elizabeth Churchill, Trevor Pering,
Ken Anderson, and Brian Sager for useful
feedback.

References
1. Alavi, M. An assessment of the prototyping approach

to information system development. Communications of

the ACM (1984), p. 556.

2. Bernsen, N., et al. Wizard of Oz Prototyping: How

and when? CCI Working Papers in Cognitive Science

and HCI, WPCS-94-1. Center for Cognitive Science,

Roskilde University, 1994.

3. Erickson, T. Lingua francas for design: Sacred places

and pattern languages. In Proceedings of Designing

Interactive Systems Conference (Aug. 17-19, New York),

Association for Computing Machinery, New York,

2000.

4. Hakim, J. and Spitzer, T. Effective Prototyping for

Usability. In Proceedings of ACM Conference on Systems

Documentation (Cambridge, Mass.). IEEE Educational

Activities Department, Piscataway, NJ, 2000, p. 52.

5. Hix, D. and Schulman, R.S. Human-computer

interface development tools: A methodology for their

evaluation. Communications of the ACM 34, 3 (March

1991), pp. 74-87.

6. Lin J., Newman M., Hong, J., and Landay, J.A.

DENIM: Finding a tighter fit between tools and

practice for Web site design. In Proceedings of the

Conference on Human Factors and Computing Systems

(The Hague, Netherlands). ACM Press, New York,

2000.

7. Mayhew, D. The Usability Engineering Lifecycle.

Morgan Kaufman Publishers, 1999, p.22.

8. Nielsen, J. Heuristic evaluation. In Nielsen, J. and

Mack, R.L. (eds.), Usability Inspection Methods,

John Wiley & Sons, New York, 1994, pp. 25-64.

9. Norman, D. Design as practiced. In Winograd, T.,

Bringing Design to Software, ACM Press, New York,

1996.

10. Polson., P., Lewis, C., Reiman, J., and Wharton, C.

Cognitive walkthroughs: A method for theory-based

evaluation of user interfaces. International Journal of

Machine Studies 36, 5 (1992), pp. 741-773.

11. Schrage, M. Prototyping cultures. In Winograd, T.,

Bringing Design to Software, ACM Press, New York,

1996.

ers using the specification approach often pri-
vately use prototyping as a tool to help resolve
design problems and allow them to come up
with the best solution. Specification-based
prototypes are also more frequently used to
answer risky questions rather than to validate
concepts. This top-down process can be much
faster with experienced designers, and the
issues can be more easily communicated to the
development team for implementation,
reducing time-to-market. The main difference
between these two cultures is the frequency,
scope, and stage within the design at which
the prototyping is appropriate and effective.

Despite the developmental and
organizational challenges our teams faced in
hardware-software prototyping, we came up
with a creative solution. The organization that
wanted more prototyping provided the
prototyping services for the group that
wanted more development speed. This cross-
organizational solution worked well because
both groups were able to collaborate
synergistically. By working together, the
organization was able to improve the interac-
tion of products in the communicator line by
improving the navigation, timing, visual
feedback, ergonomic issues, and single-
handed use of the product.

As a result of the increasing role of wireless
and embedded computing in the consumer
marketplace, the need for better hardware-
software prototyping, like the system we have
developed, is increasing. Consumer-focused
interactive systems including products such as
MP3 players, digital jewelry, digital cameras,
and smart toys all share the necessity of a
seamless user experience between the
hardware and software interface.

Acknowledgments
The prototyping and design work at
Handspring discussed in this article was based
on the work of Rob Haitani and the design
team. The people involved with building the
Buck prototype include Peter Skillman, Dan
Kim, and Miles Brown and engineering
support. Also, Claudia Knight collaborated on

46 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 2 0 0 2

