Biogeography and diversification rates in hornworts: The limitations of diversification modeling

Juan Carlos Villarreal, Natalie Cusimano & Susanne S. Renner

Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Menzingerstr. 67, 80638 Munich, Germany
Author for correspondence: Juan Carlos Villarreal, jcarlos.villarreal@gmail.com
ORCID: JCV, http://orcid.org/0000-0002-0770-1446
DOI http://dx.doi.org/10.12705/642.7

Abstract Hornworts comprise ca. 220 species and are among the oldest landplant lineages, even though their precise phylogenetic position remains unclear. Deep within-hornwort divergences, highly uneven species numbers per genus, and the assumed high stem age together suggest a history of changing diversification (i.e., speciation minus extinction) rates. To study the geographic distribution of modern hornworts and their patterns of species accumulation, we generated a mitochondrial and plastid DNA matrix for 103 species representing all major groups and then applied molecular-clock dating, using a different calibration approach than in earlier work. We used the BAMM software to fit rate-variable and constant-rate birth-death diversification models to the dataset, and we also inferred ancestral areas to a time depth of 55 Ma (Early Eocene). We analyzed diversification rates for all hornworts and separately for species-rich subclades. Under BAMM’s variable-rates model (which fits the data better than a constant-rate birth-death model, but still assumes that each species has the same speciation and extinction probability regardless of its age), hornworts have gradually increasing rates of speciation and a constant background extinction rate. No shifts in diversification rate could be detected. The implausible finding of a constant background extinction rate illustrates the limitations of diversification modeling especially as regards extinction rates.

Keywords biogeography; diversification modeling; extinction rates; geographic disjunctions; hornworts

Supplementary Material The Electronic Supplement (Fig. S1) is available in the Supplementary Data section of the online version of this article at http://www.ingentaconnect.com/iapt/taxon

INTRODUCTION

Hornworts comprise ca. 220 species worldwide. In spite of large-scale efforts, molecular data have so far not solved their precise relationships to other land plants (Qiu & al., 2006; Karol & al., 2010; Wickett & al., 2014). A recent re-analysis of earlier DNA data suggested that bryophytes (hornworts, liverworts, mosses) might be monophyletic (Cox & al., 2014), but Wickett & al. (2014), using up to 852 nuclear genes from 92 species across green organisms, two of them hornworts, again failed to resolve the placement of hornworts as either sister to all other land plants or as a member of a bryophyte monophylum. Given the undoubted high geological age of all three bryophyte lineages, biogeographic reconstruction is problematic because continental positions and climates have changed dramatically over the past hundred million years (Scotese, 2001). Nevertheless, one can infer ancestral areas for more “shallow” nodes reflecting diversification events that took place over the Pliocene, Miocene or Oligocene. For example, a study focusing on the Neotropical hornwort genus Nothoceros (R.M.Schust.) J.Haseg. inferred a crown group age of ca. 35 Ma (Villarreal & Renner, 2014, using a plastid rate calibration) and a split between N. endivifolius (Mont.) J.Haseg. from Chile and its sister species N. giganteus (Lehm. & Lindenb.) J.Haseg. from New Zealand at 5.3 Ma or 20.7 Ma, depending on the calibration used. These ages imply long-distance dispersal, even in the face of great dating uncertainty.

Spore-producing plants, such as bryophytes, lycophytes and ferns, may be particularly prone to long-distance dispersal (Muñoz & al., 2004). In hornworts, spore sizes range from 18 μm diameter in Leiosporoceros Hässel to >100 μm in the multicellular spores of the epiphytic Dendroceros Nees (Renzaglia & al., 2009), and such small, wind-borne spores may travel far. The flagellate sperm cells, however, travel only a few centimeters (Proskauer, 1948), and many species are dioicous, meaning that they require at least two different-sexed individuals for a new population to become established after long-distance dispersal. In an earlier study, we carried out trait reconstruction, focusing on sexual systems, spore sizes, and antheridium number, on a phylogeny for 98 species of hornworts that represented roughly equal proportions of the monocious and dioicous species, and the results revealed that diversification rates, which reflect the difference between speciation and extinction, do not correlate with sexual systems (Villarreal & Renner, 2013). In that study, we relied on the binary-state speciation and extinction (BISSE) model...
This method estimates trait-dependent speciation and extinction rates in a Bayesian framework, the binary character in our case being sexual system (but see Maddison & FitzJohn, 2015 and Rabosky & Goldberg, 2015 for statistical problems with this model).

Clearly, the species-poverty of hornworts, with only about 220 species worldwide, poses a problem for statistical diversification analyses, all of which rely on the relative distribution of nodes in ultrametric trees (e.g., clock-dated phylogenies). For more species-rich spore-producing plants, such as ferns, mosses, or liverworts, changes in diversification rates over time have been associated with fluctuating global climates or the rise of the angiosperms (Schneider et al., 2004; Schuettpelz & Pryer, 2009; Fiz-Palacios et al., 2011), and one might expect similar patterns in hornworts. A study by Laenen & al. (2014), comparing diversification rates in liverworts, mosses, and hornworts, however, found that a model of constant diversification through time could be rejected in mosses and liverworts but not in hornworts because of the lack of statistical power associated with the small number of included hornworts (their data matrix included one species per genus). They nevertheless reported high diversification rates in hornworts, especially for Anthoceros L.–Sphaerosporoceros Hässel. The model used by Laenen & al. was MEDUSA, a maximum likelihood method for modeling among-lineage heterogeneity in speciation-extinction dynamics (Alfaro et al., 2009). Experimental work since 2009 has shown that MEDUSA consistently underestimates the true number of processes in simulated datasets when rates of speciation vary through time and that branch-specific speciation rates estimated with MEDUSA show little correspondence with true rates (Rabosky, 2014). This may not be a problem when data meet the assumption that rates of species diversification are constant in time, but it may become a problem where this assumption is violated.

Here, we study clade age, diversification, and biogeography of hornworts, using a DNA data matrix that includes all genera represented by 103 of their combined 220 species. In representing at least one species of each genus, our matrix is not randomly sampling hornwort diversity. Nevertheless, the signal in a tree with 102 nodes might be able to reject a constant rate of diversification through time, different from the few hornwort species in the Laenen & al. (2014) tree. We used the BAMM software, which fits four diversification models (time-dependent, diversity-dependent, and constant-rate pure birth or birth-death) to ultrametric trees and which has been shown to outperform MEDUSA (Rabosky, 2014). The program works well with trees as small as 87 tips (as in the files distributed with the software), although power to detect rate variation decreases in small trees. BAMM infers changes in diversification rate along branches (each branch, of course, influenced by neighboring branches/clades), statistically adds missing species, and to some extent can account for non-random species sampling (Rabosky, 2014). It is well known that incomplete taxon sampling can bias analyses of speciation and extinction from phylogenetic trees, at least if the included species are not a random sample of the clade of interest, but instead selected to represent the oldest, most diverse taxa and/or one representative of each subtaxon of the focal clade (Cusimano & Renner, 2010; Cusimano et al., 2012). For such situations, BAMM permits the user to specify the percentage of species that have been sampled. Users can also specify clade-specific sampling fractions if the percentage of sampled taxa varies considerably across a tree. The main questions we wanted to answer were, (1) what is the geographic distribution of the major hornwort lineages worldwide (a question not addressed in previous studies) and (2) does a phylogeny with about 50% of the extant species (102 nodes) reveal a signal of changing diversification through the clade’s long history, when analyzed with the most powerful current diversification modeling?

MATERIALS AND METHODS

Taxon sampling, DNA sequencing, and phylogenetic analysis. — We sequenced 103 species of hornworts, including 5 new ones (Appendix 1), for the mitochondrial nad5 exon2 and the plastid regions rbcL, trnK including matK, and rps4. Primers for the rps4 region were newly designed based on the two available plastid hornwort genomes (Villarreal et al., 2013): rps40F 5′ TCGTCTGGGACTCTACCAG 3′ and rps40R 5′ AACCAATCCAGTCACGATCT 3′. Primers for the other DNA regions are given in Villarreal & Renner (2013), and PCR protocols followed standard procedures. Sequence editing and alignment were carried out in Geneious v.5.6.6 (Biomatters, Auckland, New Zealand) and the alignment has been deposited in TreeBase (http://treebase.org/treebase-web/, study accession number 17263). In the absence of statistically supported (e.g., >95% bootstrap support) topological contradiction, the mitochondrial and plastid data matrices were concatenated, yielding an alignment of 4182 nucleotides. Phylogenetic analyses were performed under likelihood optimization and the GTR+Γ substitution model, using RAxML v.7.2.8 (Stamatakis et al., 2008) with 100 bootstrap replicates under the same model. All analyses were run using the Cipres Science Gateway servers. Trees were rooted on Leiosporoceros dussii (Steph.) Hässel, the sole species of Leiosporocerotaceae, which is sister to all other hornworts (Duff et al., 2007; Villarreal & Renner, 2012).

Molecular clock dating. — We used two calibration approaches. First, we used Notothyllites nirulai Chitaley & Yawale from the Deccan Intertrappean beds of Mohgaonka, India (Maastrichtian, 65–70 Ma; Chitaley & Yawale, 1980) to constrain the age of the stem node of Notothyllas Sull. ex A.Gray and Phaeoceros Prosk. (including Paraphymatoceros Hässel). This petrified fossil of an entire plant has similar thallus size, sporophyte size, and elater shape to extant Notothyllas. In the present paper, we gave this fossil a lognormal prior with a median of 77 Ma and an offset of 65 Ma; this lets 95% of the ages fall between 67 and 127 Ma. In a previous study, we used an exponential prior with a median of 131 and an offset of 65 Ma, which let 95% of the ages fall between 70 and 351 Ma (Villarreal & Renner, 2012). Second, we used a substitution rate of 5.0 × 10⁻⁴ substitutions/site/Myr from the entire single-copy region and inverted repeats of land plants (Palmer, 1991) for the plastid data partition and a rate of
1.9 × 10^4 substitutions/site/Myr (Gaut, 1988) for the mitochondrial data partition. Different from an earlier study (Villarreal & Renner, 2012), we here refrain from including land plant outgroups because (1) bryophytes may be monophyletic after all (Cox & al., 2014) and (2) the inclusion of sparse outgroups violates a basic assumption of Bayesian dating approaches, namely even taxon sampling across lineages (Drummond & Bouckaert, 2015). As explained above, we instead rooted on *Leiosporoceros*.

Dating relied on Bayesian divergence time estimation as implemented in BEAST v.1.8.1 (Drummond et al., 2012), using a Yule tree prior (as appropriate for our sampling of one plant per species) and the GTR + T substitution model with unlinked data partitions to account for the mitochondrial and plastid data. The fossil calibration was applied both in a strict clock model and an uncorrelated log-normal (UCLN) relaxed clock model, while the rate calibration was only applied in the strict clock. MCMC chains were run for 100 million generations, with parameters sampled every 10,000th generation. Tracer v.1.6 (Rambaut et al., 2014) was used to assess effective sample sizes (ESS) for all estimated parameters and to decide the appropriate percentages of burn-in. We verified that all ESS values were >200. Trees were combined in TreeAnnotator v.1.6.1 (part of the BEAST package), and maximum clade credibility trees were obtained mainly from Hasegawa (1980), Asthana et al., in press. We report highest posterior densities (HPD) intervals (the interval containing 95% of the sampled values).

Ancestral area reconstructions.

We performed maximum likelihood (ML) ancestral area reconstruction in Mesquite v.2.73 (Maddison & Maddison, 2010) with the Mk1 model and the fossil-calibrated UCLN chronogram as input tree. Distribution data were obtained mainly from Hasegawa (1980), Asthana & Srivastava (1991), and Pippio (1993). We coded species for their occurrence in the following regions (based on the provenance of the sequenced specimens): A, tropical Africa and/or tropical Asia between 25° N and S lat.; B, tropical America between 25° N and S lat.; C, Eurasia and America north of 25° N lat. (“North Temperate”); and D, South America, Australia and New Zealand south of 25° S lat. (“South Temperate”). We only report inferences to a time depth of up to 55 Ma because of vastly different continental positions and climates prior to the Eocene (and even since then; Scotese, 2001).

RESULTS

Molecular clock dating and biogeography.

A ML tree from the combined data matrix (Electr. Suppl.: Fig. S1B) has solid bootstrap support for most major hornwort clades except *Phaeomegaceros*. The ages inferred under the three clock models (fossil-calibrated relaxed clock, fossil-calibrated strict clock, rate-calibrated strict clock) are shown in Table 1. They more or less agree except for the hornwort crown age, which varies from 160 (Upper Jurassic) to 229 Ma (Upper Triassic; Table 1, which shows the error ranges around all estimates). The crown ages of hornwort genera are mostly Oligocene and Miocene, and our biogeographic reconstructions only consider nodes <55 Ma, which do not much vary between clock models (Table 1).

In the biogeographic analysis (Fig. 1), *Megaceros* Campb. (11 spp., 5 included here) shows one dispersal from South Temperate regions (defined as South America, Australia and New Zealand south of 25° S lat.) to tropical Asia, namely in the ancestor of *Megaceros tibiosdensis* Campb. from India (arrow to Cretaceous parallel with hornwort diversification).

Table 1. Hornwort divergence dates (in Ma) obtained with two calibration approaches (Materials and Methods).

<table>
<thead>
<tr>
<th>Calibration scheme</th>
<th>Root</th>
<th>Anthoceros</th>
<th>Dendroceros</th>
<th>Megaceros</th>
<th>Nothoceros</th>
<th>Nothothylias</th>
<th>Paraphymatoceros</th>
<th>Phaeoceros</th>
<th>Phaeomegaceros</th>
<th>Phymatoceros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil-calibrated</td>
<td>160.19</td>
<td>49.26</td>
<td>22.6</td>
<td>26.92</td>
<td>28.73</td>
<td>16.8</td>
<td>27.21</td>
<td>33.53</td>
<td>18.36</td>
<td>11.30</td>
</tr>
<tr>
<td>Fossil-calibrated</td>
<td>212.92</td>
<td>35.21</td>
<td>17.80</td>
<td>25.63</td>
<td>19.94</td>
<td>9.84</td>
<td>18.82</td>
<td>19.29</td>
<td>11.96</td>
<td>8.15</td>
</tr>
<tr>
<td>Rate-calibrated</td>
<td>228.91</td>
<td>37.34</td>
<td>18.84</td>
<td>27.44</td>
<td>21.45</td>
<td>10.65</td>
<td>20.09</td>
<td>20.37</td>
<td>12.57</td>
<td>8.55</td>
</tr>
<tr>
<td>strict clock</td>
<td>[214.69–303.67]</td>
<td>[33.36–15.80]</td>
<td>[23.81–18.46]</td>
<td>[23.81–18.46]</td>
<td>[25.49–18.46]</td>
<td>[15.53–18.46]</td>
<td>[17.65–18.46]</td>
<td>[17.65–18.46]</td>
<td>[8.67–18.46]</td>
<td>[5.90–18.46]</td>
</tr>
</tbody>
</table>

a A log-normally distributed relaxed clock model (UCLN) calibrated with the fossil of *Notothylias nirulai* from the Deccan Intertrappean beds of Mohgaonka, India.

b A strict clock model calibrated with the same fossil.

c A strict clock model calibrated with a plastid substitution rate and a mitochondrial substitution rate for these two data partitions.

Data are mean values with 95% highest posterior density intervals shown in brackets.
Fig. 1. A hornwort chronogram for 103 species (from 4182 aligned nucleotides of plastid and mitochondrial DNA), with ML-optimized biogeographic area reconstructions to a depth of 55 Ma. Color-coded circles next to species names indicate sample provenance; pies at nodes indicate ancestral areas. The coded areas are shown in the inset and defined in Materials and Methods. Arrows mark dispersal events discussed in the text. An ML tree from the same data with bootstrap support values is presented in Fig. S1 (Electr. Suppl.). The taxonomic identity of the genera Paraphymatoceros and Folioceros are discussed in Villarreal & al. (in press). Exemplars of hornwort species (from top): Nothoceros dissecta Steph. (Panama), the barely exerted mature sporophytes marked by arrows; Phaeomegaceros squamuliger (Spruce) J.C. Villarreal (Chile) with abundant sporophytes (arrows), photo by J. Hollinger; Nothoceros vincentianus (Lehm. & Lindenb.) J.C.Villarreal (Costa Rica) with sporophytes in different stages of maturation (arrows). [See the online version of the paper for a full-colour illustration.]
Fig. 2. A, The same hornwort chronogram as used in Fig. 1, with its branches shaded by estimated diversification rates (see inset top left), with diversification being the means of the marginal densities of the rates. The dark line (background) represents the mean diversification rate-through-time (RTT) curve across all hornworts. The intensity of the shading reflects the relative probability of the inferred diversification with upper and lower 90% Bayesian credibility intervals. B, The light-colour lines represent RTT plots of diversification over the past 55 Ma for six genera, the dark lines represent the hornwort background rate (same as in A), shading as in A. Note the higher diversification rates in *Anthoceros* and *Dendroceros* compared to the hornwort mean rate. [See the online version of the paper for a full-colour illustration.]
We investigated diversification and biogeography in hornworts, a lineage of Paleozoic origin, from other bryophyte lineages (mosses and liverworts) with which it may be related (Villarreal & Renner, 2014). In a study of the evolution of bryophytes, we dated the hornwort crown group to 306 (214–399) Ma, the Upper Carboniferous (Villarreal & Renner, 2012). That high estimate was influenced by our constraint of the most recent common ancestor of the vascular plants (including as outgroups) to 416 (±3) Ma. Specifically, we had included nine vascular plants, one moss, and one liverwort. The inclusion of such sparse outgroups violates a basic assumption of Bayesian dating approaches, namely even taxon sampling across lineages (Drummond & Bouckaert, 2015). In the present study, we therefore chose not to include outgroups, rooting instead on a single species of hornworts that may be the sister to the remaining species. Hornwort rooting is unlikely to greatly affect our biogeographic analyses because we only consider nodes <55 Ma that would hardly change with different rooting (Electr. Suppl.: Fig. S1). The hornwort crown age of 160 (107–220) Ma obtained here (with the fossil-calibrated relaxed clock model) obviously differs greatly from our previous estimate.

Our new results are supported by the cross-validation of at least two of the inferred node ages against fossil ages that were not used as calibration points. First, there is an Anthoceros spore from the Lower Cretaceous Baqueró Formation, Argentina (Archangelsky & Villar de Seone, 1996). The Lower Cretaceous ranges from 145 to 100 Ma (Gradstein & Ogg, 2012), but isotope dating of the fossil-bearing stratum indicates an Aptian age (Cladera & al., 2002), that is, 125–113 Ma. The split between Anthoceros s.l. and the remaining hornworts is here estimated at 148 Ma (Fig. 1), and the fossil is thus a bit younger, suggesting that its morphology represents a taxon on, or sister to, the stem of Anthoceros. Second, there is a Phaeomegaceros spore from the Lower Miocene Uscari Formation, Costa Rica (Graham, 1987; the Lower Miocene ranges from 23 to 13 Ma; Gradstein & Ogg, 2012). The age inferred for the crown group of Phaeomegaceros with our clock model is 18 Ma (Fig. 2A; Table 1), which falls in the middle of the age of the geological formation in which the fossil was found. Lastly, our fossil-calibrated relaxed clock model yielded a crown age of Nothoceros of 29 (17–43) Ma, which fits with the age estimated earlier using a plastid rate calibration of 35 (30–40) Ma (Villarreal & Renner, 2014).

Biogeography. — Hornworts, like other spore-producing plants, have high dispersal capabilities, and the ranges of some species, such as Nothoceros vincentianus (Lehm. & Lindenb.) J.C. Villarreal from Mexico to Costa Rica and on Guadeloupe and Martinique, which molecular data support as monophyletic (Villarreal & Renner, 2014), seem to reflect this. It is doubtful, however, that all such trans-oceanic species are monophyletic, and much more sequencing work is necessary to test current species circumscriptions. Several surprising dispersal events...
inferred here, such as those in *Dendroceros* and *Phaeoceros* (Fig. 1, arrows), need to be regarded with caution because we only included 14 of the 40 species of the former genus and 16 of the 32 species of the latter. For the genus *Nothoceros*, which comprises ten species (all sampled), nine in the Americas and one in New Zealand (*N. giganteus*), the present global analyses confirmed our earlier inference that the ancestor of *Nothoceros* was South Temperate and expanded its range to eastern North America, with an early long-distance dispersal from New Zealand to Chile sometime during the Miocene (Villarreal & Renner, 2014).

Figure 2 shows inferred ancestral regions only to a time depth of about 55 Ma because of vastly different continental positions and climates prior to the Eocene. At that time depth, we reconstruct the most recent common ancestor of the *Nothoceros/Phaeomegaceros* clade as “South Temperate”, which may be trustworthy, given that this inference is driven mostly be the modern ranges of relatively well-sampled genera *Megaceros*, *Nothoceros*, and *Phaeomegaceros*. Nevertheless, such reconstructions should probably be met with skepticism because we are basically treating range as an inherited character. Current modeling approaches in historical biogeography, whether the Mk1 model used here or the dispersal-extinction-cladogenesis model implemented in the software LAGRANGE (Smith & Lee, 2010; Lee, 2013), all assume that geographic range change is agamic and has nothing to do with speciation (interruption of gene flow), a fact that has been underappreciated (Matzke, 2013, 2014). Much more work is needed in this area before one places too much weight on likelihoods for this or that ancestral range that derive from implausible reconstruction approaches.

Absence of shifts in diversification and constant background extinction: limited modeling power. — Our BAMM analyses inferred a steadily increasing rate of diversification for the entire hornworts (up to 0.045 species/Myr; Fig. 2), and similar to Lænen and al. (2014), we were unable to detect any shifts in diversification. We did detect higher than average rates in some hornwort genera, however, such as the epiphytic genus *Dendroceros* (with a crown age of ~22 Ma, Fig. 2B, and a diversification rate of 0.041 to 0.052 species/Myr). This increase may be linked to the availability of an angiosperm-dominated canopy, similar to what has been inferred for ferns, mosses, and the liverwort order Porellales (Schuettpelz & Pryer, 2009; Fitz-Palacios & al., 2011; Feldberg & al., 2014). However, the models used in these studies to link traits to changes in diversification rates all have statistical problems because of pseudoreplication (Maddison & Fitzjohn, 2015; Rabosky & Goldberg, 2015). A problem relevant to the present attempt to infer diversification rates in hornworts is that diversification models in BAMM all assume that each species—regardless of its age—has the same instante speciation probability (under the Yule tree process) or the same instante speciation and extinction probability (under the birth-death tree process model). This amazingly unrealistic assumption probably invalidates all published diversification rates (Hagen & al., 2015).

A final caveat for our study of diversification rates is the uncertainty surrounding the crown age of hornworts. As discussed above, using vascular plant outgroups and several fossils, we earlier inferred a hornwort crown age of 306 (214–399) Ma (Villarreal & Renner, 2012), while we here infer a crown age of 160 (107–220) Ma, with a single-fossil-calibrated relaxed clock model and without outgroups. Since the root age greatly influences the global diversification rate, our hornwort-wide rates should be regarded with caution.

Conclusions. — We present the first global analysis of hornwort biogeography and diversification. As expected, dispersal has played a prominent role in hornwort geographical distribution, and this may become even more apparent once sampling within species is increased to test if transcontinental species are monophyletic. That this may not be the case is suggested by a study of spore patterns and DNA sequences in Australian and New Zealand *Megaceros*, using multiple specimens per species, which showed that while spore patterns were indistinguishable, none of the New Zealand species are conspecific with any Australian species (Cargill & al., 2013). Such cryptic species may increase the current estimate of 220 species of hornworts worldwide. Lastly, our finding of constant and extremely low extinction rates and no significant global diversification rate shifts supports Rabosky’s (2014) warning about the low power of current approaches to infer extinction and ancient changes in diversification.

ACKNOWLEDGMENTS

For plant material we thank T. Peng and R.-L. Zhu (East China Normal University), S. Chattanaorrapin (Songkla University, Thailand), D.C. Cargill (Australian National Herbarium, CANB), S. Pressel and J.G. Duckett (Natural History Museum, London). Financial support came from the DFG grant RE 603/14-I.

LITERATURE CITED

Palacios & al., 2011; Feldberg & al., 2014). However, the models used in these studies to link traits to changes in diversification rates all have statistical problems because of pseudoreplication (Maddison & Fitzjohn, 2015; Rabosky & Goldberg, 2015). A problem relevant to the present attempt to infer diversification rates in hornworts is that diversification models in BAMM all assume that each species—regardless of its age—has the same

ACKNOWLEDGMENTS

For plant material we thank T. Peng and R.-L. Zhu (East China Normal University), S. Chattanaorrapin (Songkla University, Thailand), D.C. Cargill (Australian National Herbarium, CANB), S. Pressel and J.G. Duckett (Natural History Museum, London). Financial support came from the DFG grant RE 603/14-I.

LITERATURE CITED

Appendix 1. Voucher and GenBank accession numbers (in parentheses) for authorities used in this study. (Collection, accession number, herbarium and provenance are provided. Accession numbers of new sequences are given in bold.)

Appendix 1. Continued.

(Steph.) Hässel, *Queralt a s.n.* (M), Cuba, JX872439, JX872480, –, –; *Phaeoceros carolinianus* (Michx.) Prosk., Shevock 39775 (M), São Tomé, KF482290, KF482264, KF482237, –; *Phaeoceros dendroceroides* (Steph.) Hässel, *Villarreal 1305* (M), Panama, KF482291, KF482265, KF482325, KP238737; *Phaeoceros engelli* Cargill & Fuhrer, *Cargill & Fuhrer 1015* (CANB), Australia, JX872441, JX872482, KF482326, KP238738; *Phaeoceros evanidus* (Steph.) Cargill & Fuhrer, *Cargill 875* (CANB), Australia, JX872445, JX872486, KF482328, KP238742; *Phaeoceros flexivalvis* (Nees & Gottsche) Hässel, *Villarreal 863* (M), Dominican Republic, JX872443, JX872484, KF482238, KP238740; *Phaeoceros himalayensis* (Kash.) Prosk., *Long 30423* (E), Nepal, JX872444, JX872485, KF482239, KP238741; *Phaeoceros inflatus* (Steph.) Hässel, *Cargill & Fuhrer 474* (CANB), Australia, JX872445, JX872486, KF482328, KP238742; *Phaeoceros laevis* (L). Prosk., *Sergio s.n.* (LISU), Portugal, DQ845673, DQ845721, KF482240, KP238743; *Phaeoceros microsporus* (Steph.) Hässel, *Villarreal 725* (M), Panama, JX872446, JX872487, KF482329, KP238744; *Phaeoceros minutus* (Steph.) S.Arnell, *Hedderson 16879* (BOL), South Africa, JX872447, JX872488, KF482330, KP238745; *Phaeoceros mohrii* (Aust.) Hässel, *Doyle 11341* (M), U.S.A. (California), DQ845661, JX872448, JX872489, KF482331, –; *Phaeoceros oreganus* (Aust.) Hässel, *Doyle 11382* (M), U.S.A. (California), DQ845660, KF482332, KP238746; *Phaeoceros pearsonii* (M.A.Howe) Prosk., *Doyle s.n.* (M), U.S.A. (California), DQ845668, AY894802, KF482333, KP238747; *Phaeoceros perpusillus* S.Chantanaorrapint, *Chantanaorrapint 1551* (PSU), Thailand, KF482292, KF482266, KF482333, KP238748; *Phaeoceros proskauerii* Stotler & al., *Doyle 11339* (ABSH), U.S.A. (California), EU283415, KF482334, KP238749; *Phaeoceros tenuis* (Spruce) Hässel, *Ibarra Morales 17* (FCME), Mexico, JX872448, –, KF482334, KP238750; *Phaeo-megaceros chiloensis* (Steph.) J.C.Villarreal, *Larraín 34061* (CONC), Chile, JX872449, JX872489, –, KP238751; *Phaeomegaceros coriaceus* (Steph.) Duff & al., *Glenny 9757* (CONN), New Zealand, JX872450, JX872490, KF482335, KP238752; *Phaeomegaceros hirticalyx* (Steph.) Duff & al., *Duckett s.n.* (ABSH, M), AY463043, DQ845713, KF482336, KP238753; *Phaeomegaceros plicatus* (Mitt) J.C.Villarreal, *Engel & Vana, Gremmen T07-1097* (F), Tristan de Cunha, JX872451, JX872491, KF482337, KP238754; *Phaeomegaceros squamuligerus* subsp. *hasselii* J.C.Villarreal, *Goffinet 7106* (CONN), Chile, HM038429, HM038431, KF482341, KP238758; *Phymatoceros bulbiculosus* (Brot.) Stotler & al., *Sergio s.n.* (LISU), Portugal, DQ268978, DQ971763, KF482241, KP238759; *Phymatoceros phymatodes* (M.A.Howe) Duff & al., *Doyle s.n., Doyle 11480* (ABSH, M), U.S.A. (California), DQ845660, DQ845717, KF482342, KP238760.