
 

 

Figure 1-1. The visibility band map of a spherical f.c.c. crystal. This provides an elegant means of 
unification of all the subjects in this thesis.  For details please refer to 1.5 and 3.3.2. 
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ABSTRACT 

This thesis focuses on direct space nanocrystallography in 3-dimension (3D) via 

high-resolution transmission electron microscopy (HRTEM).  It comprises three topics, 

each of which is presented in a chapter.  Chapter 2 describes the development and 

application of an analytical technique to determine the lattice parameters of a nanocrystal 

from direct space images taken at two tilts.  The development mainly involves choosing 

two appropriate viewing directions to resolve the lattice structure in 3D.  General 

principles for establishing data acquisition protocols as well as certain protocols for some 

simple and popular lattices are presented.  In the application of one of the protocols, the 

lattice parameters of a 10 nm f.c.c.  WC1-x crystal are determined.  The significance of 

this technique lies in that it provides 3D crystal lattice structure information, and 

possesses the atomic-resolution of HRTEM.  In Chapter 3, a semi-empirical model for 

predicting lattice fringe visibility after tilt is presented.  It is based on studying the 

relative positions of the reciprocal lattice spots of the diffracting lattice plane set and the 

Ewald sphere in 3D.  Modified versions of the model enable predicting the invisibility of 

the lattice fringes and quantifying the probability of such an invisibility after tilt.  A new 

concept of visibility band of a set of lattice planes of a spherical crystal is introduced.  

The ensemble of visibility bands of a nanocrystal, the visibility band map, is like a 

roadmap to guide direct space nanocrystallographic analyses in 3D.  In this sense, a 

visibility band map is much like a Kikuchi map, and in principle contains the solutions to 

all the problems encountered in the thesis.  In Chapter 4, both the probability of success 

and the uncertainties of reciprocal lattice vectors in applying the stereo analysis technique 

described in Chapter 2 are quantified.  The relationship to calculate the size of a 

reciprocal lattice spot was determined, and it is the key to obtaining numeric solutions to 

all the problems encountered in the thesis.  Improvement of the probability of success and 

reduction of reciprocal lattice vector uncertainties are discussed.  
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1. INTRODUCTION 

In this chapter, techniques and the literature on crystallographic analysis and 3-

dimensional (3D) reconstruction in transmission electron microscopy are outlined.  The 

resolution limits of these techniques are reviewed.  In context of the scaling-down trend 

in materials science and engineering, this chapter argues that direct space crystallography 

by high-resolution TEM can provide 3D lattice information from arbitrarily small 

crystals.  As computer and microscope performance evolves, this approach will be of 

increasing usefulness, for the study of nanoscale structures already common in advanced 

materials today. 

 

1.1. TRANSMISSION ELECTRON MICROSCOPES AND 

CRYSTALLOGRAPHY 

 

In the advancement of materials science and engineering, it is necessary to 

observe, analyze and understand phenomena occuring on a small size scale.  The 

transmission electron microscope (TEM) is a powerful and versatile instrument which 

permits characterization of materials.  The first TEM was built by two German scientists, 

M. Knoll and E. Ruska, in 1932 (Knoll, 1932).  The first comercial TEM, 

MetropolitanVickers EM1, was manufactured in the UK in 1936.  Nowadays TEMs have 

become widely available.  Major manufacturers include Philips, JEOL and Hitachi. 

In a TEM a high-energy (~100 keV) electron beam is transmitted through the 

specimen.  During transmission, the electrons interact with the specimen, giving rise to 

signals containing information about the internal structure and chemistry of the specimen.  

Electron diffraction patterns and lattice images are two forms of data which allow 

crystallographic analysis in TEM.  Two types of electron diffraction patterns in TEM are 

referred to as selected area electron diffraction (SAED) and convergent beam electron 

diffraction (CBED).  Lattice images are interference patterns between the direct beam 

and diffracted beams, viewed in direct space, and are obtained by high-resolution TEM 

(HRTEM) imaging.  In the images, the spacing of a set of fringes is proportional to the 
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lattice spacing when the corresponding lattice planes meet the Bragg condition.  Among 

these crystallographic techniques, HRTEM has the highest resolution.  For direct 

inference of defect structure on the atomic scale, a sub-two-angstrom point resolution in 

an HRTEM is particularly useful, given that this is the typical spacing between atoms in 

solids (Spence, 1988a). 

 

1.2. LIMITS OF CRYSTALLOGRAPHY TECHNIQUES IN TEM 

 

In this section, the limits of the crystallographic techniques mentioned above are 

discussed.  These include limits on crystal size, spatial resolution and sensitivity to 

vertical position (along the direction of the electron beam in the specimen). 

 

1.2.1. Resolution Limits of Diffraction  In SAED, the sample is illuminated with 

a parallel electron beam to ensure convergence of the incident unscattered electrons on 

the back focal plane of the objective lens.  A specific area of the sample is selected by an 

SAED aperture that is in an “image plane” conjugate with the sample in the electron optic 

system of the TEM.  The inserted SAED aperture creates a virtual aperture in the sample 

plane, giving a selected area that is about 0.4 µm or greater, in diameter (Williams, 

1996b).  A few hundred nanometers is therefore the typcal lateral size of the region 

sampled by SAED in TEM. 

Historically CBED is older than SAED.  It was developed by Kossel and 

Möllenstedt in 1939 before LePoole developed SAED in 1947 (Kossel, 1939; Lepoole, 

1947).  Compared with SAED, CBED can examine smaller areas.  In CBED, the incident 

electron beam is converged and focused down to a spot 10-100 nm in diameter on the 

region of interest by a pre-specimen lens (the second condenser lens, C2) (Williams, 

1996g) .  The size of the focused electron beam as incident on the sample, determines the 

sampled volume which in turn defines the resolution of CBED. 

Only under “kinematical” conditions, i.e., when either the crystal thickness is less 

than about one-tenth of the extinction distance under a two-beam condition or when the 

crystal orientation is far away from all Bragg-conditions, can single-scattering events 

become dominant and CBED source regions approach the size of the beam size (Gevers, 
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1970; Hirsch, 1977c; Edington, 1976e).  However, when the specimen is so thin as to 

satisfy kinematical condition, the diffraction disks are uniformly bright and devoid of 

contrast.  The resulting patterns will give no more information than the SAED ones.  

Their only advantage over SAED is that they come from smaller regions.  This is one of a 

few cases in which higher “resolution” is achieved by focusing the electron beam.   

With a thermionic electron gun, the electron beam can in principle be focused 

down to 1 nm, yet a compromise in beam intensity occurs.  The intensity will be so low 

that the diffraction patterns are difficult to observe or record.  A field emission gun (FEG) 

can make an improvement in this regard, since it offers brightness that is two to three 

orders higher than that of a thermionic gun (Williams, 1996a).  For this reason, CBED 

with a subnanometer resolution has become possible but only in a TEM equipped with a 

field emisison gun, as pioneered by Cowley and co-workers (Cowley, 1981; Cowley, 

1996; Liu M., 1994).  Nanodiffraction has been applied to study the structures of 

nanometer metal particles in supported metal catalysts, and more recently to carbon 

nanotubes.  For example, Monosmith and Cowley determined the existence of twining 

and multiple twining in Au particles on an amorphous support (Monosmith, 1984).  

Iijima showed that carbon nanotubes consist of concentric cylinders of graphitic carbon 

sheets, some of which have one or more distict helical angles (Iijima, 1991).  Cowley 

confirmed the polygonal shape of carbon nanutubes and suggested the possibility of 

obtaining an ordered 3D graphitic structure in the planar areas of the tube walls (Cowley, 

1996).  Some difficulties are found with nanodiffraction, as a result of the necessarily 

large diffraction spots.  From these large spots it is impossible to accurately measure 

lattice parameters, and sometimes even the symmetry of the patterns may be confused 

(Cowley, 1996). 

In short, for thin crystals the sampled volume of the CBED technique is close to 

the electron beam spot size, which is in the range of 10-100 nm (in diameter).  This can 

go below a nanometer only in a field emission gun TEM (FEGTEM).  Nanodiffraction is 

the form of CBED with the highest sampling resolution, and has proven useful in studies 

of very small crystals.   

When the crystal thickness is greater than one extinction distance, CBED 

becomes more versatile, and can be applied to the determination of crystal lattice 
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symmetry, structure factor, strain and lattice parameters, characterization of crystal 

defects and so on (Eades, 1989; Changmo, 1991).  With so much thickness, however, the 

electron beam will be spread out, mainly due to multiple scattering events (Williams, 

1996h). 

Another disadvantage of CBED is that the specimen is more likely to be 

contaminated or damaged by the electron beam.  As is true in general, the high-energy 

electron beam causes both contamination and damage to the specimen.  A major source 

of contamination is the residual hydrocarbons from the pump oil or the specimen surface, 

which crack under the electron beam.  Carbonaceous material is then fixed on the 

irradiated area.  This local contamination can also cause stress in the specimen.  Damage 

takes two principle forms, radiolysis and knock-on damage.  In radiolysis, the chemical 

bonds of certain materials such as polymers and alkali halides are broken through 

inelastic scattering.  In knock-on damage, atoms of crystal lattice sites are displaced by 

the high-energy electrons, creating point defects.  When the electron beam is focused, as 

in CBED, the beam is more intense, hence both contamination and damage are more 

severe. 

 

1.2.2. Two-Dimensional Nature of Transmission Electron Data  A 

fundamental limit of transmission electron microscopy (TEM) arises from the two-

dimensional (2D) nature of transmitted electron data.  This includes selected area electron 

diffraction (SAED) patterns and lattice images (Williams, 1996m).  Each micrograph 

carrying such information, to first order, represents a 2D projection of the 3D object 

subjected to the electron beam.  This lack of depth sensitivity often results in ambiguous 

data on the structure of the examined object.  For example, in crystallographic analysis 

where the phase is unknown, it is possible that different candidate lattices can generate 

selected area electron diffraction patterns identical to the experimental one within 

measurement error (Qin, 2000a). 
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1.3. THREE-DIMENSIONAL RECONSTRUCTION TECHNIQUES IN TEM 

 

There are different 3D reconstruction schemes in TEM.  Here we focus on one of 

them, which is the correlation of transmission data taken at different tilts.  A brief 

introduction to another will be given in 1.3.4. 

 

1.3.1. Three-dimensional Reconstruction Scheme  The side-entry goniometer 

tilt stage in a transmission electron microscope provides specimen orientation adjustment 

capability.  This allows acquiring projections of an examined object from different 

viewing angles.  The orientation adjustment capability is enhanced by using special 

holders, including double-tilt and tilt-rotate holders.  Proper correlation of these 

projections serves the purpose of expanding the 2D limit of transmission electron data in 

a TEM to 3D. 

 

1.3.2. Reconstruction From Kikuchi Diffraction Patterns  3D reconstruction of 

crystal lattices in reciprocal space has been mainly performed from one or more Kikuchi 

diffraction patterns taken at different tilts.  The accuracy achieved is very high.  Kikuchi 

maps have been widely used in crystallographic analysis.  However, this technique faces 

some serious problems in analyzing small crystals that are beyond the resolution limit.  

We’ll begin with a review of Kikuchi diffraction. 

  

1.3.2.1 Kikuchi Diffraction  Since its discovery in 1928 by Kikuchi, in work on 

diffraction of cathode rays by mica, Kikuchi diffraction has been an invaluable tool for 

crystallographic analysis (Kikuchi, 1928; Hirsch, 1977a).  Kikuchi diffraction generates a 

complex pattern of lines known as Kikuchi lines.  The mechanism, as presented by 

Kikuchi, is that the incident electrons suffer very small energy loss (compared with their 

total energy) or zero energy loss in their passage through the crystal.  Since the crystal is 

not quite thin, they are scattered more than once and hence in all directions.  These 

diffusely scattered electrons will be selectively reflected by the lattice planes of mica 

according to Bragg conditions and cones of reflected rays are formed, intersecting the 

photographic plate.  Since the scattering intensity decreases with increasing scattering 
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angle, a pair of excess and deficient lines are generated for each set of lattice planes 

(strictly speaking, the lines are two branches of a hyperbola).  The main advantage of a 

Kikuchi pattern over a spot pattern is that its symmetry is precisely that of the crystal 

(Thomas, 1970b; Edington, 1976b). 

Kikuchi diffraction can be realized via both SAED and CBED.  In SAED the 

Kikuchi lines are diffuse, while in CBED patterns they become sharp.  This is because 

the sampled volume in CBED is smaller, hence there is little or no strain (Williams, 

1996i).  The sharpening effect can be enhanced by making the incident convergent angle 

greater than the Bragg angle. 

 

1.3.2.2 Crystallographic Analysis From One Kikuchi Diffraction Pattern  A 

Kikuchi diffraction pattern provides information about crystal lattice planes along more 

than one zone axis, thus enabling crystallographic analysis in 3D.  When all the 

diffraction features of interest are contained in one pattern, 3D crystallographic anlysis 

can readily be performed.  Heimendahl et al. first presented a three-pole solution for such 

a Kikuchi pattern, which involves indexing of three line pairs and their intersections, each 

of which is a crystal zone axis (aslo called “pole”) (Heimendahl, 1964).  Crystal 

orientation is obtained from the angles between these three poles and the direct beam.  

This method has been widely accepted and applied (Thomas, 1970a; Edington, 1976a; 

Williams, 1996f). 

 

1.3.2.3 Kikuchi Analysis at Different Tilts  If the reciprocal space to be explored 

is so large that the diffraction features of interest must be recorded on more than one 

plate/micrograph in a tilt series, the patterns on different plates must be properly 

correlated.  The projection of the tilt axis on a diffraction pattern is a line common to all 

the patterns taken in the tilt series.  Spatial relationship among the patterns can be 

inferred with the knowledge of the projection of this tilt axis and the goniometer readings 

corresponding to the specimen orientations at which the patterns were taken.  As 

reviewed by Möck, quantitative 3D crystallographic analysis based on such Kikuchi 

diffraction patterns generally consists of three sequential steps, i.e., determination of the 

projection(s) of tilt axis/axes on diffraction patterns, establishing spatial relationships 
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among reciprocal lattice vectors in reciprocal space via matrix algebra and application of 

the spatial relationship in crystallographic analysis (Möck, 1997).  Success of the related 

techniques has been found in the determinations of crystal orientation (Liu Q., 1990; 

Möck , 1991a; Möck , 1991b; Liu Q., 1995; Liu Q., 1989), orientation difference between 

two phases or grains (Liu Q., 1989), grain boundary parameters (Liu Q., 1992), 

crystallographic basis triplet (Fraundorf, 1981b), specimen orientation adjustment (Liu 

Q., 1989), indexing diffraction patterns (Tambuyser, 1985), phase identification 

(Fraundorf, 1981a) and so on. 

 

1.3.2.4 Roadmaps for 3D Crystallographic Analysis  Reicke and Sakaki adopted a 

different method to correlate Kikuchi diffraction patterns exposed on different plates in a 

tilt series (Riecke, 1959).  The recording was performed in such a manner that the 

patterns on successive plates have some overlap.  The positions of the plates were 

arranged through matching patterns on successive plates.  This way standard Kikuchi 

projections, known as Kikuchi maps, for fcc, bcc and hcp crystals were constructed by 

Levine, Okamoto and co-workers (Levine, 1966; Okamoto, 1967; Johari, 1996).  Very 

much like the roadmaps for a tourist, Kikuchi maps have been used to guide adjusting 

crystal orientation in TEM for 3D crystallographic analysis (Levine, 1966; Edington, 

1976d).  However, this method of correlation through matching adjascent Kikuchi 

patterns has some disadvantages.  As pointed out by Levine et al., when one tilts far away 

from a low index zone, matching of patterns on adjacent plates becomes more difficult 

(Levine, 1966).  A more fundamental problem arises from the curvature of the Kikuchi 

lines, which is usually not noticeable on a single plate, but causes distortion of the 

composite Kikuchi map, particularly for orientations that are more than 20° from an axis 

of symmetry (Levine, 1966). 

 

1.3.2.5 Limits of Kikuchi Diffraction for Small Crystals  While Kikuchi 

diffraction has been an effective tool for 3D crystallographic analysis, it faces some 

serious problems in analyzing small crystals.  As discussed in 1.3.2.1, Kikuchi diffraction 

is formed through either SAED or CBED, therefore general conclusions drawn about the 

“resolution” limit of these two techniques in 1.2.1 are applicable to Kikuchi diffraction.  
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Liu Q. et al. made some specific comments about the difficulty of Kikuchi diffraction for 

small crystals.  When a crystal is small, it will be not thick enough to generate discernible 

Kikuchi pattern (Liu Q., 1989).  In addition, if a Kikuchi diffraction pattern is to be used 

for adjusting the crystal orientation, it will be hard to keep the small crystal subjected to 

the beam during tilting.  The loss of the crystal from the beam during tilting requires 

switching back to the image mode to look for the crystal, which will be tedious and time-

consuming. 

  

1.3.3. Three-dimensional Reconstruction in Direct Space (Based on TEM 

Images)  Three-dimensional reconstruction techniques in direct space include 

stereomicroscopy and electron tomography.  Neither is for crystallographic anlysis (and 

stereomicroscopy is not even a quantitative techqniue).  However, the underlying 

principle of electron tomography is almost identical to that of the 3D reconstruction from 

Kikuchi patterns taken at different tilts, as discussed in 1.3.2.3, and that of the technique 

to be presented in Chapter 2.  We begin from a review of stereomicroscopy as follows. 

 

1.3.3.1 Stereomicroscopy  Stereomicroscopy is a technique that provides 3D 

views of certain features and enables depth perception and measurement from a pair of 

TEM micrographs.  It is a mimic or an extension of the human binocular vision of 3D 

objects.  In the latter case, the views from two eyes are from different angles (~5º), giving 

rise to a parallax shift as the signal is interpreted in the human brain.  Depth is gauged 

from the parallax shift (Williams, 1996m).  Analogous to this mechanism, a pair of TEM 

image are taken at two different specimen orientations a few degrees apart.  With a stereo 

viewer, the depth information is regained from the images. 

Stereomicroscopy is applicable only to features showing mass-thickness or 

diffraction contrast.  The idea originated from a technique by Lang (Lang, 1959).  Lang 

used stereo X-ray micrograph pairs, each of which comprises one photograph taken in g 

reflection and the other in –g reflection, to obtain relative positions of dislocations in 3D.  

However, this principle to form stereo pairs can not be simply extended to electron 

microscopy, as the amount of tilt is only twice the Bragg angle for g, which is on the 

order of 0.1° and too small compared with a tilt of at least 5° that is necessary to produce 
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a reasonable stereoscopic effect.  To avoid this problem, Basinski, in studying  

dislocation networks generated by deformation at liquid He temperature in a Cu crystal, 

excited the same g reflection in a stereo pair through tilting along the corresponding 

lattice plane, i.e., the tilt axis is parallel to g (Basinski, 1962).  This way stereo pairs of 

dislocation networks were successfully produced with tilts of up to about 20°, and very 

strong stereoscopic effect was obtained.  This approach has been widely accepted and 

applied as a standard (Thomas, 1970c; Edington, 1976c; Hirsch, 1977d).  Kikuchi maps 

are particularly useful in realizing the right diffraction condition, since both the sense and 

the approximate value of tilt can be determined from the maps. 

In their stereomicroscopy analysis of spatial distribution of voids produced in 

nickel/copper during ion irradiation, Chen et al. measured the depths of individual voids 

approximately from stereo pairs taken 6° apart (Chen, 1972).  The depth measurement, 

however, was subject to an uncertainty of ±20%.  Maher et al. used stereo pairs to 

determine the ‘sign’ of small point defect clusters (interstitial or vacancy) in neutron 

irradiated molybdenum foils (Maher, 1971).  In addition to materials science, 

stereomicroscopy has been applied to biology in studying cell-wall structure and 

deposition, connective tissues and biological thin sections (Hudson, 1973; Cox, 1973; 

Glauer, 1973; Willis, 1973).  As a closing remark, stereomicroscopy is not an adequate 

technique for solving a structure, since it does not reproduce structures in a quantitative 

form.  Information from pairs of corresponding points in a stereo pair is combined only 

visually.  Quantitative stereo measurement is treated in stereology (Russ, 1990).  

Algorithms for applying stereology to the mapping of lateral tip forces in scanning 

tunneling microscopy were developed at UM-St. Louis by Shen (Shen, 1997). 

 

1.3.3.2 Electron Tomography  Electron tomography is a general term for any 

technique that employs TEM to collect projections of an object so as to reconstruct the 

object in its entirety (Frank, 1992a).  The first consideration of the general 3D 

reconstruction of an object from its projections can be traced back to 1917 (Randon, 

1917).  DeRosier and Klug introduced this technique into electron microscopy, and 

formulated the general principles for object reconstruction (DeRosier, 1968).  The first 

formal solution of this problem was given in terms of Fourier transforms by Crowther et 
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al. (Crowther, 1971).  In the underlying principle, a projection yields a single central 

plane of the examined object’s 3D Fourier transform.  The Fourier transform, an 

alternative representation of the object, breaks down the object’s density distribution into 

sinusoidal waves.  Projections of the object along different viewing directions are 

obtained by tilting the object, then used to perform Fourier synthesis, after which the 3D 

structure of the object can be built up.  The number of projections needed to fill Fourier 

space depends on both the size of the particle and the desired resolution.  Intrinsic 

symmetry of an object generally reduces the total amount of necessary projections and 

the maximum tilt angle required, since different orientations of the object present 

identical projections (Frank, 1992b; DeRosier, 1968; Hoppe, 1976).  Utilizing its high 

rotational symmetry, DeRosier and Klug successfully demonstrated the 3D reconstruction 

of a phage tail from only one electron micrograph (DeRosier, 1968).  (This is similar to 

the 3D reconstruction of crystal lattices, since they comprise just a different type of 

structure symmetry for which often only two projections containing three linearly 

independent reciprocal lattice vectors are sufficient to infer the whole crystal lattice) 

(Fraundorf, 1981a). 

There are two methods of data acquisition: either by imaging the same object at 

different tilts or by imaging different copies of the object occurring in different 

orientations (provided the structure is reproducible) (Frank, 1989).  The second method 

offers the advantage of less radiation damage to any single specimen.  Based on the 

theories developed, electron tomography has found success in the studies of both 

symmetric and asymmetric biological objects (Frank, 1992d; Frank, 1986; DeRosier, 

1968; Crowther, 1971; Frank, 1989; Herman, 1979; Hoppe, 1981; Lewitt, 1978; 

Henderson, 1975). 

 
1.3.4. Other TEM Techniques Capable of Retrieving 3D Information  Other 

techniques are capable of retrieving 3D information.  These techniques include electron 

holography.  A brief introduction to electron holography is given as follows. 

Electron holography was proposed as a method of interference imaging by Gabor 

in the late 1940s and strongly pursued after introduction of FEGTEM in late 1970s 

(Gabor, 1948; Gabor, 1949).  In essence it employs an electron biprism to allow 
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interference between an object wave and a reference wave.  The interferogram is then 

processed to yield separate amplitude and phase images (Tonomura, 1995).  Twenty 

modes have been described and success has been found in the determinations of shape 

and thickness, magnetization measurements, imaging magnetic lines of force and so on 

(Cowley, 1992; Beeli, 1997; Wang, 1997). 

 

1.4. SMALLER CRYSTALS IN 3D: LOCATION AND PERIODICITY FROM 

IMAGES 

 

From the above discussion, it becomes obvious that 3D information can be 

acquired from projections at two tilts.  However, when analyzing tiny crystals (more and 

more common in many materials fields), a decrease in the size of the region analyzed is 

desirable. 

 

1.4.1. The Scaling-down Trend  In recent years, tremendous interest has been 

generated in the fabrication and characterization of submicrometer and even nanoscale 

structures in many fields, such as device manufacturing and nanocrystalline materials. 

In device manufacturing, there exists a drive toward smaller, faster and more 

sensitive and reliable systems.  This is evident from the fact that the size of a single 

transistor in semiconductor devices has evolved from millimeters to 0.18 µm, and is 

currently progressing toward 0.15 µm (Wauters, 1998).  The “roadmap” for the Si 

ultralarge-scale-integration circuit (ULSI) industry targets the production-level 

realization of a 70 nm minimum feature size for the year 2010 (Hasegawa, 2000).  

Similar trends exist in compound semiconductor device manufacturing.  The relentless 

miniaturization of GaAs- and InP-based heterostructure devices has brought about 

ultrahigh speeds, approaching the tHz range with ultralow power consumption.  In the 

disc drive industry, areal storage density has been increasing at a remarkable rate of 60% 

per year for about a decade, owing to the improvements made in the head designs 

(KnowledgeTek, 1999).  Anisotropic magnetoresistive (AMR) heads dominated the 

magnetic data storage systems in the 90’s, but are now being replaced by giant-

magnetoresistive (GMR) heads, since a GMR head has a smaller size and offers about 
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five times as high a sensitivity, i.e., R RV  ≅ 20% (Baibich, 1988; White, 1994; 

Mallinson, 1996).  The upper limit of areal density demonstrated with an AMR head is 5 

Gbits/in2 by IBM, while that with a GMR head reached 16Gbits/in2 by Seagate (Tsang, 

1997).  In nanocrytsalline materials, novel properties in the areas of magnetics, catalysis, 

mechanics and optics have also been achieved through structural control down to the 

atomic scale (Kung, 1999; Ghosh, 1999; Sellmyer, 1999; Miura, 1999; Kim, 1997). 

 

1.4.2. A Possible Solution: Direct Space Crystallography  In response to the 

need to characterize structures on small size scales, a call for analytical techniques of 

higher spatial resolution and providing more complete information very naturally arises.  

In analyzing nanocrystals, one possible approach is to combine the high-resolving power 

of HRTEM with the specimen orientation adjustment function of a TEM, to resolve the 

(nano)crystal lattice structure in 3D from lattice images taken at different tilts. 

In HRTEM arbitrarily small crystals (even individual atoms) can be examined.  

Hence the “sampled volume” limitation of diffraction does not apply.  But HRTEM, 

unlike diffraction, can only image the largest lattice spacings, hence a brief introduction 

to “point-resolution” in an HRTEM follows. 

In HRTEM, spherical aberration and defocus both contribute to the phase shift of 

an objective electron wave (relative to the reference wave) in the image.  For a weak-

phase object where the amplitude of a transmitted wave function is linearly related to the 

projected potential, Schertzer in 1949 showed that the contrast transfer could be 

optimized by balancing the effect of spherical aberration against a particular negative 

value of focus, i.e., defocus.  At this defocus setting, all the objective waves are 

transferred with nearly constant phase out to the lowest filtered out spatial frequency, i.e., 

the first “cross-over” or the first zero in the contrast transfer function, and this flat-

response regime becomes almost as wide as possible (Spence, 1988a; Williams, 1996k).  

For all objective waves with spatial frequencies in this flat-response regime, the 

interpretation can be directly made without taking into account contrast transfer reversal.  

The distance corresponding to this first cross-over in the contrast transfer function, 

denoted as rSch, is defined as the point-resolution of an HRTEM. 
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HRTEM has the advantage over diffraction that crystal structure and crystal 

shape/location information are incorporated in the same image.  If there is amorphous 

material in the field of view, information on instrument response may be found in the 

image, thanks to an elegant theory of electron phase contrast transfer. 

Fraundorf described the prospects to determine the 3D lattice parameters of 

nanocrystals from HRTEM images taken at different crystal orientations (Fraundorf, 

1987).  The reciprocal lattice vectors were to be acquired in the form of lattice fringe sets 

through images taken along two or three directions in a tilt series.  The TEM must have a 

high enough point resolution, as well as a large enough tilt capability, in order to resolve 

the lattice plane sets of interest, and reach the desired viewing directions along which the 

lattice plane sets can be imaged.  Once the power spectra of the lattice images are 

obtained, and lattice fringe vectors† measured, the data processing and subsequent 

crystallographic analysis would be identical to those described in his earlier work on 

stereo analysis of single crystal electron diffraction patterns (Fraundorf, 1981a).  The 

difference only lies in the data acquisition.   

Through electron diffraction, reciprocal lattice vectors with very large magnitudes 

can be detected.  This not only offers a wide range of data to choose, but also imposes 

less constraint on the TEM tilt capability, as high index zones are very much closely-

spaced and also offer recordable reciprocal lattice vectors.  Through HRTEM, however, 

the magnitudes of easily interpretable lattice fringe vectors only extend to the first cross-

over in the contrast transfer function (Spence, 1988a; Williams, 1996b).  In direct space, 

this means only lattice plane sets with spacings larger than the point resolution of the 

TEM are easily considered.  In addition, only low index zones can be chosen since they 

are the viewing directions along which lattice plane sets with large spacings are available 

for HRTEM.  Since low-index zones are widely separated, the tilt range of the TEM must 

be accordingly wider. 

                                                
† A lattice fringe vector associated with a set of lattice fringes is a vector whose magnitude is equal to the 

inverse of the spacing of the fringes, and whose direction is along the normal to the fringes. It can be 

measured from the power spectrum of an HRTEM image showing the fringes. It only equals to the 

reciprocal lattice vector corresponding to the lattice plane set when this lattice plane set is in exact Bragg 

condition. 
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In summary, when resolving the 3D crystal lattice structures from direct space 

images, careful consideration must be given to choosing the appropriate imaging 

directions in order to acquire interpretable reciprocal lattice vectors.  Consequently, data 

acquisition protocols are important, and this will be a main focus in the development of 

techniques for direct space crystallography of nanocrystals via HRTEM. 

 

1.5. CONTENT AND STRUCTURE OF THE THESIS 

 

The content and structure of this thesis can easily be understood with the aid of 

the visibility band and the visibility band map shown on the front page.  “Visibility” here 

means the visibility of fringes from a set of lattice planes of a (nano)crystal in HRTEM 

images.  When the electron beam is incident on the lattice plane set and satisfies the 

Bragg condition, the lattice fringes are visible.  The finite size of the (nano)crystal results 

in relaxation of that Bragg condition.  This will enable lattice fringes to be produced in 

the images, for a finite range of incident angles of the electron beam.  If the (nano)crystal 

is spherical, from the rotation symmetry of the electron beam around the lattice plane 

normal, it can be concluded that the region of fringe visibility will be distributed in a 

band running parallel to the lattice plane set.  The ensemble of the visibility bands of the 

(nano)crystal forms the visibility band map, as shown on the front page. 

Chapter 2 concerns direction of the electron beam along one cross-section of two 

bands and then somewhere along the middle of another band, so that three sets of lattice 

fringes can be obtained to perform 3D analysis.  Chapter 3 involves determining whether 

the electron beam lies in a band or out of it after tilting the crystal, so that whether the 

corresponding lattice fringes are visible or not after tilt can be predicted.  Part of Chapter 

4 in principle focuses on calculating the solid angle subtended by a cross-section of 

visibility bands, which is proportional to the probability of obtaining the corresponding 

zone images from a randomly oriented nanocrystal.  However, what has been done in this 

thesis is an approximation, since the exact solution has not been obtained yet.  The wider 

a visibility band, the higher is the uncertainty of the corresponding reciprocal lattice 

vector.  Quantifying such an uncertainty forms the second half of Chapter 4. 
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2. CRYSTAL LATTICE PARAMETERS FROM LATTICE IMAGES AT TWO 
TILTS 

 

2.1. INTRODUCTION 

 

Various techniques have been developed to infer the 3D relationship of reciprocal 

lattice vectors from Kikuchi diffraction patterns taken at different specimen orientations.   

Such relationships have been applied in the determinations of crystal orientation (Liu Q., 

1990; Liu Q., 1989), grain boundary parameters (Liu Q., 1992), and crystallographic 

basis triplet (Fraundorf, 1981b).  Other applications include specimen orientation 

adjustment (Liu Q., 1989), diffraction indexing (Tambuyser, 1985), and phase 

identification (Fraundorf, 1981a).  The basic approach consists of 3 parts: determining the 

projection of the tilt axis on electron diffraction patterns of the working camera constant, 

inferring the relative positions of the diffraction spots in the reciprocal space, and finally, 

applying the spatial relationship among the reciprocal lattice spots to crystallographic 

analysis (Möck,  1997).  When the crystal size is in the nano-meter scale, probes in 

conventional CBED can no longer extract lattice structure information specific to 

individual nano-crystals.  Recent development in Field Emission Gun (FEG) TEM makes 

it possible to achieve nano-diffraction (Cowley, 1981; Cowley, 1996).  This requires 

UHV technology, which is expensive and a much higher level of operator competence is 

needed (Williams, 1996a).  Another drawback of nano-diffraction is the high current 

dosage due to the spatial confinement of the electron probe.  Unless the crystal is very 

robust, it’ll suffer severe radiation damage during examination.  Lastly, of course, 

diffraction by definition contains no information of crystal location.  A need thus arises 

for analytical microscopy techniques with high spatial resolution, lower radiation 

damage, and a larger base of installed instruments.   Inferring the  3D lattice of a crystal 

from HRTEM images is the solution discussed here. 

Due to the transmitted nature of the electron beam, a TEM image presents 3D 

information averaged throughout the thickness of the specimen on each micrograph.  In 

order to overcome this limitation, techniques for acquiring the 3D information from TEM 
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images have been developed.  These include stereomicroscopy and electron tomography 

(Basinski, 1962; Hirsch, 1977d; Tambuyser, 1984; Frank, 1986; DeRosier, 1968).  

However, stereomicroscopy only provides visual 3D views of features showing mass-

thickness or diffraction contrast and is not a quantitative technique; while electron 

tomography is for the reconstruction of an object in its entirety.  Neither is for 

crystallographic analysis. 

With the availability of HRTEM, prospects of 3D reconstruction for non-periodic 

structures, as well as those for finding the 3D lattice parameters of nano-crystals from 

lattice images taken at different specimen orientations, were discussed (Hoppe, 1977; 

Fraundorf, 1987).  In the latter case, the core instrumentation requirement consists of a 

TEM capable of delivering contrast on the spatial frequencies of interest in the specimen, 

and a tilt range of more than 30° over a single tilt axis.  For crystals with unit cell sizes of 

~4 Å and larger, a conventional high-resolution TEM with continuous contrast transfer to 

spatial frequencies beyond 1/(2 Å) is well capable of such tasks.  Here we describe the 

development of such a technique and its application to the analysis of a nano-crystal 

using a Philips EM430 ST TEM.  Appropriately orienting a small cell crystal so as to 

reveal its lattice structure in HRTEM images is a key part of the experimental design. 

As a prerequisite for 3D reconstruction of crystal lattices from lattice images 

taken at different tilts, the projection of the (effective) tilt axis on images must be known.  

Such a projection is similarly crucial in the 3D reconstruction of crystal lattices from 

electron diffraction patterns, and the interiors of objects from images in electron 

tomography (Frank, 1992c; Frank, 1986; DeRosier, 1968; Möck, 1997; Liu Q., 1990; 

Möck, 1991a; Möck, 1991b; Liu Q., 1992; Fraundorf, 1981b; Liu Q., 1989; Fraundorf, 

1981a).  In techniques of 3D electron diffraction crystallography, the projection of a tilt 

axis is inferred from the “Kikuchi pattern moving direction” while a thick crystal is tilted.  

That in electron tomography involves either fiducial marker or cross-correlation function 

(Lawrence, 1992; Frank, 1992).  An alternative marker-free scheme has been developed 

based on the fact that all projections of a single axis tilt series share a common line in 

Fourier space (Liu Y., 1995).  This approach, however, requires the specimen to be 

freely-supported and its boundary sharply defined, and is noise-sensitive.  In some other 

applications a side-entry tilt axis is assumed to be parallel to the specimen holder rod and 
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thus the tilt axis projection on images is determined by translating the specimen 

(Tambuyser, 1984; Liu Q., 1989; Fraundorf, 1987; Williams, 1996d).  This is valid so 

long as the transverse backlash is negligible compared with the longitudinal translation 

seen in an image.  This is unlikely at high magnifications, however.  Another method for 

axis determination on ~2K magnification images is from the mirror-symmetry between a 

pair of images of a plankton tilted 180o apart using a 360o-tilt specimen holder (Zhang, 

1998).   

 Nonetheless these image-based methods have been applied at low to medium 

magnifications (Amos, 1982).  As the secondary focus of this paper, we will also present 

a method for determining the projection of a tilt axis on HRTEM images. 

 

2.2. STRATEGY: TILT PROTOCOLS TO EXPLOIT CRYSTAL SYMMETRY 

 

We can take advantage of the symmetry of crystals (and quasicrystals) by noting 

that generally 3 non-coplanar reciprocal lattice vectors seen along 2 different zone axes 

are sufficient for inferring a subset of the 3D reciprocal lattice of a single crystal.   Often 

these are adequate to infer the whole lattice.  The goal of the experimental design is thus 

to look for 3 reciprocal lattice vectors within the first contrast transfer function pass-band, 

and present along two zones whose angular distance is within the tilt limit of a TEM.   

Images with point resolution smaller than the analyzed spacings are requested, to lessen 

chances of missing comparable (or larger) spacings in the exit-surface wavefield.  In 

tilting from one zone to another, the crystal must be specially oriented so that the lattice 

planes parallel to both desired zones are perpendicular to the tilt axis.  With the above 

consideration of both the limited tilt range typical for an HRTEM and the point resolution 

taken into account, the possibilities to resolve the lattice structures of the simplest and 

most popular lattices are limited and can be enumerated.  For each of these possibilities, 

there is a corresponding data acquisition protocol.  Each protocol involves tilting between 

two low-index zones, along which altogether 3 targeted reciprocal lattice vectors can be 

acquired.  Before treating the theory more generally, we illustrate with an example for 

WC1-x, which is given as follows. 
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WC1-x has an f.c.c. lattice with a = 4.248 Å (Krainer, 1967; JCPDS-ICDD; Qin, 

1998).  For a WC1-x nano-crystal, the 3 targeted reciprocal lattice vectors are g200 and g020 

along the [001] zone, and g1,1,-1 along the [112] zone.  The corresponding lattice spacings 

are d200 = d020 = 2.124 Å and d1,1,-1 = 2.45 Å.  The angle between the two zones is 35.3o.  

The two specimen orientations can therefore be set at the two of (θ1=15.0o, θ2=9.7o) and 

(θ1=-15.0o, θ2=-9.7o), which are 35.3o apart (Selby, 1972), where θ1 and θ2 are 

goniometer readings in a Gatan double tilt holder.  The effective tilt axis for such a 

double tilt runs perpendicular to the electron beam and hence parallel to the micrographs 

in this case.  Its azimuth is 123.5o on the xy plane of the coordinate system used (The 

azimuth of an effective tilt axis can be calculated using (2-7), and the coordinate system 

will be discussed in 2.6.1).  The (2, -2, 0) lattice planes are parallel to the two zones.  

Therefore the tilt must be along the (2, -2, 0) lattice planes, i.e., g2, -2, 0 // Teff, where Teff  

denotes the effective tilt axis.  This tilt protocol holds valid for any f.c.c. lattice with a 

lattice constant greater than twice the point resolution of the TEM, and is given in Table 

2-1.  It can readily be obtained from the visibility band map on the front page, where the 

[001] and [112] zone axes (as marked) are separated by 35.26°.  The expected 

experimental result is illustrated in Figure 2-1.  In order to use appropriate protocols, 

“first hand” data about the crystal phase, usually from chemical composition analysis, 

must be obtained to provide reasonable guess of the lattice structure of the crystal.  

HRTEM image(s) along at least one low index zone with cross lattice fringes can further 

narrow down the scope of candidate lattice structures.   

 

 

 

Table 2-1. A data acquisition protocol to determine the 3D lattice of an f.c.c crystal with a lattice constant 

of a>2rSch. 

Zone [001] [112] 
Lattice Fringes Vectors (020) 

(200) 
(1, 1, -1) 

Tilt Along 
Lattice Planes 

(2, -2, 0) 

Tilt 35.3o 
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Figure 2-1. Schematic illustrating application of the f.c.c. stereo lattice tilt protocol of to a nano-crystal in a 
tungsten-carbide thin film.   Models show tungsten atoms only.  The 1st tilt was around -T2 by 19.4o, the 2nd 
tilt, -T1 by 30.0o, where T1 and T2 are the side-entry goniometer tilt axis and the 2nd tilt axis, respectively. 

 

 

General theories to establish data acquisition protocols for any crystal system, as 

well as some protocols for f.c.c., b.c.c. and s.c. lattices have been presented elsewhere 

(Qin, 2000a).  Some of these protocols are illustrated in Figure 2-2.  The f.c.c. protocol 

specified in Table 2-1 and illustrated in Figure 2-1 is given as the 2nd entry in the first 

column in Figure 2-2.  In addition, two tilt protocols with the lowest amount of tilts for 

graphite as an example of hexagonal lattice is given in Table 2-2.  It can be seen that the 

amount of tilts are much less that those required for f.c.c. and b.c.c. lattices. 
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Table 2-2. Two data acquisition protocols for graphite lattice with a TEM point resolution of 1.9 Å. 

Protocol 1 2 
 1st Zone 2nd Zone 1st Zone 2nd Zone 
 [1, -1, 1] [1, -1, 2] [101] [1, -2, 2] 

Lattice Spacing 
to be Resolved 

(Å) 

d1, 0, -1 = 2.04 
d0, 1, 1= 2.04 

d1, -1, -1=2.04 d1, 0, -1 = 2.04 
d1, -1, -1= 2.04 

d0, 1, 1 = 2.04 
 

Tilt Along 
Lattice Planes 

(1, 1, 0) (2, -1, -2) 

Amount of Tilt 14.8° 16.6o 
 

 

 

2.3. EXPERIMENTAL SETUP 

 
There are different subjects in this section.  They include the instruments, 

calibration of the microscope, setting-up the coordinate system, tilting the sample, and 

sample preparation. 

 

2.3.1. Instruments  The Philips EM430 ST TEM used provides continuous 

contrast transfer to 1/(1.9 Å) at the Scherzer defocus, and is equipped with a ±15° side-

entry goniometer specimen stage.  A Gatan double tilt holder enables ±10° tilt around the 

second tilt axis.  The largest orientation difference which can be achieved using this 

double tilt holder in the microscope is therefore 35.6° (Selby, 1972). 

 

2.3.2. Calibrating the Microscope: Determination of the Projection of the Tilt 

Axis on HRTEM Images  In order to establish spatial relationship of the lattice  

fringe vectors, which are determined from the images taken at different specimen 

orientations via tilting, the orientation of the tilt axis with respect to the images must be 

known.  A tilt axis direction is defined such that a tilt around it, by the right hand rule, 

corresponds to an increase in the goniometer reading.  In a single tilt, the tilt axis is  
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Figure 2-2. Illustration of all the protocols to determine the lattice parameters of f.c.c. and b.c.c. crystals 

from a pair of lattice images, given an ability to image lattice spacings down to half the unit cell side, and a 
tilt range of less than 60°.  The two zone images in each protocol are labeled with their zone indices.  The 
arrow for each protocol indicates the direction of tilt, which is perpendicular to the tilt axis.  The double 

arrow in a protocol indicates that both zone images show cross-fringes, hence it is possible to determine the 
direction of tilt from either zone images, and tilting can be performed in either direction as indicated by the 

double arrow. 
 

 

 

perpendicular to the electron beam and parallel to the micrographs.  So it is with the 

effective tilt axis of a double tilt holder, provided the two specimen orientations are 

symmetric about the untilted position.  We limit our discussion to double tilts falling into 

this category. 
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In the following discussion, we use T1 and T2 to denote the side entry goniometer 

tilt axis, and the second tilt axis in the Gatan double tilt holder, respectively, and θi (i =1 

~ 2) to denote the goniometer reading for a tilt around Ti.  Determination of the 

projection of T1 on HRTEM images was performed in 2 steps.  First the projection of T1 

on an electron diffraction pattern with a certain camera length was determined.  When the 

specimen was tilted about T1, the Kikuchi pattern motion of a Si<110> specimen was 

recorded on either one micrograph through a double exposure, or two micrographs.  

Another alternative is to use a tilt-rotate holder to rotate the specimen at zero side-entry 

goniometer tilt, i.e., with θ1=0o, until one Kikuchi line is parallel to the Kikuchi pattern 

moving direction.  The projection of T1 is parallel to the cross-product of the electron 

beam direction and the Kikuchi pattern moving direction.  The relationship among the 

three directions is shown in Figure 2-3.   

Secondly, an electron diffraction pattern with the same camera length and a 

HRTEM image at the desired working magnification, both from the same region in the 

above Si specimen, are taken.  The rotation angle between the electron diffraction pattern 

and the HRTEM image allows determining the projection of T1 on the HRTEM images 

(This method to determine the projection of a tilt axis on HRTEM images has not been 

seen in literatures).  In our experiment, this rotation angle is obtained from that between 

the (2, -2, 0) diffraction spot in the diffraction  pattern and the same (2, -2, 0) spot in the 

power spectrum of the HRTEM image.  A 180° uncertainty will remain (Williams, 

1996c; Beeston, 1972).  This uncertainty can be resolved by observing the specimen 

moving direction in HRTEM images while the specimen is translated along T1.  Another 

traditional method to determine the rotation of an image at a certain magnification with 

respect to an electron diffraction pattern at a certain camera length is through a double-

exposure which records both the image and the electron diffraction pattern of MoO3 on 

one micrograph (Beeston, 1972).  This also has a 180° uncertainty, and works better at 

lower magnifications given the usual size of the MoO3 crystals. 
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Figure 2-3. The relationship among the projection of a tilt axis on an electron diffraction, the 

electron beam direction and the Kikuchi pattern motion direction.  The projection of the tilt axis is along 

the cross-product of the electron beam direction and the Kikuchi pattern motion direction. 

 

 

 

The projection of T2 on HRTEM images can be determined using the same 

method.  In our work it is assumed to be perpendicular to that of T1.  This is consistent 

with the design of the holder, and will be confirmed by the conservation of lattice fringe 

vectors that are prallel to the effective tilt axis after a double tilt, which will be discussed 

in 3.4.1.  A different approach to determine the projection of T1 on TEM images (most 

were at low to medium magnifications) is by translating the specimen along the direction 

of T1 (Liu Q.,1989 ; Tambuyser, 1985; Tambuyser, 1984; Fraundorf, 1987; Williams, 

1996e) .  The assumption held is that the longitudinal geometric axis of the specimen 

holder is coincident with T1, which is valid when the traverse backlash, small and 

negligible compared with the longitudinal translation at low to medium magnifications, is 

not a limiting factor.  It was found in our experiment that, however, at the high 

magnification of 700K, the longitudinal specimen translation direction deviates from that 

of the projection of T1 by as much as 20.0o.   

A micrograph is placed in front of the microscope operator, emulsion side facing 

up.  The direction from operator left to the right is defined as the zero degree azimuth, 

with azimuth increasing in the counterclockwise direction.  In this case the projection of 
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T1 on electron diffraction patterns of the camera length of 1200 mm is along –114.0°, as 

shown in Figure 2-4.  The rotation angle between electron diffraction patterns at this 

camera length and 700K HRTEM images was determined to be –42.9°, as shown in 

Figure 2-5.  Therefore the projection of T1 on 700K HRTEM images is along –156.9 o.  

The projection of the second tilt axis, T2, on 700K HRTEM images is orthorgonal, along 

113.1 o.  The projections of the tilt axes are shown in Figure 2-6. 

 

2.3.3. The Coordinate System Set-up  A coordinate system for measuring lattice 

fringe vectors from the power spectra of 700K HRTEM images is fixed to the microscope 

column.  The y and z directions are defined to be along –T1 and the electron beam 

direction, respectively, as shown in Figure 2-7. 

The projection of this coordinate system on the power spectrum of a 700K 

HRTEM image is shown in Figure 2-8.  Any future azimuth will be expressed as 

measured in the xy plane of this coordinate system. 

 

2.3.4. Double Tilting  The specimen was first tilted about T2 to θ2 = 9.7o
 while θ1 

remained at 0o, made eucentric by adjusting specimen hight, and then tilted about T1 to 

θ1=15.0o.   The first HRTEM image was taken at this specimen orientation of (θ1=15o, 

θ2=9.7o).  A similar sequence was applied to take the second HRTEM image at the 

second specimen orientation of (θ1=-15o, θ2=-9.7o). 

 

2.3.5. Sample Preparation  The tungsten carbide thin film was deposited by  

PECVD on glass substrates by introducing a gaseous mixture of tungsten hexacarbonyl 

and hydrogen into a RF-induced plasma reactor at a substrate temperature of 330oC 

(Qin,1998).  The specimen was disk-cut, abraded from the glass substrate side and 

dimpled by a Gatan Model 601 Disk Cutter, a South Bay Technology Model 900 Grinder 

and a Gatan Model 656 Precision Dimpler, respectively.  The specimen was finally argon 
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Figure 2-4. Determination of the projection of the side-entry goniometer tilt axis on electron diffraction 

patterns with a camera length of 1200 mm.  The electron diffraction pattern is that of a Si <001> specimen.  
The specimen was rotated (at zero side-entry goniometer tilt) to have the Kikuchi pattern moving direction 
parallel to the Si (004) band, then tilted around T1.  The Kikuchi pattern moving direction is measured as 

along –24.0o.  The projection of T1 is thus along –24.0o-90o = -114.0o. 
 

 

 

 
Figure 2-5. Determination of the rotation between a 700K HRTEM image and an electron diffraction 
pattern of a camera length of 1200 mm.  The (a) inset is a 700K HRTEM image of a silicon <110> 

specimen.  The (b) inset is an electron diffraction pattern of a camera length of 1200 mm taken from the 
same region in the Si <110> specimen as shown in the (a) inset.  The rotation of  -42.9o between (b) and (a) 

was obtained from the angle between the (2, -2, 0) reciprocal lattice vectors in them. 
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 Figure 2-6. The projections of the side-entry goniometer tilt axis on electron diffraction patterns of a 
camera length of 1200 mm (denoted as T1, 1200 mm) and on 700K HRTEM images (denoted as T1, 700K), and 

that of the second tilt axis on 700K HRTEM images (denoted as T2, 700K). 
 

 

 

Figure 2-7. Schematic illustrating a coordinate system for measuring reciprocal lattice vectors based on 
their counterparts acquired along different crystal orientaitons.  The y and z directions are defined to be 

along –T1 and the electron beam direction, respectively. 
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Figure 2-8. Projection of the coordinate system for measuring reciprocal lattice vectors 
on 700K HRTEM images. 

 
 

 

ion-milled by a Gatan DuoMill for about 5 hours to perforation prior to the TEM study, at 

an incidence angle of 3°. 

 

2.4. CALCULATION 

 

2.4.1. Determining Reciprocal Lattice Vectors  When the specimen is at the 

orientation of (θ1=0o, θ2=0o), a reciprocal lattice vector is expressed as g in our chosen 

coordinate system.  This reciprocal lattice vector is then brought to Bragg condition by 

double tilting in a sequence of T2(θ2), T1(θ1), after which g becomes gm (subscript m 

denotes that gm is measured from the power spectrum of the image recorded on a 

micrograph ).  As shown here, Ti(θi) (i =1 ~ 2) denotes a rotation about Ti by an amont of 

θi.  Therefore the following relation can be obtained 

gm = T1(θ1) T2(θ2) g,                                                  (2-1) 

where 

gmx = gcos(ϕ), gmy = gsin(ϕ), gmz=0.                         (2-2) 
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Multiplying both sides of (2-1) by T1
-1(θ1) T2

-1(θ2) leads to the following equation of 

g = T1
-1(θ1) T2

-1(θ2) = A(θ1, θ2) gm,                          (2-3) 

where Ti
-1(θi) (i = 1, 2) denotes the inverse of Ti(θi), and hence we obtain 

1
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It is the components of the reciprocal lattice vector g associated with the crystal at 

the specimen orientation of zero tilt, i.e., (θ1=0o, θ2=0o),  that serve to establish the spatial 

relationship among reciprocal lattice vectors on different micrographs.  Subsequent 

determination of the 3D lattice, and other crystallographic analyses, can be performed. 

 

2.4.2. Calculating the Lattice Parameters  Lattice parameters are calculated 

based on the method adopted in an earlier work (Fraundorf, 1981a).  First the primitive 

reciprocal basis triplet, a*, b* and c*, are selected from a list of integral linear 

combinations of the reciprocal lattice vectors.  Such a basis triplet must define a unit cell 

of minimum volume.  The lattice parameters (a, b, c, α, β, γ) are then obtained via 

1
* * *

* * *

* * *

x y z x x x

x y z y y y

x y z z z z

a a a a b c

b b b a b c

c c c a b c

−
   
   =   
      

.                                        (2-5) 

Delauney reduction provides an approach toward standardizing the choice of unit 

cell basis triplet (International Union of Crystallography, 1952).  There remains always 

some ambiguity when measurement errors are large. 
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2.4.3. Indexing Reciprocal Lattice Vectors  The Miller indices of a reciprocal 

lattice vector can be assigned with respect to the conventional reciprocal lattice basis 

triplet provided the crystal lattice is known, or otherwise with respect to the 

experimentally inferred reciprocal lattice basis triplet, a*, b* and c*, via 

* * *

* * *

* * *

x x x x

y y y y

z z z z

g a b c h

g g a b c k

g a b c l

     
    = =    
         

.                                             (2-6) 

 

2.5. RESULTS 

 

2.5.1. Diffraction Assisted Analysis of Bulk Silicon  Calibration of this 

technique has been done using a Si  <100> crystal.  Diffraction patterns of the Si 

specimen along the [1, -1, -6] and [1, -1, 6] zone axes were obtained via double tilts.  The 

lattice parameters determined through (2-5) are {a=3.83 Å, b=3.87 Å, c=3.86 Å, α=60.0o, 

β=119.6o, γ=119.1o}.  This set of chosen basis defines the rhombohedral primitive cell of 

the Si f.c.c lattice.  Compared with the literature values of Si lattice parameters, {a=3.84 

Å, b=3.84 Å, c=3.84 Å, α=60o, β=120o, γ=120o}, the angular disagreements are less than 

1o and spatial disagreements are less than 1%.  The accuracy is competitive with that 

obtained by other techniques in different crystallographic applications (Liu Q.,1990; Liu 

Q., 1992; Liu Q., 1989; Tambuyser, 1985; Fraundorf, 1981a).  The inferred and literature 

values of the lattice parameters of Si are listed in Table 2-3. 

 

 

 

Table 2-3. The inferred and the literature values of the lattice parameters of Si. 

Lattice Parameters a (Å) b (Å) c (Å) α (o) β (o) γ (o) 

Inferred Values 3.83 3.87 3.86 60.0 119.6 119.1 

Literature Values 3.84 3.84 3.84 60.0 120.0 120.0 
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2.5.2. Analysis of A Nanocrystal Using Images Only  In this section we use two  

approaches to perform 3D crystallographic anlysis of a nanocrystal.  These two 

approaches are: 1) identification of the crystal lattice by comparing the acquired lattice 

fringe vectors with candidate lattices, to look for consistent lattice spacings and 

interplanar angles, and 2) direct determination of the lattice parameters of the 

nanocrystal.  After that, we increase the tolerances for spacing and interplanar angle 

disagreements used in the first approach, to allow for greater uncertainties that may exist, 

hence eliminating alternate interpretations even more forcefully where possible. 

 

2.5.2.1 Identification and Determination of A Nanocrystal Lattice  Figure 2-9  

and Figure 2-10 show a tungsten carbide nano-crystal (labeled A) at specimen 

orientations of (θ1 = 15°, θ2 = 9.7°) and (θ1 = -15°, θ2 = -9.7°), respectively.  Three lattice 

fringe vectors of A are visible.  The combination of lattice spacings and inter-planar 

angles of the three lattice fringe vectors were used to look for consistent lattice structures 

of 36 tungsten carbide and oxide candidates including WC1-x.  When an angular tolerance 

of 2o and a spatial tolerance of 2% are imposed, this nano-crystal is uniquely identified as 

WC1-x.  The three lattice fringe vectors are indexed as g1 = (200), g2 = (020) and g3 = (1, 

1, -1), respectively.  The nanocrystal A in Figure 2-9 and Figure 2-10 are along its [001] 

and [112] zones, respectively. 

The azimuth of the reciprocal lattice vector (2, -2, 0) was measured from the 

power spectrum of Figure 2-9.  This azimuth is  

ϕ(2, -2, 0) = {ϕ (2, 0, 0)+ [180°+ϕ (0, 2, 0) ]}/2 = {79.2°+[180°-11.6°]}/2 = 123.8, 

which deviates from the projection of the effective tilt axis by only 0.3o.  Therefore the 

(2, -2, 0) lattice planes are perpendicular to the effective tilt axis.  The data acquired are 

consistent with our expectation shown in Figure 2-1.  These two zone images and the 

actual tilting path in the Kikuchi map of crystal a are shown in Figure 2-11. 
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Figure 2-9. An HRTEM image showing a nanocrystal A taken at the specimen orientation of (θ1=15o, 
θ2=9.7o). 

 

Figure 2-10. An HRTEM image showing the nanocrystal A taken at the specimen orientation of (θ1 = -15o, 
θ2 = -9.7o). 
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Figure 2-11. Schematic illustrating the application of the f.c.c. protocol to resolve the lattice structure of 
WC1-x, together with the corresponding lattice image taken at two tilts.  The stereo map of the tilt path is 

also shown. 
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The lattice parameters determined using equation (2-5) are {a=2.98 Å, b=2.99 Å, 

c=2.96 Å, α=120.0°, β=58.7°, γ=119.8°}, which compare favorably with those of WC1-x 

{a=3.00 Å, b=3.00 Å, c=3.00 Å, α=120.0°, β=60.0°, γ=120.0°}, with spatial 

disagreements less than 1.5%, and angular disagreements less than 1.6o.  The linear 

relationship between the reciprocal lattice vectors and the inferred basis triplet indicates 

the following indexing: g1 = (101), g2 = (0, 1, -1), g3 = (100).  The first zone axis is [-1, 1, 

1].  The “effective tilt” is along the g1 - g2 = (1, -1, 2) lattice planes.  The second zone 

axis is [0, 2, 1].  Detailed calculations leading to the above conclusions are listed in Table 

2-4 through Table 2-7. 

 

 

 

Table 2-4. The lattice spacings, d, and azimuths, ϕ, of gi (i = 1, 2, 3) measured from the power spectra of 

the nanocrystal A shown in Figure 2-9 and Figure 2-10.  The camera constant λL = 66.2 pixel•Å. 

gi r(pixel) 1/d = r/λL (Å-1) d = λL /r (Å) ϕ(o) 

g1 = (200) 31.3 0.473 2.12 79.2 
g2 = (020) 31.6 0.477 2.09 -11.6 

g3 = (1, 1, -1) 27.4 0.414 2.42 32.6 

 

 

 

Table 2-5. The coordinates of gi (i = 1, 2, 3) in reciprocal space, calculated using (2-2) and (2-3), and based 

on which the inter-planar angles can be determined via θjk = cos-1[gj •gk/(gjgk)], (j, k =1, 2, 3; j, k ≠ i). 

gi gmx(pixel) gmy(pixel) gx(pixel) gy(pixel) gz(pixel) θjk(
o) ( j, k ≠ i ) 

g1  5.9 30.7 5.7 30.0 -6.7 54.1 
g2  31.0 -6.3 29.9 -7.6 -6.8 56.2 

g3  23.1 14.8 22.3 13.5 8.4 90.7 
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Table 2-6. Match of gi (i = 1, 2, 3) with the reciprocal lattice of WC1-x using (2-6) and based on the 

consistency of lattice spacings and inter-planar angles as shown in Table 2-4 and Table 2-5, with a spatial 

and an angular tolerances of 1.5% and 1.5° imposed, respectively.  The other 35 tungsten carbides and 

tungsten oxides have been excluded.  ∆θjk is the difference between an interplanar angle determined from 

experimental data and its literature value counterparts. 

gi dhkl(Å) |d-dhkl|/dhkl (%) ∆θjk(
o) ( j, k ≠ i ) 

g1 = (200) 2.12 0.0 -0.6 
g2 = (020) 2.12 1.4 1.5 

g3 = (1, 1, -1) 2.45 1.2 0.7 
 
 
 
Table 2-7. An inferred reciprocal lattice triplet, (a*, b*, c*), based on which the lattice parameters, (a, b, c, 

α, β, γ), can subsequently be calculated using (2-5) as shown in 2.5.2.1. 

 a*=g3 b*= g1+g2-g3 c*= g1-g3 

x component (pixel, Å-1) 22.3, 0.336 13.3, 0.201 -16.6, -0.251 

y component (pixel, Å-1) 13.5, 0.204 8.9, 0.135 16.5, 0.250 

z component (pixel, Å-1) 8.4, 0.126 -21.9, -0.331 -15.1, -0.228 

 
 
 

2.5.2.2 Strengthening the Case for WC1-x   As will be discussed in Chapter 4, 

various factors contribute to lattice spacing and interplanar angle uncertainties.  For 

example, in HRTEM images of a 100 Å WC1-x crystal, the uncertainties of the {002} 

spacing and the interplanar angle as indicated from the <001> zone cross-fringes are 

predicted to be about 1.8% and 1.9°, respectively.  However, larger disagreements can be 

projected in reality.  In our identification of the lattice structure of nanocrystal A, 

analyses considering larger possible errors will enable drawing a more robust conclusion. 

When the tolerances in matches of lattice spacing and interplanar angle are 

increased up to 3o and 3%, there are many tungsten oxide and carbide candidates in 

addition to WC1-x capable of providing indices to the observed lattice fringe vectors gi (i 

= 1, 2, 3) (Qin,1998).  In order to properly perform subsequent phase identification, it is 

necessary to realize that the spatial frequencies in Figure 2-9 and Figure 2-10 are 

continuously transferred within the first passband up to 1/(1.9 Å) (Spence, 1988b; 

Williams, 1996l), as shown by a power spectrum of an amorphous region in each image.  

Armed with this fact and by taking into account the full reciprocal lattice array along 
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possible zones, all the candidates except WC1-x have been excluded.  Specifically, it is 

found that for each of the candidates except WC1-x, along at least one of the indexed zone 

axes, at least one reciprocal lattice vector shorter than the indexed experimental one(s) is 

missing.  Table 2-8 shows an example of excluding a match with hexagonal WCx (a = 

10.58 Å, c = 13.35 Å).  In this example the suggested Miller indices of g3 would require 

that another reciprocal lattice vector, (-2, 1, -1), is missing from the power spectrum of 

the image of nanocrystal A as shown in Figure 2-10.  This match with WCx is hence 

excluded. 

 

 

 

Table 2-8. An example in excluding candidate reciprocal lattice in phase identification.  The candidate is 

WCx in this case.  The suggested Miller indices of g3 indicate that another reciprocal lattice vector, (-2, 1, -

1), is missing from the power spectrum of the image of nanocrystal A shown in Figure 2-10.  This match 

with WCx is hence excluded. 

gi (h, k, l) dhkl(Å) |d-dhkl|/dhkl (%) Missing Vector θjk, wcx(
o) ∆θjk(

o) 
g1  (-1, 0, -6) 2.16 1.9  56.3 2.1 
g2 (-3, 5, 0) 2.10 0.5  56.8 0.6 
g3 (-4, 2, -2) 2.46 1.6 (-2, 1, -1) 88.4 -2.4 

 
 
 

The exclusion of other matches of lattice spacings and interplanar angles is not as 

easy as the one above, and takes some extra work, but is based on the same principle.  

Zone axes need to be calculated at first, after which the missing reciprocal vector(s) can 

be found.  An example is given in Table 2-9.  The candidate is also WCx in this case.  

The suggested first zone axis indicates that another reciprocal lattice vector, (-4, 1, -2) is 

missing from the power spectrum of the image of nanocrystal A shown in Figure 2-9. 
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Table 2-9. An example in excluding candidate reciprocal lattice in phase identification.  The candidate is 

WCx in this case.  The suggested first zone axis indicates that another reciprocal lattice vector, (-4, 1, -2), is 

missing from the power spectrum of the image of nanocrystal A shown in Figure 2-9.  This match with 

WCx is hence excluded. 

gi (h, k, l) dhkl(Å) |d-dhkl|/dhkl 
(%) 

ghkl(Å
-1) Zone Missing Vector g 

(Å-1 ) 
θjk, wcx 

(o) 
∆θjk

(o) 
g1  (-5, 2, -1) 2.08 1.9 0.481 51.9 -2.3 
g2 (1, -3, -5) 2.11 0.9 0.474 

[-1, -2, 1] g-4, 1, -2 = 0.422 
(<g-5, 2, -1 , g1, -3, -5)  54.5 -1.7 

g3 (-2, 1, -5) 2.38 1.7 0.420   90.4 -0.4 

 

 

 

2.6. DISCUSSION 

 

2.6.1. A Special Direction: The Effective Tilt Axis Direction  In addition to 

serving as a guide to correctly set the azimuth of the crystal in tilting between the desired 

zones in each protocol, knowledge of the tilt axis direction plays another important role 

in predicting lattice fringe visibility after tilt (Qin, 2000c).  As a crystal gets smaller, 

lattice fringes stay visible for larger deviations from the Bragg condition.  Hence the 

persistence of fringes under tilt affects the abundance and range of lattice fringes that one 

sees in an image of randomly-oriented crystals.  Rules for recognizing redundant lattice 

fringes are important in the search for new lattice fringe sets by tilting the specimen. 

In a single tilt the tilt axis is simply T1, which is always perpendicular to the 

electron beam and hence parallel to the micrographs.  Any reciprocal lattice vector 

parallel or antiparallel to T1 remains in Bragg condition throughout the whole tilting 

process, regardless of the amount of tilt θ1.  If the corresponding spatial frequency is 

transferred, the same lattice fringes will be seen perpendicular to the projection of T1 in a 

HRTEM image taken in any specimen orientation (Qin,1998; Qin, 2000c). 

In a double tilt, it is convenient to introduce a concept of effective tilt axis.  An 

effective tilt axis is analogous to the tilt axis in a single tilt, in that the double tilt can be 

characterized by a single tilt around the effective tilt axis.  The effective tilt axis is 

perpendicular to the electron beam and hence parallel to the micrographs only if the two 

specimen orientations are symmetric about the untilted one, i.e., (θ1 = 0o, θ2 = 0o).  Here 
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we only consider double tilts falling into this category.  Let (θ1, θ2) and (-θ1, -θ2) denote 

the two specimen orientations in a double tilt.  Such effective tilt axis directions have 

azimuths of  

ϕeff = tan-1[-cos(θ2)sin(θ1)/sin(θ2)].                                      (2-7) 

A derivation of (2-7) is given in the Appendix A.  There will still exist a 180o 

ambiguity in the direction of the effective tilt axis after using (2-7).  Such ambiguity can 

be resolved with knowledge of the actual tilting sequence.  In our experiment where 

θ1=15° and θ2=9.7°, ϕeff = 123.5°.  This is the effective tilt axis direction mentioned in 2.2 

and 2.5.2.1, where the tilt protocol and the correlation of the performance of the 

experiment with the protocol are discussed, respectively. 

Any set of lattice planes perpendicular to the effective tilt axis remains in Bragg 

condition (only) in the initial and final specimen orientations, but not in any intermediate 

one.  Many lattice fringes of such lattice plane sets have been observed in the same 

double tilt, as mentioned in 2.5.2.  Figure 2-12 shows the images of a nano-crystal H with 

such a (1, 1, -1) lattice fringe set, which appears in both specimen orientations with 

identical azimuth and spacing.  One may tentatively assume that the corresponding lattice 

fringe vectors in the two specimen orientations are distinct ones, and denote them as g3 

and g4.  They deviate from the effective tilt axis by only 0.4o and 0.5o, respectively.  3D 

reconstruction shows that g3 and g4 differ in magnitudes (0.407 Å-1 and 0.403 Å-1, 

respectively) by 1.0%, and subtend an angle of 0.2°, as shown in Table 2-10.  This 

suggests that they arise from a single set of lattice planes.  With the availability of the 

reciprocal lattice spot sizes, which will be determined experimentally in Chapter 4, it can 

be quantitatively proved that g3 and g4 are the results of the intersection of the same (1, 1, 

-1) reciprocal lattice spot with the Ewald sphere in both specimen orientations (Qin, 

2000c). 
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Table 2-10. Analysis of the repeated appearance of the (1, 1, -1) lattice fringe vector of crystal H in a 

double tilt from the specimen orientation of (θ1 = 15.0°, θ2 = 9.7°), denoted as SO_1, to that of (θ1 = -15.0°, 

θ2 = -9.7°), denoted as SO_2, as shown in Figure 2-12.  The lattice fringe vector is perpendicular to the 

effective tilt axis, and therefore is visible, and has identical magnitude and direction, before and after tilt 

(the camera constant lL = 71.9 pixel•Å). 

Orientation r(pixel) g = r/(lL )(Å-1) d = lL/r (Å) ϕ(o) |ϕ-ϕeff|(o) 
SO_1 29.0 0.403 2.48 124.0 0.5 
SO_2 29.3 0.407 2.46 123.9 0.4 

Orientation xm(pixel) ym(pixel) x(pixel) y(pixel) z(pixel) θ12(
o) 

SO_1 -16.2 24.0 -15.7 24.4 0.1 
SO_2 -16.4 24.3 -15.8 24.7 0.0 

0.2 

 

 

 

2.6.2. Higher Probability of Success Through Increased Tiltability  In a  

microscope capable of a side-entry goniometer tilt of at least ±35.3°, any f.c.c crystal, 

with a lattice constant of a > 2rSch, and the [001] zone parallel to the optical axis at the 

specimen orientation of (θ1 = 0°, θ2 = 0°), can have its (2, -2, 0) reciprocal lattice vector 

aligned parallel or antiparallel to T1 through an azimuthal rotation of the specimen.  The 

parallelism of the optical axis, the [001] zone and the specimen rotation axis leaves the 

[001] zone parallel to the optical axis throughout the rotation.  A subsequent tilting by 

35.3° will lead to the [1, 1, 2] zone, along which the 2nd zone image can subsequently be 

taken.  The following conclusion will be shown in Chapter 4.  For randomly oriented 

f.c.c. crystals with a lattice constant of about 4 Å and each of which has a diameter of 20 

how <001> zone cross-fringes approaches 1 in 100.  This 

fraction of crystals are suitable for such stereo analysis. 

Due to the tilt limits of the specimen holder in our microscope, the first [001] 

zone image of the WC1-x nano-crystal A had to be taken at a nonzero θ1 orientation.  

Therefore the specimen rotation axis is no longer parallel to the optical axis/the [001] 

zone.  Any specimen rotation will swerve the [001] zone away from the optical axis.  One  
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Figure 2-12. HRTEM images of a set of (1, 1, -1) lattice fringes perpendicular to the effective tilt axis and 
thus remaining visible after the double tilt from (θ1 = 15.0°, θ2 = 9.7°), as shown in (a), to (θ1 = -15.0°, θ2 = 
-9.7°), as shown in (b).  The (1, 1, -1) reciprocal lattice vector remained to be in Bragg condition after tilt. 

 

 

 

solution is to find a [001] nano-crystal whose (2, -2, 0) reciprocal lattice vector happens 

to be parallel to the effective tilt axis, subsequent tilting of the crystal to the 2nd 

orientation will lead to the [112] zone axis.  In the experiment here, nanocrystal A was 

identified to have the appropriate azimuth upon the first encounter.   
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The fractions of nano-crystals from which the targeted three reciprocal lattice 

vectors can be acquired are different in these two approaches, with that in the first one 

being about three times as high.  This result, as well as the genaral quantification of 

probabilities for success in data acquisition, will be presented in Chapter 4. 

 

2.6.3. Current and Potential Impacts of This Technique  In this section we 

will discuss different aspects concerning the influence of this stereo analysis technique.  

These include its influence on the characterization of the tungsten carbide specimen, a 

revision that can be made to improve the sampling rate, the potential contribution of it to 

another characterization method, the range of crystalline materials within which it is 

applicable, and improvement of performance with computer support.  We will begin with 

a discussion of the results obtained from the stereo analysis of nanocrystal A, in the 

context of characterization of the tungsten carbide specimen. 

Some chemical composition analysis of the sample has been performed prior to 

our study here.  Electron and X-ray diffractions indicated that the non-stoichiometric 

f.c.c. WC1-x with a = 4.248 Å is the dominant diffracting phase in the film (Qin,1998; 

James, 1998).  Auger electron spectral analysis suggested a value of x between 0.4 and 

0.8 (James, 1998).  Even more recently a statistical survey of the zone images of 

nanocrystals in the sample that are free of overlap with others revealed the “finger-print” 

of WC1-x crystal lattice, as will be discussed in Chapter 4.   

The determination and identification of the WC1-x lattice structure of nanocrystal 

A as described in this chapter supports all these previous analyses, yet in a manner that is 

specific to one certain nanocrystal.  This result demonstrates 3D crystallographic analysis 

of individual nanocrystals.  However, the high resolution of the technique also brings to 

focus the poor sampling rate in our experiment.  To make an improvement in the 

sampling capability, a revised version of the technique based on 3D lattice-correlation 

darkfield analysis has been proposed by Fraundorf.  This is applicable to polycrystalline 

specimens and can be illustrated with an example as follows. 

Using the f.c.c. protocol given in Table 2-1, three arcs, denoted as a, b, and c as 

shown in Figure 2-13, along the {002} and {111} diffraction rings can be chosen by the  
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Figure 2-13. Schematic illustrating 3D lattice-correlation darkfield analysis of an f.c.c. polycrystalline 
specimen using the protocol given in Table 2-1.  The (a) inset is an electron diffraction pattern showing 
only the {111} and {002} rings.  The arcs chosen by the small circles centered at a, b and c denote the 
diffraction intensities selected by the objective aperture.  The arcs a and b are chosen at one specimen 

orientation, and oa⊥ob.  The specimen is then tilted 35.3° away, and the tilt axis T is 45° below ob.  The arc 
c is then so chosen that oc⊥T.  It can be seen that the three arcs satisfy the same spatial relationship of the 
three reciprocal lattice vectors in the protocol.  The (b), (c) and (d) insets are the corresponding darkfield 

images.  All the crystals lit up in the three darkfield images, a’, b’, and c’ in the figure, are of the same f.c.c. 
lattice.   

 

 

 

objective aperture to form darkfield images.  The arcs a and b are chosen in one specimen 

orientation, and c is chosen in another which is 35.3° away.  These three arcs are so 

chosen as to satisfy the same spatial relationship as those three targeted reciprocal lattice 

vectors in the protocol.  It can be concluded that all the crystals that light up in all three 

darkfield images are of f.c.c. crystal lattice. 
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Although this analysis may never allow precise lattice parameter determination 

given limits on the objective aperture size, it may be an efficient way to look for multiple 

crystals correctly-oriented and of correct type for one of the protocols.  Moreover, 

because such lattice-correlations in 3D contains information beyond the pair-correlation 

function, they may be able to support the new techqniue of fluctuation microscopy in 

studying paracrystalline specimens with order-range too small for detection by other 

means (Treacy, 1993; Treacy 1996; Gibson, 1997; Gibson, 1998). 

Another subject of interest is the range of materials to which the technique 

applies.  It becomes obvious from Figure 2-2 that with a tilt range of at least 35.3°, and a 

point resolution of 1.9 Å, determination of the 3D crystal lattice can be done in a TEM 

for any cubic crystal whose cell side is greater than 2×1.9 Å = 3.8 Å.  This covers a wide 

range of materials, which include more than 85% of the cubic close packed crystals and 

nearly 40% of the elemental b.c.c crystals tabulated in Wyckoff, and of course most cubic 

crystals with asymmetric units comprised of more than one atom (Wyckoff, 1982). 

Computer-supported and automated tilt/rotation will make this technique more 

accurate and widely accessible. 

 

2.7. CONCLUSION 

 

Here a technique has been presented to determine the 3D lattice of a single 

crystalline particle from HRTEM images taken along two low index zones.  This 

technique expands crystal lattice structure information obtained from individual HRTEM 

images to 3-dimension through 3D reconstruction, and posesses atomic-resolution.  Such 

a high-resolution enables studying nanocrystals individually.  

Due to the finite resolution of a typical HRTEM, the possibilities to resolve a 

compact crystal lattice are limited and hence can be enumerated.  Corresponding to each 

of such possibilities, there exists a data acquisition protocol.  Each protocol invloves 

tilting between two low-index zones, along which three sets of linearly-independent 

lattice planes can be resolved.  The three corresponding reciprocal lattice vectors must lie 

in the first passband of the contrast transfer function.  This is required so as not to miss 

reciprocal lattice vectors shorter than the longest among the three, and possibly 
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suppressed by a zero in the contrast transfer function.  Utilization of frequencies in higher 

passbands through defocus adjustment makes this technique still applicable to crystal 

lattices where spatial frequencies of interest are beyond the first passband.  The “one 

angstrom microscope” at the national center in Berkely is a candidate for this extension.  

In order to tilt to the 2nd zone axis, the protocol also specifies the azimuth of the crystal 

relative to the tilt axis when the 1st zone image is formed.  The tilt protocols vary with 

lattice type, therefore information about crystal phase must be obtained in advance, 

usually from chemical composition analysis and other microscopy techniques.  For f.c.c. 

and b.c.c. lattices with lattice constants a>2rSch, and s.c. lattice with a >Ö3rSch, it has been 

found that 35.3o, 30o and 19.5o of tilts, respectively, are sufficient to infer the 3D lattices.  

For graphite as an example of hexagonal lattice, the lowest amount of tilt involved is 

about 14.6° with a TEM of rSch =1.9 Å.  In the example presented the lattice parameters 

of a 10 nm WC1-x nano-crystal have been determined, with less than 1.4% spatial and 1.4o 

disagreements from literature values. 

Before this technique can be applied, the projections of the tilt axes on HRTEM 

images must be determined.  Any reciprocal lattice vectors parallel or antiparallel to the 

effective tilt axis direction, and perpendicular to the electron beam in a double tilt 

remains at Bragg condition only at the initial and final specimen orientations.   Care must 

be taken not to interpret such redundant frequencies as new lattice structure features. 

Three-dimensional lattice-correlation darkfield analysis using the same protocols 

can be applied to identify multiple crystals of the same lattice structure in polycrystalline 

specimens.  This will greatly improve the sampling rate. 

We have found that this technique is accessible to a very wide range of crystalline 

materials.  For example, with a TEM of rSch = 1.9 Å, and a tilt range of at least 35.3°, 

more than 85% of the cubic close packed crystals and nearly 40% of the elemental b.c.c 

crystals tabulated in Wyckoff, and most cubic crystals with asymmetric units comprised 

of more than one atom can be subjected to the stereo analysis.  An instrumentation 

improvement to include ±35.3° of tilt, and the use of a tilt/rotate specimen holder, will 

increase the fraction of crystals suitable for the stereo analysis to about three times as 

high.  Computer-supported specimen orientation adjustment can further enhance the 

chance to be successful. 
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3. LATTICE FRINGE VISIBILITY AFTER TILT  

3.1. INTRODUCTION 

 

High-resolution transmission electron microscopy (HRTEM) is a powerful tool 

for structure studies (Spence, 1988c).  Information easily interpretable in lattice images 

includes lattice plane spacing, local crystal orientation and structures such as interface, 

grain boundary, and dislocation (Williams, 1996j).  However, in many other cases, the 

complexity of the image formation process warrants caution be taken in order for reliable 

conclusions, e.g., with regard to fringe intensities and positions (Hirsch, 1977e).  

Generally the positions of lattice fringes bear no simple relation to the atomic planes.  In 

extremely thin (kinematical) specimens under “two-beam condition” (only one diffracted 

beam is strongly excited, in addition to the direct beam), the lattice fringe visibility is 

easily shown to depend on crystal orientation and thickness (Hirsch, 1977b).  Thickness 

variation can also cause fringe shift, bend and even spacing change (Menter, 1958; 

Chadderton, 1961).  Among recent image simulation studies of small metal particles, it 

has been demonstrated that for a 2.8 nm Pd particle rotated over 90° and tilted up to 45° 

from the [011] zone axis, deceptive lattice fringes that are "Moires" instead of direct 

representations of the lattice planes may be formed, as a result of low-pass filtering by the 

microscope of dense projected atom positions (Malm, 1997).  In addition to the 

complicated effects arising from crystal orientation, size, and instrument response, the 

lack of depth sensitivity imposes another serious obstacle to interpretation of lattice 

images.  In typical cases atoms can be displaced by distances of 20 Å or more in a 

direction parallel to the electron beam without changing the images (Hirsch, 1977f).  

Recently a technique has been developed to remove lattice parameter ambiguities 

associated with the problem of projection (Qin, 1999).  This is realized by determining 

the lattices of individual crystals in 3D from HRTEM images taken at two tilts.  During 

operation of this technique, tilting is applied to look for 3 linearly independent reciprocal 

lattice vectors.  When the crystals are a few nanometers in size, the reciprocal lattice 

spots expand significantly in reciprocal space.  As a result, lattice fringes stay visible for 

large deviations from the Bragg condition, and hence are more abundant in images.  The 
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convergence of incident electrons further enhances this effect.  For example, a subset of 

the fringes in an image remained “still-visible” after large (e.g., 35°) single or double axis 

tilts (Qin, 1998).  When one looks for new lattice fringes from the same crystal through 

orientation adjustment, rules for recognizing redundant fringes are helpful as well.  In this 

chapter we present a semiempirical model for predicting the visibility of lattice fringes 

after tilt. 

 

3.2. EXPERIMENTAL SETUP 

 

The same tungsten carbide nanocrystalline thin film sample as described in 

Chapter 2 was used in the TEM study.  HRTEM imaging was performed in a Philips 

EM430 ST TEM with both a Philips single tilt holder and a Gatan double tilt holder. 

A coordinate system (different from that used in Chapter 2) whose xy plane 

coincides with the micrograph plane was set up.  As will become clear, what matters in 

predicting lattice fringe visibility is the absolute value of the azimuthal angle between a 

lattice fringe vector and the tilt axis.  Consequently the coordinate system can be simply 

defined as follows.  With the micrograph placed in the microscope, the x axis points from 

the left to the right of the microscope operator, and the z axis is along the electron beam 

direction.  Counterclockwise is defined as the positive azimuth direction in the xy plane.  

The HRTEM images are of a magnification of 700K.  In this coordinate system, the 

azimuths of the projections of T1 and T2 on HRTEM images are -156.9° and 113.1°, 

respectively, as shown in  Figure 2-6. 

 

3.3. RESULTS 

 

3.3.1. Fringe Visibility Confirmation of Tilt Axis Projection  In an earlier work  

to correlate the determined azimuth of the T1 projection with HRTEM observation, lattice 

images of the specimen at different orientations were taken by tilting around T1 using the 

single tilt holder (Qin, 1998).  Two pairs of such HRTEM images are shown in Figure 

3-1 and Figure 3-2. 
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Figure 3-1. HRTEM images of six WC1-x nanocrystals showing lattice fringes that become invisible and 

remain visible after a single tilt.  The image in the (a) inset was taken at the specimen orientation of 
θ1=14.5°, and that in the (b) inset at θ1=0.0°, where θ1 is the reading of the side-entry goniometer tilt axis.  
The projection direction of the side-entry goniometer tilt axis is marked.  Each lattice plane set has been 

labeled with both Miller indices and an arrow representing the lattice fringe vector.  The length of the arrow 
is proportional to that of the lattice fringe vector.  In the (a) inset, hollow arrows are used for lattice fringes 
that are predicted to become necessarily invisible, and solid arrows for those with certain propabilities to do 

so, in the second specimen orientation as shown in the (b) inset.   
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Figure 3-2. HRTEM images of a WC1-x nanocrystal G showing one set of {111} lattice fringes which 

remains visible after a single tilt of 30.2o.  The image in the (a) inset was taken at the specimen orientation 
of θ1= -14.9°, and that in the (b) inset, θ1=15.7°.  The projection of the side-entry goniometer tilt axis is 
marked in both insets.  The {111} fringe set is perpendicular to the side-entry goniometer tilt axis and 

therefore remains visible, and unchanged in its spacing and azimuth throughout the tilt. 
 

 

 

In each figure, the a and b insets are images of the same field of view at different 

specimen orientations.  The tilts are 14.5° apart in Figure 3-1, and 30.6° in Figure 3-2.  

The crystals are labeled A~G.  In a single tilt, under eucentric condition, T1 is parallel to 

the image plane.  It is therefore expected that any lattice fringe set perpendicular to T1 

will remain visible, and unchanged in its spacing and azimuth throughout the tilt.  Such 

lattice fringe sets have been found.  They are the (1,1,-1) fringes of crystal A in Figure 

3-1, and the {111} fringes of crystal G in Figure 3-2.  For example, the azimuths and 

magnitudes of the (1,1,-1) lattice fringe vector of crystal A in the a and b insets of Figure 

3-1 are –157.2°, 1 / (2.45 Å), and –156.5°, 1/ (2.43 Å), respectively.  They deviate from 

being parallel to the projection of T1 by only –0.3° and 0.4°, respectively.  The lattice 

fringe spacing has a small variation of about 0.8% only. 
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Figure 3-3. HRTEM images of a WC1-x nanocrystal H showing a persistently visible (1, -1, 1) lattice fringe 

set before and after a double tilt of 35.3o.  The lattice fringe set is perpendicular to the effective tilt axis.  
The image in the (a) inset was taken at the specimen orientation of (θ1= 15.0o, θ2= 9.7o), and that in the (b) 
inset at (θ1= -15.0, θ2= -9.7o).  The (1, 1, -1) lattice fringe set also remains unchanged in both its spacing 

and azimuth after tilt. 
 

 

 

The determined T2 projection has been similarly correlated with HRTEM 

observation in double-tilt experiments.  The images shown in the (a) and (b) insets of 

Figure 3-3 were taken at the specimen orientations of (θ1 = 15.0°, θ2 = 9.7°) and 
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(θ1 = -15.0°, θ2 = -9.7°), respectively.  The effective tilt axis is along -10.4°.♣ The normal 

of the (1, 1, -1) lattice fringes in crystal H is along –11.0° in both a and b insets.  They 

deviate from the effective tilt axis by only –0.6°. 

 

3.3.2. A Theory of Lattice Fringe Visibility After Tilt  From the large 

relaxation of Bragg condition for small crystals, it can be expected that a set of lattice 

fringes does not have to be azimuthally so close to being perpendicular to the tilt axis as 

those mentioned above, in order for it to remain visible after tilt.  Instead, a certain limit 

of deviation of the lattice fringe vector from the tilt axis exists.  Within such a limit, the 

position variation of the corresponding reciprocal lattice spot caused by tilting is not large 

enough for the spot to lose intersection with the Ewald sphere after tilt. 

In the following discussion the crystal is assumed to be spherical, and only one set 

of lattice planes is considered.  Quantities used to specify the geometry of the nanocrystal 

diffraction are described as follows: The radius of a reciprocal lattice spot is gt = f / t, 

where t is the diameter of the crystal and f is a signal to noise ratio empirically adjusted to 

visualize fringes (experimentally determined to be 0.7902 for AuPd particles sputtered on 

a thin carbon film, as will be shown in Chapter 4) (Qin, 2000b).  Also in what follows, d 

is the lattice spacing and gλ = 1/λ is the radius of the Ewald sphere, where λ is the 

electron wavelength. 

The lattice fringe visibility model was first developed by Qin based on an 

assumption of a flat Ewald sphere.  Fraundorf later provided insight on the mirror 

symmetry in the problem, built a model which takes into account the Ewald sphere 

curvature, and introduced the concept of “visibility band”.  The model developed by 

Fraundorf is presented here. 

 

3.3.2.1 A Mirror Symmetry  As the first step in predicting lattice fringe visibility 

after tilt, note that there is a mirror symmetry for the electron beam relative to the lattice 

plane set.  The mirror plane can be any one that is parallel to the lattice plane set.  An 

                                                
♣ In the coordinate system used in Chapter 2, the azimuth of the effective tilt axis is 123.5°, which is 

123.5°-113.1° =10.4° below the x-axis in the coordinate system used here. 
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electron beam incident from one side of the mirror plane will produce fringes identical to 

those produced by another electron beam that is mirror-symmetric with it.  A schematic 

illustration is given in Figure 3-4.  In this figure, A’B’ is the intersection of the mirror 

plane with the plane shown on the top and perpendicular to the lattice plane set.  The 

electron beams incident from both sides of A’B’ are mirro-symmetric with each other and 

will have the same diffraction effect. 

Based on the symmetry, we can focus on only one side of the mirror plane in 

investigating the diffraction geometry, and hence only one reciprocal lattice spot (on the 

same side of the mirror plane) out of the two.  As will be seen, we will start tilting the 

lattice plane set from the configuration in which the electron beam is parallel to the 

mirror plane, i.e., along a direction that is parallel to the line A’B’ as shown in  Figure 

3-4 , or equally stated, the incidence is perpendicular to the reciprocal lattice vectors, to 

explore the relative angular range of the electron beam within which the lattice fringes 

are visible.  In the following discussion, we will refer to this configuration as the starting 

configuration, unless otherwise specified. 

 

3.3.2.2 The Geometry  Figure 3-5 shows the general configuration of diffraction 

of a lattice plane set.  Here the lattice fringes are visible and accordingly a reciprocal 

lattice spot intersects the Ewald sphere.  The intersection of either reciprocal lattice spot, 

C or D as shown in the figure, with the Ewald sphere identically results in lattice fringe 

visibility. Therefore as the crystal is tilted, the relation between either spot and the Ewald 

sphere must be considered (In this figure, the tilt axis is chosen to point into the paper so 

that we can just focus on spot C relative to the Ewald sphere).  Beginning from the 

starting configuration, as BC = g is tilted toward A, BD = -g is tilted away from A.  Since 

the Ewald sphere curves up, spot C is always going to lose intersection with the Ewald 

sphere later than spot D does.  Therefore the upper limit of tilt is determined by the 

position of spot C relative to the Ewald sphere only (when we focus on the left side of 

AB). 
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 Figure 3-4. A schematic illustration of the mirror symmetry of the electron beam relative to a diffracting 
lattice plane set.  The mirror plane can be any one that is parallel to the lattice plane set.  A’B’ is the 

intersection of the mirror plane with the plane shown on the top and perpendicular to the lattice plane set.  
The electron beams incident from both sides of A’B’ are mirro-symmetric with each other, and hence will 

produce identical consequences. 
 

 

 

 

Figure 3-5. Schematic illustrating the configuration of the diffraction of a lattice plane set in which a 
reciprocal lattice spot intersects the Ewald sphere, hence the lattice fringes are visible.  The arc centered at 
A represents part of the Ewald sphere.  Segments BC and BD represent the reciprocal lattice vectors, i.e., 

BC = g and BD = -g.  The circles centered at C and D represent the reciprocal lattice spots.   
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3.3.2.3 The Upper Limit of Transverse Tilt  By “transverse tilt’, we refer to one 

with the tilt direction perpendicular, or equally stated, the tilt axis parallel to, the lattice 

planes.  Based on the above discussion, in tilting the crystal clockwise from the starting 

configuration, spot C will finally become tangent with the Ewald sphere from the inside 

of the Ewald sphere as shown in Figure 3-6, and be about to lose intersection with the 

Ewald sphere.  The tilt thus reaches a critical value of ∠EBC = αmax, which is the upper 

limit of transverse tilt and can be expressed as 

2
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t d t
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Derivation of (3-1) is given in Appendix B1. 

 

3.3.2.4 The Lower Limit of Transverse Tilt  Again we will begin tilting from the 

same starting configuration as discussed in 3.3.2.1 in order to quantify the lower limit of 

transverse tilt.  Together with the upper limit given in (3-1), the angular range for a 

transverse tilt within which lattice fringes are visibile can be specified. 

 

3.3.2.4.1 Zero Lower Limit  In the starting configuration, for any crystal whose 

diameter is below a certain limit, the reciprocal lattice spot is large enough to intersect 

(not necessarily be tangent with) the Ewald sphere, and the lattice fringes will be visible.  

Such an upper limit of crystal diameter is given as 

0 2 2
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t

d d

λ

λ
=

+ −
.                                                     (3-2) 

Derivation of (3-2) is given in Appendix B2.  When the crystal diameter is equal 

to t0, i.e., t = t0, the reciprocal lattice spots are tangent with the Ewald sphere from the 

outside, as shown in Figure 3-7.  With smaller diameter, i.e., t < t0, the reciprocal lattice 

spots intersect the Ewald sphere, as shown in Figure 3-8. 
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Figure 3-6. Schematic illustration of a configuration in which the reciprocal lattice spot considered 
becomes tangent with the Ewald sphere from the inside after tilt.  The tilt axis points into the paper.  The 

arc centered at A represents part of the Ewald sphere.  Segments BC and BD represent the reciprocal lattice 
vectors, i.e., BC = g and BD = -g.  The circles centered at C and D represent the reciprocal lattice spots.   

 

 

 

In these two cases, the lower limits of transverse tilt are both zero.  Lattice fringes 

are visible in the starting configuration, and will remain visible throughout a clockwise 

tilt, until the upper limit of transverse tilt, as given in (3-1), is reached.  From the mirror 

symmetry discussed in 3.3.2.1, lattice fringes are also visible when the lattice plane set is 

tilted counterclockwise by an amount that is not greater than the upper limit of transverse 

tilt, αmax.  Therefore the angular range of the incident electron beam relative to the lattice 

plane set within which the lattice fringes are visible is 2αmax and continuous. 

3.3.2.4.2 Non-Zero Lower Limit  When the crystal diameter t is greater than  

t0, i.e., t > t0, the reciprocal lattice spots are so small that neither of the two spots 

intersects the Ewald sphere in the starting configuration, as shown in Figure 3-9 (a).  The 

crystal has to be tilted clockwise until the reciprocal lattice spot C becomes tangent with 

the Ewald sphere, as shown in Figure 3-9 (b), in order for the lattice fringes to become 
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Figure 3-7. Schematic illustration of a configuration in which the electron beam is parallel to the lattice 
plane set and the reciprocal lattice spots are tangent with the Ewald sphere from the outside.  The arc 

centered at A represents part of the Ewald sphere.  Segments BC and BD represent the reciprocal lattice 
vectors, i.e., BC = g and BD = -g.  The circles centered at C and D represent the reciprocal lattice spots.  It 

is obvious that the relationship of CD⊥AB is true. 

 

 

 

 
Figure 3-8. Schematic illustration of the configuration in which the electron beam is parallel to the lattice 
plane set and the reciprocal lattice spots intersect the Ewald sphere.  The arc centered at A represents part 
of the Ewald sphere.  Segments BC and BD represent the reciprocal lattice vectors, i.e., BC = g and BD = -

g.  The circles centered at C and D represent the reciprocal lattice spots. 
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Figure 3-9. Schematic illustrating a non-zero lower limit of transverse tilt in order for the lattice fringes to 
become visible.  The arc centered at A represents part of the Ewald sphere.  Segments BC and BD represent 

the reciprocal lattice vectors, i.e., BC=g and BD=-g.  When the electron beam is perpendicular to the 
reciprocal lattice vectors, i.e., AB ⊥ BC as shown in the (a) inset, neither of the reciprocal lattice spots, 

represented as spheres centered at C and D, intersects the Ewald sphere.  Lattice fringes are hence invisible.  
Only when the lattice plane set is tilted clockwise until the reciprocal lattice spot C becomes tangent with 
the Ewald sphere, as shown in the (b) inset, will the lattice fringes begins to appear.  The amount of tilt, 

which is equal to ∠EBC as shown in the (b) inset, is the lower limit of the transverse tilt. 
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visible.  This lower limit of transverse tilt, denoted as αmin, can be expressed as 

2 2 2 2
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.            (3-3) 

Derivation of (3-3) is given in Appendix B3.  

This is different from the above two cases in that the lattice fringes are invisible 

from the starting configuration, up to one when the amount of tilt reaches αmin, i.e., 

∠EBC = αmin as shown in Figure 3-9 (b).  Lattice fringe visibility is attained when the 

amount of tilt falls in between αmin and αmax, i.e., ∠EBC ∈ [αmin, αmax], on either side of 

AB.  Therefore the visibility range splits into two branches, each of which has a width of 

(αmax -αmin), and the amount of separation is 2αmin. 

 

3.3.2.5 Visibility Band and Visibility Band Map  Based on the above discussion, 

the concept of visibility band for a set of lattice planes can be introduced.  A “visibility 

band” is defined on a sphere (on which every point represents a radially inward direction 

of the electron beam) such that, when the electron beam direction lies in the band, the 

lattice fringes are visible.  The trace of the lattice plane set is represented as a great circle, 

which is a projection of the lattice plane set on the sphere.  The trace runs through the 

middle of a visibility band, i.e., the visibility band is symmetric about the trace of the 

lattice planes.  There are two kinds of visibility bands of a lattice plane set, a continuous 

one and a two-branch one, which will be discussed as follows. 

In the case where the crystal diameter is not greater than the upper limit given by 

(3-2), i.e., t£ t0, the visibility band is continuous and has a half width of αmax, as shown in 

Figure 3-10; Otherwise, the visibility band splits into two branches, which are symmetric 

about the lattice plane trace, as shown in Figure 3-11.  The distance from the trace to the 

inner edge of a branch is αmin, while that to the outer edge is αmax.  Thus each branch has 

a width of αmax - αmin.  
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Figure 3-10. The visibility band (shaded) of a set of lattice planes in a spherical crystal.  Such a band is so 
defined on a sphere that when the electron beam direction lies in it, the lattice fringes are visible.  The great 
circle running through A is the trace of the lattice plane set.  The crystal diameter is not greater than that 
given by (3-2), so that the band is continuous.  The trace runs through the middle of a visibility band, i.e., 
the visibility band is symmetric about the trace.  As the electron beam is tilted from any point along the 

trace in a plane perpendicular to the trace circle by an angle greater than ∠AOB = αmax as given by (3-1), 
the lattice fringes become invisible.  Therefore this visibility band has a half-width of αmax. 

 
 

 

From (3-1) the following approxiamation can be made 

1
max sin

df df
d

t t
α −≅ ≅ ∝ . 

Therefore a visibility band is different from a Kikuchi band in that the band width is 

approximately proportional to the lattice spacing, which is one attribute of “direct space 

 

The ensemble of the visibility bands of a spherical crystal can be drawn on the 

sphere of all possible directions, forming a “visibility band map

reveals the crystal lattice symmetry and spacing, but also is TEM-specific, i.e., only 

resolvable lattice plane sets have their bands on the map.  Figure 3-12 shows a visibility 
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Figure 3-11. The visibility band of a set of lattice planes in a spherical crystal.  The great circle running 
through A is the trace of the lattice plane set.  The crystal considered here has a diameter greater that that 

given by (3-2), so that when the electron beam lies at any point along the trace the lattice fringes are 
invisible.  However, as the electron beam is tilted away from the trace in a plane perpendicular to the trace 
circle, by an angle between αmin and αmax, where αmin and αmax are given in (3-1) and (3-3), respectively, 
the lattice fringes become visible.  In the figure, ∠AOB = αmin, ∠AOC = αmax.  Therefore the visibility 
band splits into two branches, which are symmetric about the lattice plane trace.  The distance from the 
trace to the inner edge of a branch is αmin, while that to the outer edge is αmax.  Thus each branch has a 

width of (αmax - αmin). 
 

 

 

band map.  Some examples to appreciate crystallographic information from such a 

visibility band map are given as follows. 

In the figure, four crystal directions are marked.  All the bands shown are 

continuous.  The band perpendicular to the crystal direction of [010] is that of the (020) 

lattice planes, and that perpendicular to [001] is the zone of the (002) lattice planes, etc.  

The map contains bands of the {111}, {002} and {022} lattice planes, with those of the  
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Figure 3-12. A visibility band map of a spherical fcc crystal.  All the bands are continuous.  Each band 
width is approximately proportional to the corresponding lattice spacing and the reciprocal lattice spots 

size.  The band perpendicular to the [010] zone is that of the (020) lattice planes, and that perpendicular to 
the [001] zone is the band of the (002) lattice planes, and so on.  Like a Kikuchi map, a visibility band map 
reveals crystal symmetry and can be used as a “roadmap” to guide (nano)crystallographic analyses in direct 

space.  For example, the protocol used in Chapter 2 can easily be obtained from the map as to involve 
tilting from the [001] zone to the [112] zone.  For a randomly oriented crystal, the solid angle subtended by 
each band is proportional to the probability for the corresponding lattice fringes to be visible, and the solid 
angle subtended by the cross-section of any two bands is proportional to the probability to get cross-lattice 

fringes from the corresponding lattice plane sets. 
 

 

 

first two classes of lattice plane sets drawn as shaded.  From the map it is obvious that the 

smallest lattice spacing of the crystal that can be resolved by the TEM is d220. 

 

3.3.2.6 General Visibility Range  In general, T is not parallel to the lattice planes.   

The direction of T can be specified by the angle ϕ it makes with the reciprocal lattice 

vector g.  Under such circumstances, the “visibility angular range” of the electron beam 

relative to the lattice planes is greater than the width of the visibility band.  We will focus 

on the “visibility angular range” of a lattice plane set whose visibility band is continuous, 
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as discussed in 3.3.2.5 and shown in Figure 3-10.  The study here will form the basis to 

predict lattice fringe visibility of the {111} and {002} lattice planes of the WC1-x 

nanocrystals examined in the tungsten carbide thin films, since they all have continuous 

visibility bands, as will be shown in 3.3.3.  Figure 3-13 shows a segment of such a 

visibility band. 

In this figure, A’C’ is the trace of the lattice plane set.  A’ is the starting electron 

beam direction.  T is the tilt axis, g is the reciprocal lattice vector.  T and g make an angle 

of ϕ.  A’B’ is the tilt path of the electron beam direction, and is half the total angular 

range θ of the electron beam within which the lattice fringes are visible (the other half is 

symmetric with A’B’ about A’).  Therefore it is denoted that A’B’ = θ/2.  Since A’B’ is 

perpendicular to T, i.e., A’B’⊥T, it can be obtained that ∠B’A’C’ = ϕ.  B’C’ is 

perpendicular to A’C’, i.e., B’C’⊥A’C’.  B’C’ = αmax is equal to the half-width of the 

band.  A’B’, B’C’, and C’A’ are three arcs of three great circles, therefore it is true that 

sin ' ' sin sin
2

B C
θ

ϕ= , 

i.e., 

maxsin sin sin
2

θ
α ϕ= ,                                          (3-4) 

where αmax is given in (3-1).  Note that all the three angles, αmax, ϕ and θ, have positive 

values. 

 

3.3.3. Testing The Model  In the (a) insets of Figure 3-1, Figure 3-2 and  

Figure 3-3, the lattice fringes observed are those of the WC1-x {111} and {002} lattice 

planes.  In order to use equation (3-4) to predict their visibility after tilt, the crystal 

diameters must be respectively smaller than the upper limits predicted by (3-2), which are 

                          t0(d111= 2.45 Å, f = 0.7902) = 482.6 Å, and                               

                          t0(d002= 2.12 Å, f = 0.7902) = 361.8 Å. 

 

 

 



 

 

61

 

Figure 3-13. A segment of a continuous visibility band.  A’C’ is the trace of the lattice plane set.  A’ is the 
starting electron beam direction.  T is the tilt axis, g is the reciprocal lattice vector.  T and g make an angle 
of ϕ.  B’C’ = αmax is the half-width of the zone.  A’B’ is the tilt path of the electron beam direction, and is 

half the total angular range within which the lattice fringes are visible (the other half is symmetric with 
A’B’ about A’).  

 

 

 

Both values are an order higher than those of the crystals shown in the (a) insets.  

Therefore all the fringes are within the application range of (3-4). 

Lattice fringe invisibility after tilt can be predicted as follows.  (3-4) is modified 

as 

1 maxsin
sin

'
sin

2

α
ϕ

θ
−

 
 

=  
 
 

,                                                       (3-5) 

where the visibility angular range θ is replaced with θ’, which denotes the amount of tilt 

used in the experiment.  Corresponding to each θ’, (3-5) outputs an upper limit of 

deviation of a reciprocal lattice vector from the tilt axis.  If the actual deviation ϕ’ as 

measured from the image is greater than ϕ, the lattice fringes are are predicted to be 

necessarily invisible after tilt.  The implication of the analysis is that the reciprocal lattice 

vector deviates from the tilt axis so much that the reciprocal lattice spot necessarily loses 

intersection with the Ewald sphere after tilt. 
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Take those three sets of lattice fringes of crystal A shown in Figure 3-1(a), which 

are those of the WC1-x (-1, 1, -1), (1, 1, -1) and (2, 0, 0) lattice planes, as examples.  The 

average projection size of crystal A is about 48 Å.  Euqation (3-5) predicts that for the 

given amount of tilt θ’ = 14.5°, 

ϕ( f = 0.7902, d111=2.453 Å, 48 Å, θ’ =14.5°) = 20.6°, and                (3-6) 

ϕ( f = 0.7902, d002=2.124 Å, 48 Å, θ’ =14.5°) = 18.3°.                       (3-7) 

The three lattice fringe vectors deviate from the projection of T1 by 69.1°, 0.3°, 56.6°, 

respectively.  Among them the first and the third are larger than their counterpart limits 

obtained in (3-6) and (3-7).  Therefore, the (-1, 1, -1) and (2, 0, 0) lattice fringes are 

predicted to become invisible in Figure 3-1 (b).  This is shown to be true.  This way the 

invisibility of eleven lattice fringe sets are predicted, which is consistent with the 

HRTEM observation.  The results are shown in Table 3-1. 

In the (a) insets of the three figures, the eleven lattice fringe sets which are 

predicted to become invisible after tilt are labeled with hollow arrows.  Please notice that 

all these lattice fringe sets disappear in the (b) insets, which is an indication of the 

consistency of the model with the HRTEM observations. 

As an alternative to present the above results, Figure 3-14 shows two plots of ϕ(f 

= 0.7902, d111=2.453 Å, t, θ’ = 14.5°) and ϕ(f = 0.7902, d002=2.453 Å, t, θ’ = 14.5°).  

Also shown in the figure are the experimental data from Figure 3-1 (a).  Hollow symbols 

are used to label lattice fringe sets that are observed to become invisible after tilt as 

shown in the (b) inset, and solid symbols for the rest.  A consistency between the model 

and experimental observation is indicated, since all the hollow symbols are above their 

corresponding curves. 

In contrast with the use of hollow arrows for lattice fringe sets that are predicted 

to become invisible after tilt, solid arrows are used to label the rest lattice fringe vectors 

in Figure 3-1, Figure 3-2, and Figure 3-3.  Each of these lattice fringe vectors deviates 

from T by ϕ’which is measured from the images.  The corresponding lattice fringe set has 

a certain probability to become invisible after tilt.  The probability can be quantified as 
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Table 3-1. Correlating equation (3-5) in predicting lattice fringe invisibility after tilt with HRTEM 

observation as shown in Figure 3-1, Figure 3-2 and Figure 3-3.  Quantities in the third and the fifth columns 

are obtained from the (a) insets in the figures. 

Crystal θ'(°) t(Å) Lattice 
Fringe Set 

ϕ’(°) ϕ(°) ϕ’ >ϕ ? Predicted 
Invisible 
after Tilt? 

Invisible in 
(b) Insets? 

(1, 1, -1) 0.3 No No No 
(-1, 1, -1) 69.1 

20.6 
Yes Yes Yes 

A 48 

(200) 56.6 18.3 Yes Yes Yes 

B 56 {111} 24.6 17.8 Yes Yes Yes 

C 42 {111} 11.8 23.4 No No No 

(200) 57.5 Yes Yes Yes D 46 

(020) 32.5 

19.0 

Yes Yes Yes 

(1, 1, -1) 2.2 No No No 

(-1, 1, -1) 65.0 

14.5 

Yes Yes Yes 

E 70 

(200) 58.2 13.1 Yes Yes Yes 

(1, -1, 1) 67.1 Yes Yes Yes 

(1, 1, -1) 43.9 

20.6 

Yes Yes Yes 

F 

14.5 

48 

(200) 11.8 18.3 No No No 

G 30.6 76 {111} 0.5 6.4 No No No 

H (1, 1, -1) 0.6 No No No 

 (-1, 1, -1) 68.4 

4.4 

Yes Yes Yes 

 

35.26 100 

(200) 45.7 4.1 Yes Yes Yes 

Notation used: 

t:      Average projection dimension of a crystal 

 

 

 

follows.  Equation (3-4) can be similarly modified as 

1 maxsin
2sin

sin '

α
θ

ϕ
−  

=  
 

,                                               (3-8) 

where ϕ is replaced by ϕ’.  Corresponding to each ϕ’, (3-8) outputs an upper limit of 
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Figure 3-14. A plot of the maximum angular deviation of a reciprocal lattice vector from the tilt axis as 
given by (3-5), over crystal size.   Above such a limit the reciprocal lattice spot necessarily loses 

intersection with the Ewald sphere after tilting the crystal by 14.5o.  Experimental data from Figure 3-1(a) 
are also shown.  The hollow symbols, including both circles and triangles, are used to denote the lattice 

fringe sets which are observed to become invisible after tilt as shown in Figure 3-1(b), and solid symbols 
for the rest lattice fringe sets.  A consistency between the model and the HRTEM observation exists since 

all the hollow symbols are above their corresponding curves. 
 

 

 

 “visibility” angular range θ.  If the actual amount of tilt θ’ used in the experiment is 

greater than θ, the electron beam will be necessarily out of the “visibility” range after tilt, 

and the lattice fringes become invisible.  This is equivalent to saying that fringes are only 

visible when the electron beam is perpendicular to any patch of the visibility band.  In 

addition, since seeing the lattice fringes only means that the electron beam lies 

somewhere in the “visibility” range, but it is unknown exactly where the beam is in this 

range, the probability for the lattice fringes to become invisible after tilt can hence be 

quantified as 

                                                      0invisiblep = , if θ = 180°; and 
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'
min ,  1invisiblep

θ
θ

 =   
, otherwise.                           (3-9) 

Two examples of calculating pinvisible are given as follows.  For the (1, 1, -1) 

lattice fringe vector of crystal A previously discussed, (3-8) gives 

θ(f = 0.7902, d111=2.453 Å, t = 48 Å, ϕ’ = 0.3°) = 180°. 

This means no matter how much the tilt is, the lattice firnges will never be invisible after 

tilt.  Hence pinvisible = 0.  For the (-1, 1, -1) lattice fringe vector of crystal A, equation (3-8) 

gives 

θ(f = 0.7902, d111=2.453 Å, t = 48 Å, ϕ’ = 69.1°) = 5.4°, 

Equation (3-9) in turn gives 

14.5
min ,  1 1

5.4invisiblep
 

= = 
 

o

o . 

Since the amount of tilt of 14.5° is greater than the visibility range of 5.4°, the electron 

beam is necessarily out of the visibility range after tilt, hence the lattice fringes will 

become invisible.  This conclusion is consistent with that obtained through comparison of 

ϕ and ϕ’ as presented before. 

Similar analysis has been performed for all the rest of the fringe sets in Figure 

3-1, Figure 3-2, and Figure 3-3.  A consistency between the model and the HRTEM 

observations exists.  The results are summarized in Table 3-2.   

A new set of {111} fringes appears in Figure 3-1 (b).  It is close to running 

horizontally.  It is associated with another crystal overlapping with A and E.  This crystal 

is bigger than both A and E in projection, since the fringe set expands beyond the 

perimeters of A and E after tilt.  It has also been noticed from Figure 3-1 (a) that crystal E 

and F are twinned along one of their {111} planes. 
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Table 3-2. Correlating (3-8) and (3-9) with the HRTEM observation of lattice fringe visibility after tilts, as 

shown in Figure 3-1, Figure 3-2, and Figure 3-3.  Quantities in the second and the fourth columns are 

obtained from the (a) insets in the figures. 

θ’(°) Crystal t(Å) Fringe 
Set 

ϕ’(°) 

 

θ(°) θ’ > θ pinvisible Invisible in 
(b) Insets? 

(1, 1, -1) 0.3 180 No 0 No 
(-1, 1, -1) 69.1 5.4 Yes 1 Yes 

A 48 

(200) 56.6 5.4 Yes 1 Yes 

B 56 {111} 24.6 10.6 Yes 1 Yes 

C 42 {111} 11.8 28.4 No 0.51 No 

(200) 57.5 5.6 Yes 1 Yes D 46 

(020) 32.5 8.8 Yes 1 Yes 

(1, 1, -1) 2.2 111.3 No 0.13 No 

(-1, 1, -1) 65.0 4.0 Yes 1 Yes 

E 70 

(200) 58.2 3.9 Yes 1 Yes 

(1, -1, 1) 67.1 5.5 Yes 1 Yes 

(1, 1, -1) 43.9 7.3 Yes 1 Yes 

F 48 

(200) 11.8 

14.5 

22.3 No 0.65 No 

G 76 {111} 0.5 30.6 180 No 0 No 

H 100 (1, 1, -1) 0.6 180 No 0 No 

  (-1, 1, -1) 68.4 2.9 Yes 1 Yes 

  (200) 45.7 

35.3 

3.4 Yes 1 Yes 

Notation used: 

t:      Average projection dimension of a crystal 
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3.4. DISCUSSION 

 

3.4.1. Potential Application of the Visibility Bands  We have investigated  

lattice fringe visibility after tilt.  In this process the size of a reciprocal lattice spot is 

used, and the concepts of visibility band and visibility band map are introduced.  A 

visibility band map contains information about not only the crystal, but also the TEM.  

The information incudes lattice symmetry, lattice spacing (as mentioned in 3.3.2.5), 

crystal size and shape [please refer to equation (3-1) and (3-3)], electron wavelength and 

point resolution.  In short, like a Kikuchi map, a visibility band map is a “roadmap” to 

guide 3D (nano)crystallographic analyses in direct space.  Two examples to use the 

visibility band map are given as follows. 

 

3.4.1.1 Outputting Stereo Analysis Protocols  Since both visibility bands of the  

resolvable lattice plane sets and crystal directions are shown in the map, stereo analysis 

protocols can be obtained from the map.  For example, if we consider the map shown in 

Figure 3-12 as that of the 100 Å WC1-x crystal A shown in Chapter 2, then the map will 

contain only the (shaded) {111} and {002} bands (since d220 is shorter than the point 

resolution).  The protocol used in the tilt experiment described in Chapter 2 can then be 

easily obtained from the visibility band map. 

 

3.4.1.2 Quantifying Probabilities  For a randomly oriented crystal, the solid angle  

subtended by each visibility band is proportional to the probability for the corresponding 

lattice fringe set to be visible.  Similarly the solid angle subtended by the cross-section of 

any two bands is proportional to the probability of obtaining the corresponding zone-

images.  Both can be quantified.  For example, the probability of obtaining a [001] zone 

image is proportional to the solid angle of the cross-section of the (200) and (020) 

visibility bands, which is the “spherical square” that faces up as shown in Figure 3-12. 

In Chapter 4 the probability of obtaining a [001] zone-image from a randomly 

oriented 100 Å WC1-x crystal is calculated, but with a simplified treatment and hence the 

calculation is approximate.  In this treatment, a spherical circle circumscribing the  
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above-mentioned “spherical square” is used.  We have obtained no analytical solution for 

the solid angle subtended by the “spherical square”. 

 

3.5. CONCLUSION 

 

Here we present a model for predicting the visibility of a set of lattice fringes after 

tilt.  This model was built based on the geometry between the reciprocal lattice spot and 

the Ewald sphere before and after tilt.  It also employs a new concept of visibility band.  

Taking the reciprocal lattice spot size and the angle between the lattice fringe vector and 

the tilt axis into account, the model enables a determination of the total angular range of 

the incident electron beam relative to the lattice plane set within which the lattice fringes 

remain visible. 

The model has been tested against the visibility variation of 17 sets of lattice 

fringes in two single-tilt and a double-tilt experiments.  Two methods to predict the 

invisibility of lattice fringes after tilt have been used.  In one of them, the experimentally 

used tilt is taken as the “visibility” angular range of the incident electron beam relative to 

the lattice plane set.  The model subsequently outputs the maximum angular deviation of 

the lattice fringe vector from the tilt axis within which the lattice fringes will remain 

visible after tilt.  Lattice invisibility is predicted through comparing the maximum 

angular deviation with the experimental data.  In the second method, the angular 

deviation of the lattice fringe vector from the tilt axis is used to output the “visibility” 

angular range of the electron beam.  The probability for the lattice fringe set to become 

invisible after tilt can be quantified as the ratio of the experimentally used tilt with the 

“visibility” angular range.  Conclusions drawn by using these two methods are consistent 

with the experimental observations. 

Only a HRTEM-resolvable lattice plane set has a visibility band.  The band width 

is approxiately proportional to the size of the reciprocal lattice spots, and the lattice 

spacing.  The solid angle subtended by the visibility band of a set pf lattice planes is 

proportional to the abundance of the lattice fringes.  The visibility band map of a crystal 

carries the crystallographic information.  It can be used as a roadmap in direct space 

crystallography.  We have given two examples of the applications of the visibility band, 
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which are outputting the stereo analysis protocols, and quantifying the abundance of a 

certain lattice fringe set as well as that of a certain zone-image, which will be the subject 

of the next chapter.  The persistent appearance of lattice fringes perpendicular to the 

(effective) tilt axis after different tilts supports the calibration of the projections of the tilt 

axes on HRTEM images. 
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4. PROBABILITY AND UNCERTAINTY IN STEREO LATTICE IMAGING 

4.1. INTRODUCTION 

 

Three-dimensional reconstruction in TEM is an established technique in both 

electron diffraction crystallography and electron tomography.  These techniques share a 

common underlying principle in that each projection yields a single central plane of the 

examined object’s 3D Fourier transform.  Projections of the object along different views 

are combined to enable Fourier synthesis, after which 3D reconstruction is performed.  

Intrinsic symmetries of an object generally reduce the total number of necessary 

projections and the maximum tilt angle required (Frank, 1992b; DeRosier, 1968).  

Indeed, periodic lattices and quasi-periodic crystals offer one form of such simplifying 

symmetry (Hoppe, 1976).  As a result, transmitted electron diffraction data at two tilts are 

often sufficient for inferring a 3D crystal lattice (Fraundorf,1981).  With the availability 

of HRTEM, 3D crystallography in direct space became possible (Fraundorf, 1987).  This 

technique has recently been applied in Chapter 2.  There the 3D lattice parameters of a 10 

nm f.c.c. WC1-x crystal were measured by applying one of a finite set of data acquisition 

protocols (Qin, 1999; Qin, 2000a).  In this protocol, the (002) and (020) lattice fringe 

vectors were acquired along the [001] zone, and (1, 1, -1) along the [112] zone.   

For small crystals, reciprocal lattice spots expand broadly.  This, in combination 

with the convergence of the incident electron beam, increases the chance to visualize 

lattice fringes as crystal orientation is varied (Qin, 2000c).  Accordingly, the probabilities 

of success in each of the two data acquisition steps, and hence that for the overall 

experiment become higher.  In HRTEM images each of which contains hundreds of 

nearly randomly oriented nanocrystals, this means that a significant fraction of crystals 

are already “correctly” oriented to present [001] zone images (from which two out of the 

three targeted reciprocal lattice vectors can be acquired).  Acquisition of the third lattice 

fringe vector can be subsequently performed by adjusting the crystal azimuth, while 

retaining the [001] zone image configuration, then tilting to the [112] zone.  By 

quantifying the probabilities of success, the feasibility of this technique for a given type 
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of specimen can be evaluated.  Of course, the broadening of reciprocal lattice spots also 

introduces uncertainties in the corresponding reciprocal lattice vectors, as well as in the 

measured interplanar angles.  Both the probabilities of success, and the resulting 

uncertainties, are of interest in the stereo lattice imaging of crystals and quasicrystals.  In 

this paper we present semiempirical models for quantification of both. 

 

4.2. EXPERIMENTAL DETAILS 

 

The same gold/palladium specimen described in Chapter 3 was used to determinie 

the visibility factor f.  HRTEM images of the same tungsten carbide thin film specimen 

described in Chapter 2 were used in analyzing probabilities and uncertainties.  It is 

assumed that the WC1-x nanocrystals have the same visibility factor. 

 

4.3. RESULTS AND DISCUSSION: PROBABILITIES 

 

Here there are two subsections.  They concern the probabilities and uncertainties 

in stereo lattice imaging, respectively.  Each subsection covers theory, observation, 

analysis and discussion. 

 

4.3.1. Results 

 

4.3.1.1 Theory: Cross-fringe Probability  In the data acquisition protocol  

discussed, the overall probability of success is a product of those in the two data 

acquisition steps: find cross-fringes, then find a third set of fringes.  For randomly 

oriented crystals, the bigger the corresponding reciprocal lattice spots are, the more likely 

they will intersect the Ewald sphere.  Hence the probability of finding three linearly 

independent lattice fringe vectors increases.  In section 2.6.2, two approaches to identify 

the basis triplet of a crystal lattice were mentioned. 

In the first approach, any cubic crystal showing [001] zone cross-fringes is rotated 

(if necessary) until its (2, -2, 0) lattice planes become perpendicular to the tilt axis.  It is 

then tilted over to the [112] zone.  In this case the probability of success for any 
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randomly-oriented crystal is that of getting cross fringes along the [001] zone to begin 

with.  The simultaneous tangent of the Ewald sphere with any two (which must be 

linearly independent of each other) of the four {002} reciprocal lattice spots along the 

[001] zone defines a maximum half angle θt between the electron beam and the zone axis.  

The solid angle, denoted as σ, subtended by a cone with this half-angle is proportional to 

the probability px that a randomly-oriented crystal will show the cross-fringes along the 

zone.  A schematic, illustrating the principle to calculate the probability, is given in 

Figure 4-1. The probability px is actually proportional to the solid angle subtended by the 

cross-section of the (200) and (020) visibility bands, which is the “spherical square” that 

faces up and “normal” to the [001] direction in the visibility band map on the front page.  

An exact analytical solution for this has not yet been obtained.  The above principle 

instead approximates the solid angle of the “spherical square” to that of a “spherical 

 

For simplicity, we consider the case where the particle thickness in the electron 

beam direction, t, is fixed as the crystal orientation changes (e.g., as would be the case for 

spherical and/or equant crystals).  The radius of a reciprocal lattice spot can then be 

expressed as 

tg f t= , 

where f is the visibility factor.  As will be seen, gt (and ultimately f) is the key quantity 

underlying all the subjects of discussion here.  It affects the probabilities of success, the 

uncertainties of reciprocal lattice vectors and interplanar angles in stereo lattice imaging. 

The probability of seeing <001> zone cross lattice fringes from a spherical crystal 

with a cubic lattice is 

 ( , d, f) (1 cos )
4 2x t

n n
p l

σ
θ

π
= = − ,                                      (4-1) 

where n is the multiplicity of the zone (e.g., equal to 6 for <001> in cubic lattice). 

Derivations of (4-1), and the equations for σ and θt, which are given in (C-3) and (C-2), 

respectively, are in Appendix C1.1. 
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Figure 4-1. Schematic illustrating the principle to calculate the probability of seeing cross-fringes along the 

[001] zone axis of a randomly oriented crystal in HRTEM image.  The upper limit for the deviation of 
crystal orientation from the exact Bragg condition, without losing cross fringes down the zone axis, is 

expressed as the maximum half-angle θt between the zone axis and the electron beam.  The solid angle σ 
subtended by a cone with this half-angle is proportional to the probability that a randomly-oriented crystal 

will show the cross-fringes associated with that zone axis. 
 

 

 

4.3.1.2 Observation: Cross-fringe Probability  In determining f, three HRTEM  

images of the Au/Pd specimen were analyzed.  An example image is shown in Figure 

4-2.  Please notice that in each “shaded region” there exists more than one single crystal, 

as is evident from the lattice fringes each of which spans an area that is smaller than the 

whole “shaded region”. 

It is assumed that each Au/Pd crystal in the images is spherical and randomly 

oriented and that its thickness in the electron beam direction is similar to its lateral size 

(this assumption is supported by the fact that only about 6.7% of the crystals have aspect 

ratios higher than three, and less than 1% above four).  Two hundred and sixty-six 

nanocrystals were identified from the appearance of lattice fringes, and their projection  
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Figure 4-2. An HRTEM image of Au/ Pd sputtered on a thin carbon film.  Images like this were used to 
empirically determined the proportionality coefficient in the relationship between a reciprocal lattice spot 

size and the radius of the corresponding crystal. 
 

 

 

sizes range from 2 nm to 6 nm.  Among them 6 show {002} cross fringes along <001> 

zones.  The number of the remaining crystals could not be counted exactly due to the 

invisibility of lattice fringes.  Their presence was identified through the mass-thickness 

contrast, i.e., the presence of the “shaded regions” against the carbon film background.  

The total area they cover is about twice that of the area showing lattice fringes.  

Therefore the total number of nanocrystals is estimated to be three times as high, i.e., 

3×266=798.  The statistics are shown in the following Table 4-1. 
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Table 4-1. Statistics of crystals showing <001> zone fringes in three HRTEM images of a Au/Pd/C 

specimen. 

t(Å) t  (Å) σt(Å) N n<001> 

n

n
px 3

.001 ><= (10-3) 

[20, 40] 31.2 5.7 169 5 9.86 
(40, 60] 50.0 5.9 97 1 3.43 

Notations: 

t: Average crystal dimension 

σt: Standard deviation of crystal diameter 

n<001>: Number of crystals showing <001> fringes 

n: Number of crystals showing lattice fringes and hence each of which is identified as a crystal 

px: Estimated fraction of crystals showing <001> zone fringes 

 

 

 

4.3.1.3 Analysis: Cross-fringe Probability  Equation (4-1) was used to  

least-square fit the values of px in Table 4-1 by adjusting f.  In other word, f was adjusted 

so the relationships 

                               -3( 31.2 Å, d 2.04 Å, f) 9.86 10xp t t= = = = × , and 

-3( 50.0 Å, d 2.04 Å, f) 3.43 10xp t t= = = = ×                                       

are true.  The value of f thus determined is 0.79.  With such a value of f, a plot of θt(t) is 

shown in Figure 4-3.  it can be seen that θt rapidly decreases over increasing crystal 

diameter.  It drops down to less than ten degrees for t > 1.4 nm.  Therefore in this size 

range, the maximum deviation of the zone axis from the electron beam must be on the 

order of 1o in order for the cross-fringes to be visible.  For example, θt equals 4.75° when 

t equals 3 nm.  θt equals 1.84o when t equals 9 nm.  As a result, the solid angles 

subtended and hence the probabilities of finding cross-fringes along the [001] zone 

become very small.  For example, the probability px is less than 5% for t > 1.4 nm, as will 

be seen in the following discussion. 
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Figure 4-3. The maximum half-angle, θt, between the [001] zone of a spherical cubic nanocrystal and the 
electron beam as a function of crystal diameter.  When the [001] zone deviates from the electron beam by 

an amount that is not greater than θt, cross lattice fringes along the [001] zone will be visible. 
 

 

 

A plot of the probabilities of seeing <001> zone cross-fringes (d{002} = 2.04 Å) 

from Au/Pd crystals on the thin carbon film, as a function of crystal diameter t, together 

with the two experimental data points, is shown in Figure 4-4.  As is evident from the 

figure, the probability of encountering cross-fringes improves greatly as crystallite size 

decreases toward a nanometer.  However, this “reciprocal lattice broadening" is 

accompanied by an increase in the uncertainties of lattice fringe spacings and interplanar 

angles as well. 
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Figure 4-4. Fraction of spherical Au/Pd crystals showing cross lattice-fringes along a <001> zone as a 

function of crystal diameter, together with the experimental data points obtained from HRTEM images of 
Au/Pd particles evaporated on a thin carbon film. 

 

 

 

Corresponding to each crystal diameter t, there exists a maximum percent 

difference δ between the lattice spacing d and the observed fringe spacing d’, i.e., δ is 

such that the following relationship 

'd d dδ = −  

is satisfied. 

For spherical nanocrystals, t and δ obey the following relationship of 

2 21
'

' 1 1

t

t

g gg
g

gd
gλ

δ
−

= = =
+ −

.                                             (4-2) 

Derivation of (4-2) is given in Apendix C1.2.  It can equally be stated that when a certain 

upper limit of tolerable percent difference δ is imposed, there exists a corresponding 

lower limit of crystal diameter tmin.  Below such a lower limit of tmin, the reciprocal lattice 

spots are so large that the maximum percent difference between lattice spacing d and the 
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observed fringe spacing d’ will be greater than δ.  In plotting Figure 4-4, δ = 2% is 

imposed, equation (4-2) yields tmin = 8.0 Å.  The curve thus begins from t = 8.0 Å. 

Another plot of the probability of seeing <001> zone cross lattice-fringes of  

WC1-x crystals, as a function of crystal diameter is shown in Figure 4-5.  With the same 

amount of δ = 2% imposed, (4-2) yields tmin = 8.3 Å.  The curves thus begins from t = tmin 

= 8.3 Å. 

In order for the equation (4-1) to be valid in quantifying the probability px, the 

four {002} reciprocal lattice spots along a <001> zone must be large enough so that when 

the zone axis is parallel to the electron beam, the Ewald sphere still intersects these 

reciprocal lattice spots.  This imposes an upper limit of the crystal diameter.  Such an 

upper limit has the form of  

2 2

max 2
1

fd d
t fd

λ λ
= + + .                                             (4-3) 

Derivation of (4-3) is given in Appendic C1.3.  For WC1-x crystals, tmax is predicted to be 

about 320 Å.   

Equation (4-1) predicts the probability of seeing <001> zone fringes from a 10 nm 

WC1-x crystal as 

-3 1
( 100 Å, d 2.12 Å, f 0.79) 1.377 10

726xp l = = = = × ; , 

i.e., one out of about seven hundred 10-nm crystals shows cross fringes along <001>.  

This is also the probability of success in a TEM with a single-axis tilt of at least ±35.3° 

and a stage capable also of 90° rotation as discussed previously. 

 

4.3.1.4 Theory: Probability of Finding a Third Lattice Fringe Set  The second  

approach to determining a basis triplet, mentioned in section 2.6.4, works when the 

microscope tilt limitations do not allow choice of the tilt axis direction from the cross-

fringe position.  For the probability of success, we must multiply px by that of viewing a 

set of {111} fringes after tilting a <001> crystal with a random aziumth by 35.3°.  This  
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Figure 4-5. Different fractions of spherical WC1-x crystals as functions of crystal diameter.  These fractions 
of crystals include that of showing cross lattice-fringes along a <001> zone, px, that of showing the (1, 1, -
1) lattice fringes after tilting a <001> WC1-x crystals with random azimuth by 35.3°, p3, and the product of 

pxp3.  Such a product is the overall probability of success to acquire the three targeted reciprocal lattice 
vectors in a stereo lattice imaging protocol to infer the 3D lattice of a spherical f.c.c. crystal. 

 

 

 

probability, denoted as p3, is proportional to an “azimuthal tolerance half-angle" ϕ, which 

is an acute angle between the reciprocal lattice vector (2, -2, 0) and the tilt axis.  When 

the reciprocal lattice vector (2, -2, 0) deviates from the tilt axis by an amount that is less 

than this “azimuthal tolerance half-angle", (1, 1, -1) lattice fringes will appear after a tilt 

of the azimuthally random <001> crystal by 35.3°.  The probability p3 has the form  

3 /p mϕ π= ,                                                       (4-4) 

where m is the multiplicity of equivalent tilt direction (e.g., m = 4 for the (2, -2, 0) plane 

set in our experiment).  An equation to determine ϕ is given in equation (C-14) in 

Appendix C2.1.  When using the visibility band map on the front page, tilting an 

azimuthally random [001] crystal by 35.3° leaves the electron beam to a point in a circle 
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that is 35.3° away from the [001] zone axis.  This circle will intersect the (1,  1, -1) 

visibility band.  The ratio of the total length of arc of the circle within the (1,  1, -1) 

visibility band with the circumference of the circle is equal to the probability of getting 

the (1, 1, -1) lattice fringes after tilting.  Such a probability multiplied by the multiplicity 

of 6 of a <001> zone is equal to the probability px.  The result here, although obtained by 

a different approach, is still an exact solution. 

The probability p3 is also plotted in Figure 4-5, along with its product with px, i.e., 

p3px(t).  Corresponding to each crystal diameter t, there similarly exists a maximum 

percent difference δ between the lattice spacing d and the fringe spacing d’.  t and δ obey 

the following relationship of 

2 2
2 2 21

'
1

t t
t t

t

g g g g
g g g g g

g g
λ

λδ
+ +

= = + −
+ +

.                             (4-5) 

A derivation of (4-5) is given in Appendix C2.2.  A tolerance limit of δ = 2% is 

also imposed in the plot pf p3(t).  Similarly, the curve begins from t = tmin = 8.7 Å.   

In order for expression (4-4) for p3 to be valid, the (1, 1, -1) reciprocal lattice spot 

must be large enough to intersect the Ewald sphere after the 35.3° of tilt.  This imposes 

an upper limit on the crystal diameter.  Such an upper limit is of the form: 

2 2

max 2
1

fd d
t fd

λ λ
= + + .                                            (4-6) 

A derivation of (4-6) is given in Appendix C2.3.  For WC1-x, tmax here equals 

about 360 Å. 

 

4.3.1.5 Analysis: the Overall Probability  Based on the above discussion, the  

overall probability of success with the strategy adopted in our experiment, for the 10 nm 

WC1-x crystals, can be quantified as pxp3 = (1.377×10-3)×(0.325) = (1/726)×(0.327) = 

4.50×10-4 @ 1/2221.  Hence, only one in about every seven hundred crystals will show 

[001] cross fringes and one in about every two thousand will be suitably oriented for 3D 

lattice parameter determination.  This is not inconsistent with our experience: The image 

of crystal A was recorded in one pair of negatives out of 22, while each negative provides 

a view of approximately 100 crystals. 



 

 

81

 

4.3.2. Discussion 

 

4.3.2.1 Probabilties in High-tilt-rotate TEM  As discussed in 2.6.2, when the TEM  

is capable of both ±35.3° tilt and 90° rotation, lattice parameters could have been 

determined for any cubic crystals showing <001> zone cross-fringes when untilted.  

From Figure 4-5, the fraction of spherical particles, 3 nm in diameter oriented suitably for 

such analysis goes above 1%, i.e., px(t = 3.0 nm) = 1.1%.  Moreover, with a goniometer 

capable of tilting by ±45° plus computer support for automated tilt/rotation from any 

starting point, each unobstructed nanocrystal in the specimen could have been subjected 

to this same analysis after a trial-and-error search for accessible <001> zones.  Thus a 

significant fraction of crystals in a specimen become accessible to these techniques, with 

either a large enough range of computer-supported tilts, or if the crystals are sufficiently 

thin. 

 

4.3.2.2 Probability of Finding a Third Lattice Fringe Set  The following  

discussion is dedicated to the tilt dependence of p3.  Figure 4-6 shows a plot of p3 as a 

function of the amount of tilt needed to bring the third reciprocal lattice spot to the image 

plane.  Here the crystal diameter is t = 100 Å, and the third lattice spacing is d = 2.453 Å.  

It is assumed that after such an amount of tilt the spot will intersect the Ewald sphere.  

The function approaches 1 as the amount of tilt approaches zero.  In the case of zero tilt, 

it means the third lattice fringe vector can be acquired without tilting, i.e., it is along the 

first zone axis.  However, all three reciprocal lattice vectors being along the same zone 

does not enable the inference of the lattice of the imaged crystal in 3D since they are not 

linearly independent.  This means the zero tilt case does not satisfy the condition of stereo 

lattice imaging, and shall thus be excluded in the plots.  In the plot an open circle has 

been used to represent the zero-tilt point. 

At the other extreme, when the tilt equals 90°, it is interesting to note that the 

probability is again equal to 1, i.e., p3 = 1.  This can be explained as follows.  The tilt 
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Figure 4-6. Fraction of spherical crystals showing one set of lattice fringes as a function of the amount of 
tilt to bring the corresponding reciprocal lattice vector to the image plane.  Here the crystal diamtere is t = 

100 Å, and the lattice spacing is d = 2.453 Å. 
 

 

 

being equal to 90° means that the third reciprocal lattice vector is parallel to the electron 

beam before the tilt.  Hence the crystal azimuth will make no difference in the position of 

this reciprocal lattice vector after tilting, i.e., the third reciprocal lattice vector will always 

be lying on the image plane after tiltnig no matter how the crystal is azimuthally oriented 

before the tilt.  For this crystal with a diameter of t = 100 Å, the corresponding reciprocal 

lattice spot is large enough to intersect the Ewald sphere.  Hence lattice fringes would be 

visible in HRTEM images regardless of the initial crystal azimuth, and consequently, the 

probability p3 is equal to 1. 

From Figure 4-6, it is apparent that the probability of acquiring the third lattice 

fringe vector is lowest for tilts that are most likely to be involved in crystallography, i.e., 

between 20° and 70°.  In this tilt range, however, the probability of success is cut down 

from 1 by a factor of just less than 3, owing to the finite size of the reciprocal lattice spot. 
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4.4. RESULTS AND DISCUSSION: UNCERTAINTIES 

 

Stereo diffraction analysis, and the typical size of diffraction broadening in TEM, 

suggest that the lattice spacing uncertainty from stereo experiments may in favorable 

circumstances be on the order of 1%, and angular errors on the order of 1° (Fraundorf, 

1987).  Experiments with stereo image analysis in Chapter 2, and a more detailed look at 

the theory here, now support this impression.  We will focus the discussion again on 

spherical nanocrystals.  The primary cause of the uncertainties is the expansion of a 

reciprocal lattice point, i.e., increasing relaxation in the Bragg condition, as crystal size 

gets smaller. 

 

4.4.1. Results  Similar to a treatment in the earlier work, the sources from which  

uncertainties (e.g., in orientation and camera constant) arise are assumed to be 

uncorrelated in our models (Fraundorf, 1987; Bevington, 1969).  In the expressions 

below, we use subscript x to denote the component of a quantity in the horizontal image 

plane, and z, along the direction of the electron beam.  The Ewald sphere is assumed to 

be flat.  The angle θ is the amount of tilt to bring a reciprocal lattice vector to the 

horizontal image plane (hence Bragg condition), and λL is the camera constant of the 

digitized images. 

 

4.4.1.1 Theory: Reciprocal Lattice Vector Uncertainty in Image Plane  The three  

sources contributing to the uncertainty of a reciprocal lattice vector in the image plane 

are: the lateral uncertainty of the corresponding reciprocal lattice spot in the image plane, 

the uncertainty of the camera constant of the power spectrum, and the uncertainty of the 

reciprocal lattice spot along the electron beam direction, in order of decreasing relative 

effect.  It is worth noting that such an uncertainty equals that of the corresponding lattice 

fringe spacing, i.e., the following relationship 

d g

d g

δ δ
=                                                     (4-7) 
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is true and this is proved in Appendix C3.1.  Also, we treat uncertainty of spot location in 

the plane perpendicular to the electron beam direction in a very simplified way here as 

equal to the reciprocal lattice spot radius.  With the contributions from the above sources 

listed in order, the uncertainty of a reciprocal lattice vector has the form of 

22 2 2
( ) 1

2
x

g fd L fd

g t L t

δ δ λ
λ

        = + +                 
.                         (4-8) 

This equation is valid under the condition of ( )2
fd t <<1, i.e., t >> fd.  For the visibility 

factor of f = 0.79, the products of fd for WC1-x nanocrystals are close to 2 Å, i.e., f d111 ≈ 

2.0 Å, f d200 ≈ 1.8 Å.  Therefore, in evaluating the uncertainties of (δd/d)x, 200 and    

(δd/d)x, 111, the equation is applicable when the crystal has a diameter of t >1 nm.  

Derivation of (4-8) is given in Appendix C3.2. 

The sources of the uncertainty in camera constant are the magnification variations 

of both the microscope (operated at a certain magnification setting), and the image-

digitizing process.  Such an uncertainty, evaluated from the camera constants of 10 

HRTEM images taken during a time period of eight months, is 0.5% for our microscope. 

For the {111} lattice spacing (d111 = 0.245 nm) of WC1-x, as the crystal diameter t 

increases from 1 nm to 10 nm, the uncertainty from the first source decreases from 0.19 

to 0.019, and its ratio with that from the third source increases from about 10 to about 

100.  It follows that for nanocrystals most of the spatial measurement uncertainty arises 

from the lateral uncertainty of the reciprocal lattice spot in the image plane. 

 

4.4.1.2 Theory: Reciprocal Lattice Vector Uncertainty out of Image Plane   

Sources responsible for the uncertainty of a reciprocal lattice vector along the electron 

beam direction consist of those of the camera constant of the power spectrum and the 

goniometer tilt, and that of the reciprocal lattice spot along the electron beam direction.  

Our model predicts the following equation of 

2 2 2
( )

tan sin
z

g L fd

g L t

δ δ λ δθ
λ θ θ

       = + +            
,                            (4-9) 
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where θ is the amount of tilt to bring the reciprocal lattice vector to the image plane and 

in the unit of radian (this equation is valid for a very small amount of tilt uncertainty, i.e., 

δθ << 1).  Derivation of equation (4-9) is given in Appendix C3.3. 

From the last two terms on the right hand side it is obvious that for reciprocal 

lattice vectors farther out of the specimen plane the “out-of-plane" uncertainty is reduced.  

Figure 4-7 shows plots of both 200,( ) x

g

g

δ
 and 111,( ) z

g

g

δ
 as functions of WC1-x crystal 

diameter. 

 

4.4.1.3 Theory: Interplanar Angle Uncertainty  The uncertainty of interplanar  

angles in HRTEM images arises from those of the corresponding reciprocal lattice spots 

in the image plane.  Such an uncertainty is evaluated as 

1( ) 2sinx

fd

t
δϕ −= .                                                   (4-10) 

Figure 4-8 shows a plot of (δϕ)x for the interplanar angles corresponding to the<001> 

zone cross lattice fringes as a function of crystal diameter, for spherical WC1-x crystals.  

Derivation of (4-10) is given in Appendix C.3.4. 

 

4.4.1.4 Observation and Analysis: Uncertainties  In the stereo lattice imaging  

experiment described in Chapter 2, the three sets of lattice planes imaged have spacings 

of d002=2.12 Å, and d111=2.45 Å.  The two specimen orientations are 17.7° and 

from the untilted orientation, respectively.  The tilt uncertainties around both tilt axes are 

0.5°, giving rise to an angular uncertainty of δθ = 0.7° around the effective tilt axis.  

Equaitons (4-8), (4-9), and (4-10) predict the following uncertainties of 

                                                           200, ( ) 1.75%x

g

g

δ
= , 

                                                          111, ( ) 2.00%x

g

g

δ
= , 

                                                          111, ( ) 7.48%z

g

g

δ
= , and 
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Figure 4-7. Uncertainties of the {200} reciprocal lattice vectors in the image plane and the vertical 

component of the {111} reciprocal lattice vectors along the electron beam direction in HRTEM images for 
spherical WC1-x crystals as functions of crystal diameters. 

 

 

 

200, ( ) 1.92xδϕ = o , 

where the three-number indices are the Miller indices of the reciprocal lattice vectors.  

The large “out-of-plane" uncertainty zgg )(δ  predicted here is a result of the small tilt 

range available in our HRTEM.  These values given above, together with the percent 

differences between their experimental counterparts and the literature values, the percent 

errors, are listed in Table 4-2.  It can be seen that the model-predicted uncertainties are 
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Figure 4-8. Uncertainty of the interplanar angle of the {200} cross-lattice fringes in HRTEM images of 
WC1-x crystals as s function of crystal diameter.  The source considered for such an uncertainty is the 

expansion of the reciprocal lattice spots along the azimuthal direction in the image plane. 
 

 

 

between 2 and 3 times as large as the percent errors, and hence of the right order of 

magnitudes.  A statistical study of lattice fringe spacing uncertainty with more data from 

23 crystals, and a comparison of the study with the model prediction is given in 4.4.1.5. 
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Table 4-2. Uncertainties of some reciprocal lattice vectors and an interplanar angle of WC1-x obtained from 

models, and some percent differences between their experimental counterparts and the literature values. 

g 
xgg )(δ (%) zgg )(δ (%) x)(δϕ (°) 

 Model Experimental Model Experimental Model Experimental 
g1=g200 0.5 
g2=g020 

1.75 
1.4 

  1.92 0.8 

g3=g1,1,-1 2.00 1.2 7.48 2.4  
Notations used: 
Model: Uncertainty predicted by a model 
Experimental: experimental data  
 

 

 

4.4.1.5 Observation: An Ensemble Study of Zone Images  A recent paper on 

HRTEM image simulation indicated that orientation deviations of a 2.8 nm spherical 

palladium nanocrystal from a <110> zone axis may result in fringes unrelated to the 

structure of the particle (Malm, 1997).   Variation in measured lattice spacings was 

reported to be as high as several percent, with the highest reaching 10%.  To compare 

such results with our experimental data, 23 single crystals each of which is free of 

overlap with any other crystal, and showing cross-fringes, were examined.  The projected 

sizes of these crystals range from 3.7 nm × 3.8 nm to 10.8 nm×7.8 nm.  The spacings and 

angles between fringes are plotted in Figure 4-9. 

The observed cross-fringes in the HRTEM images fall into two categories, 

according to their spacings and interplanar angles.  The first is characterized by a 90° 

interplanar angle and two 2.12 Å lattice spacings.  There are nine such crystals.  The 

second one by two inter-planar angles of 55°, 70° and three lattice spacings, two of which 

are 2.12 Å, and the third, 2.44 Å.  For fringes in the second category, only the spacings of 

2.44 Å and 2.12 Å and the corresponding angle of 55° are plotted in Figure 4-9.  Since 

the two categories of cross-fringes match those along the <001> and <011> zone axes of 

WC1-x, the only two zones which will show cross lattice-fringes in our HRTEM images, 

the thin film consists mainly of WC1-x.  This is consistent with the chemical composition 

analyses described in 2.7.3 (Qin, 1998). 
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Figure 4-9. The spacings and interplanar angles measured from the cross lattice fringes of 23 WC1-x 
nanocrystals, each of which is free of overlap with any other as observed in HRTEM images.  Each crystal 
is plotted as a pair of spacings at the same interplanar angle.  Each pair uses the same symbol.  The specific 

combinations of lattice spacings and interplanar angles match the finger prints of the <001> and <011> 
zone images of WC1-x, and hence indicate that WC1-x is the only present phase in the film.  The standard 

deviations from the means of lattice spacings and interplanar angles are less than 1.5% and 1.3°, 
respectively.  

  

 

 

 

4.4.2. Discussion 

 

4.4.2.1 Ensemble Study of Nanocrystals  The above ensemble study is identical in  

principle with one of the data acquisition methods of electron tomography, which is 

through imaging different copies of an object occuring in different orientations, as 

discussed in 1.3.3.2.  The other method, which is by imaging the same object in a series 
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of tilts, can also be extended in our stereo analysis of nanocrystals.  This is described as 

follows. 

Given a nanocrystal, its orientation can be randomized in the TEM, and HRTEM 

images are taken in this process.  A large enough number of images at different crystal 

orientations can be used to perform another “ensemble study”, from which the finger 

print of the crystal lattice can be identified. 

 

4.4.2.2 Optimal Crystal Size Range for Stereo Lattice Imaging  Equations (4-8),  

(4-9), and (4-10) indicate that the uncertainties of a reciprocal lattice vector and an inter-

planar angle will increase as the crystal size gets small.  While on the other hand, the ease 

with which to acquire lattice fringes goes up.  Hence there exists an optimum crystal size 

range for applying stereo lattice imaging, for a certain type of crystals.  In such an 

optimum size range, the probability to acquire the targeted reciprocal lattice vectors must 

be sufficiently high, while on the other hand the uncertainties of reciprocal lattice vectors 

and interplanar angles must be sufficiently low. 

Such a crystal size range varies with the crystal type, but is very likely to be 

between 1 nm to 10 nm.  For example, in studying WC1-x crystals, in order for a g111 not 

to be confused with a g200, the following relationship of 

111 200
111 111

111

| |
( ) 13.4%x

g g
g g

g
δ

−
< =                                       (4-11) 

must be satisfied.  From (4-8) it can be seen that this happens when the crystal diameter is 

greater than 1.25 nm, i.e., t >1.25 nm.  In this size range, on the other hand, the 

probabilities of success in the two data acquisition steps in the protocol used in Chapter 2 

decrease from about 0.05 and 1, respectively.  As a result, the overall probability of 

success has a maximum value of about 0.05, which indicates the existence of a significant 

fraction of “correctly-oriented” crystals in a polycrystalline specimen as discussed in 

4.3.2.1. 
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4.4.2.3 Comparison among Theory, Observation and Image Simulation  We have 

also performed a comparison among the model prediction, our ensemble study of the 

WC1-x nanocrystals, and an image simulation, concerning lattice fringe spacing 

uncertainty.  This is to be presented as follows. 

For the 23 nanocrystals, the standard deviations from the means of the fringe 

spacings and interplanar angles measured from the two types of zone images are both less 

than 1.5% and 1.3°, respectively.  Both are smaller than those reported in the image 

simulation.  The main cause of such a difference, we believe, is the crystal size difference 

in these two cases.  Another more detailed statistical study supports this conclusion. 

This study is based on the images of eight out of the nine <001> crystals (the 

ninth crystal is excluded since its size is the smallest and much smaller than the average).  

The average projection size for this subset of <001> crystals is 8.85 nm, and the standard 

deviation from the mean of lattice fringe spacing is 1.47%.  This is consistent with the 

model predicted fringe spacing uncertainty (for WC1-x) in the image plane of 

( )
200, 

1.96%
x

d dδ = .  For the Pd nanocrystal studied in the image simulation, the model 

predicts a fringe spacing uncertainty of ( )
111, 

6.36%
x

d dδ =  in the image plane, which is 

also consistent with the reported typical values of several percents in the image 

simulation, yet smaller than the largest of about ten percents.  This slight difference may 

be due to the intersection of reciprocal lattice spots along more than one zone axis with 

the Ewald sphere, which is not taken into account in our model, and will be discussed 

shortly.   

In the image simulation, it was reported that destroyed and severely bent fringes 

appeared along directions that are between 10° and 30° away from the [011] zone, as a 

result of the low-pass filtering of the microscope of the dense projection of the charge 

potential/(atomic positions).  Such fringes have not been observed in our experiment.  We 

consider that such a difference also originates from that of the crystal sizes in these two 

cases. 

When the crystal is small enough, the reciprocal lattice spots are large ehough for 

the Ewald sphere to intersect reciprocal lattice spots along more than one zone axis, as 

the crystal orientation is far away from low-index zone axes.  The above mentioned low-

pass filtering of the microscope of the dense projection of the charge potential along 
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viewing directions that are far way from the [110] zone axis, involves the influence from 

more than one set of lattice planes.  As a result, Moire fringes of these lattice planes, 

limited in resolution by the TEM, appear. 

In contrast, the crystals in our ensemble study are larger.  From our previous 

discussion of θt and Figure 4-3, the maximum deviation of a <001> zone from the 

electron beam is 1.91°, in order for a WC1-x crystal with a diameter of t = 8.85 nm to 

show cross-fringes along the zone axis.  With such a small deviation of a <001> zone 

axis from the electron beam, as well as reciprocal lattice spots that are smaller, chances 

for the Ewald sphere to intersect reciprocal lattice spots along more than one zone axes 

are low, and no severely bent or destroyed fringes are observed. 

In summary, since the average crystal diameter of 8.85 nm in our ensemble study  

is larger than that of 2.8 nm for the Pd particle examined in the image simulation, a 

smaller uncertainty of lattice fringe spacing is to be expected, as is predicted by our 

model and has become true in our study.  The above comparison among our experimental 

data, model prediction and the image simulation data is summarized in the following 

Table 4-3.  We recommend that such fringe abundance analyses go hand in hand with 

stereo lattice studies of nanocrystal specimens, and that comparative image simulation 

studies be done where possible as well. 

 

 

 

Table 4-3. A summary of comparisons concerning lattice fringe spacing uncertainty in the image plane, 

maximum half angle between zone axis and the electron beam, among data from our experiment, model 

and the image simulation performed by J. O. Malm and M. A. O’keefe. 

Case Our Experiment Image Simulation 
Crystal WC1-x Pd 
Zone <001> <011> 

Crystal diameter (Å) 88.5 28 
Imaged Spacing (Å) d002 = 2.124 d111 = 2.246 

Measured 1.47 7.75 (Fig.7. w=70°, α=15°) x)gg(δ  (%) 
Model 1.96 6.36 

θt (°)  Model 1.91 N/A 
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4.5. CONCLUSION 

 

In this paper models to quantify the probabilities of success and the uncertainties 

of both reciprocal lattice vectors and interplananr angles in stereo lattice imaging have 

been presented.  We have been able to determine the radius of a reciprocal lattice spot of 

a AuPd nanocrystal is about 0.8/(average crystal dimension).  This is used to quantify the 

probabilities of success in the two data acquisition steps in the protocol used in Chapter 2, 

for a randomly oriented spherical nanocrystal with a cubic lattice and a diameter of 10 

nm.  It is found that the probability for such a nanocrystal to show cross-fringes along a 

<001> zone is on the order of a thousandth, and that to reveal the (1, 1, -1) lattice fringes 

along the [112] zone after tilting the same <001> crystal which is azimuthally random is 

about one-third.  The overall probability of success is predominantly determined by that 

of the first data acquisition step.  In addition, a sufficient tilt range (±36.0° for cubic 

crystals) as well as azimuthal rotation (90° for most first zones) will increase the 

probability to acquire the third set of lattice fringes to one, and hence the overall 

probability of success by a factor of about 3. 

The major cause of the reciprocal lattice vector and interplanar angle uncertainties 

in the image plane is the expansion of the reciprocal lattice spot in the same plane.  In the 

crystal diameter range of 2 nm to 10 nm, such an uncertainty is on the order of 1%.  

Reciprocal lattice vector uncertainties along the electron beam direction are about four 

times as high, and can be reduced through observing reciprocal lattice vectors farther out 

of the specimen plane.  The interplanar angle uncertainty is on the order of 1° in the 

crystal diameter range of 2 nm to 10 nm for cross lattice-fringes with a typical spacing of 

2 Å.  As crystal diameter decreases, both the probability of success and the uncertainties 

of lattice fringe spacings and interplanar angles become higher.  Generally there exists an 

“optimal” crystal diameter, with a balance between higher chances to visualize lattice 

fringes, and higher uncertainties in lattice fringe spacings as well as interplanar angles, 

for a certain type of material.  For tungsten carbide nanocrystalline materials used in the 

experiment, the optimal crystal diameter is between 1.25 nm and 10 nm. 
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An ensemble study of zone images in the tungsten carbide nanocrystalline 

specimen shows the finger prints of the WC1-x crystal lattice.  This study, our model 

prediction and an image simulation (Malm, 1997) concerning lattice fringe spacing 

uncertainty all indicate that a larger crystal size reduces the uncertainty.  As the crystal 

gets smaller, the Ewald sphere may intersect reciprocal lattice spots along more than one 

zone axis, and Moire fringes of the corresponding lattice planes will appear. 
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5. CONCLUSION 

In this thesis three fundamental topics of direct space nanocrystallography in 3D 

via HRTEM were individually discussed.  The development and application of an 

analytical technique to determine the lattice parameters of a nanocrystal from lattice 

images taken at two crystal orientations were described in Chapter 2.  It is found that for 

a crystal lattice there are typically a very limited number of data acquisition protocols that 

serve to resolve the lattice structure in 3D, and hence such protocols can be enumerated.  

Some example protocols are given for face-centered cubic (f.c.c.), body-centered cubic 

(b.c.c.) and simple cubic (s.c.) lattices.  The lattice parameters of a 10 nm f.c.c. WC1-x 

crystal are determined using one of the protocols. 

In Chapter 3, lattice fringe visibility after tilting is investigated based on the study 

of crystal diffraction geometry.  With a semi-empirical model, the probability for each of 

the 17 lattice fringe sets to become invisible after tilting is quantified.  We have 

introduced two new concepts, which are the visibility band and visibility band map.  The 

visibility band map of a nanocrystal can be used to guide direct space crystallographic 

analyses, and thus can be regarded as the counterpart of a Kikuchi map in direct space.  

The abundance of any set of lattice fringes and any zone images can also be quantified 

from the map. 

In Chapter 4, models to calculate the probability of success and the uncertainties 

of reciprocal lattice vectors in applying the stereo analysis technique described in Chapter 

2 are presented.  The size of a {002} reciprocal lattice spot of the AuPd/C nano-particles 

was determined to be ~0.79/(crystal diameter), and this relationship is assumed for the 

{111} and {002} reciprocal lattice spots of WC1-x nanocrystals.  Based on this 

relationship, both the probability of success and uncertainties of reciprocal lattice vectors 

are quantified.  It is found that with a side-entry tilt of ±35.3° or more, and a “tilt-rotate” 

specimen holder, the overall probability of success can be increased by a factor of about 

three.  For a certain type of crystal, there is an optimum crystal size range to apply the 

technique.  In such a size range, an adequately high probability of success and low 

enough uncertainties of reciprocal lattice vectors coexist. 
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With modern computer support, visibility band maps discussed in Chapter 3 can 

be generated and routinely used as the “roadmaps” to guide crystallographic analysis of 

nanocrystals in direct space, just like Kikuchi band maps have been used in reciprocal 

space crystallography.  When lattice fringes are visible, they can be matched with the 

visibility bands in the visibility band maps, and the crystal orientation can be determined.  

This could help computer software to output, and users to recognize, tilt directions of 

interest for further crystallographic analyses, which may include crystal lattice 

determination and zone axis imaging. 

 

Other subjects of the thesis also open some possibilities for computer supported 

direct space crystallography.  For example, in Chapter 4 ensemble studies of randomly 

oriented WC1-x crystals were discussed.  These suggest that such fingerprinting of fringe 

abundances from randomly-oriented crystals can be useful with no tilting at all, and 

further that computer-guided exploration of fringes as a function of orientation could be 

used to better identify individual crystals, and constrain both the abundance of phases and 

their orientation preferences, using images alone! For example, if the computer were 

simply used to randomize the orientations of a single nanocrystal, the images taken might 

reveal the fingerprint of the crystal lattice, just as discussed in Chapter 4.  
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APPENDIX A. 

Derivation of An Equation in Chapter 2 
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DERIVATION OF (2-7): AZIMUTH OF EFFECTIVE TILT AXIS 

 

Let ϕeff denote the azimuth of the effective tilt axis in a double tilt, and (θ1, θ2) 

and (θ1’, θ2’), the beginning and final specimen orientations, respectively.   Assume a 

reciprocal lattice vector g, as expressed in our coordinate system specified in 2.3.3 when 

the specimen is untilted, is parallel to the effective tilt axis.    

The reciprocal lattice vector g will thus be in Bragg condition in both specimen 

orientations, and in addition, will have the same micrograph coordinates gm in these two 

specimen orientations.   From (2-3) the following relation of  

A(θ1, θ2)gm = g = A(θ1', θ2')gm, where                            (A-1) 

gmx = gcos(ϕeff), 

gmy = gsin(ϕeff), and 

                                           gmz = 0                                                       (A-2) 

can be obtained.   Expanding (A-1) gives the following three equations of 

gmxcos(θ1) = gmxcos(θ1'),                                                   (A-3) 

-gmxsin(θ2)sin(θ1)+gmycos(θ2) = -gmxsin(θ2')sin(θ1')+gmycos(θ2'), and            (A-4) 

-gmxcos(θ2)sin(θ1)-gmysin(θ2) = -gmxcos(θ2')sin(θ1')-gmysin(θ2').                     (A-5) 

From (A-3) and(A-4), it can be obtained that the following relationship of  

                                                              θ1' = -θ1, and  

θ2' = -θ2                                                            (A-6) 

is valid.   Putting (A-6) into (A-5), the following equation of 

-gmxcos(θ2)sin(θ1)-gmysin(θ2) = gmxcos(θ2)sin(θ1)+gmysin(θ2) 

is obtained, which can be reduced to                         

-2gmxcos(θ2)sin(θ1) = 2gmysin(θ2).                                  (A-7) 

From (A-2) and (A-7), it can be obtained that the following relaiton of 

gmy / gmx = tan(ϕeff) = -cos(θ2)sin(θ1)/sin(θ2)                           (A-8) 

is true, and finally (A-8) gives the solution of  

ϕeff = tan-1[-cos(θ2)sin(θ1)/sin(θ2)].                                 (A-9) 
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APPENDIX B. 

Derivations of Some Equations in Chapter 3 
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B1. DERIVATION OF (3-1): MAXIMUM TRANSVERSE TILT 

 

The following equation can be obtained from Figure 3-6, 

2 2 2

cos
2

AB BC AC
ABC

AB BC

+ −
∠ =

⋅ ⋅
.                                     (B-1) 

Through substitution, equation (B-1) changes to 

2 2 2

max

1 1 1

cos
1 12 2

f

d t

d

π λ λα

λ

     + − −            − = 
  ⋅ ⋅

.                            (B-2) 

Equation (B-2) is then reduced to 

2

2 22 2

max 2 2 2 2

1 2
2 1 1

sin
2 2 2 2

f f
d f d f df d fd t t

t d t t d t
d

λ λ λλα
λ

λ

+ −    
= = + − = + −   

   
.    (B-3) 

Taking arcsine on both sides of (B-3) leads to (3-1). 
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B2. DERIVATION OF (3-2) 

 

The following equation can be obtained from Figure 3-7, 

1 f
AC

tλ
= + .                                                   (B-4) 

In the right triangle DABC, the following equation can be obtained, 

 

2 2 2 2

2 2

1 1 1 1 2
0

f f f

d t d t tλ λ λ
     + − + = − − =     
     

.                         (B-5) 

 

Letting f / t = x, equation (B-5) can be put in the form of 

2
2

2 2 2

1 2 1 1 1
0

x
x x

d dλ λ λ
 − − = − + + = 
 

.                               (B-6) 

The solution of (B-6) is 

( )2 2
2 2

0

1 1 1 1f
x d d

t d d
λ

λ λ λ
= = + − = + − . 

Therefore the minimum crystal diameter is obtained as 

0 2 2

fd
t

d d

λ

λ
=

+ − . 
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B3. DERIVATION OF (3-3): MINIMUM TRANSVERSE TILT 

 

In Figure 3-9(b), the relationship as given in (B-4) is still true.  From the triangle 

DABC, the equation 

2 2 2 2
2 2

2 2 2 2 2 2

2
2 2

1 21 1 1
2

cos
1 1 2 22

f ff d t
d t t t f d ftdd t

ABC
dtd t

d d

λ
λ λ λλ λ

λ
λ λ

       − −+ − +        − −       ∠ = = =
⋅ ⋅ ⋅

 

follows.  Therefore it is true that                                                                            

2 2 2 2
1

min 2

2
cos

2 2 2

t f d ftd
EBC ABC

dt

π π λ λ
α −  − −

∠ = = − ∠ = −  
  .
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APPENDIX C. 

Derivations of Some Equations in Chapter 4 
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C1. DERIVATIONS OF (4-1), (4-2) AND (4-3) 

 

C1.1 DERIVATION OF (4-1): THE PROBABILITY px 

 

The relaxation of Bragg condition in getting the <001> zone cross lattice-fringes 

defines a maximum half angle θt between the electron beam and the zone axis.  In Figure 

C. 1 and Figure C. 2, A is the center of the Ewald sphere, O is the origin of the reciprocal 

lattice, AO = gλ = 1/λ is equal to the radius of the Ewald sphere, and D is the projection 

of A on the horizontal image plane.  Segment OZ is parallel to the <001> zone.  

Segments OB and OC are two basic reciporcal lattice vectors (linearly independent of 

each other) along the <001> zone.  Their magnitudes are OB = OC = g = 1/d, where d > 

rSch is the corresponding lattice spacing.  Also gt = f / t is the radius of the reciprocal 

lattice spots centered at B and C (which we will refer to as “reciprocal lattice spots B and 

C”), where t is the diameter of the crystal, and f is the visibility factor discussed in 

Chapter 3.   

Each of the two figures shows a critical configuration under which the Ewald 

sphere is tangent with the reciprocal lattice spots B and C simultaneously.  Such a tangent 

is from the outside of the Ewald sphere in Figure C. 1, and from the inside in Figure C. 2.  

Denote the point in segment AC at which the Ewald sphere and the reciprocal lattice spot 

C are tangent as E, and that in the segment AB as F.  Therefore it is true that AB = AC = 

AE + EC = gλ + gt in Figure C. 1, and AB = AC = AE - CE = gλ - gt in Figure C. 2. 

Corresponding to each of these two critical conditions, a maximum deviation 

angle θt, which is equal to ∠AOZ in the figures, of the <001> zone from the electron 

beam for visualizing the cross lattice-fringes thus exists.  As an approximation, assume 

there is a rotational symmetry of OZ about AO.  This subsequently defines a solid angle 

whose magnitude is proportional to the probability of getting cross lattice fringes from 

HRTEM images of the crystal.   

In Figure C. 1, it is true that ∠COD = 135°.  Denote OD as x, i.e., OD = x.  In 
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Figure C. 1. Schematic illustrating the geometry among the reciprocal lattice spots and the Ewald sphere in 
quantifying the probability of getting cross lattice-fringes along a <001> zone of a randomly-oriented 

spherical cubic crystal.  The figure shows a critical configuration in which the Ewald sphere is tangent with 
two reciprocal lattice spots along the <001> zone simultaneously from the outside.  In the figure, A is the 

center of the Ewald sphere.  O is the origin of the reciprocal lattice.  AO = gλ = 1/λ is equal to the radius of 
the Ewald sphere.  D is the projection of A on the horizontal image plane.  OZ is parallel to the <001> 
zone.  OB and OC are two basic reciprocal lattice vectors (linearly independent of each other) along the 

<001> zone, and OB = OC = g = 1/d are their magnitudes where d > rSch is the corresponding lattice 
spacing.  gt = f / t is the radius of the reciprocal lattice spots centered at B and C, where t is the diameter of 
the crystal, and f is the visibility factor discussed in Chapter 3.  The Ewald sphere is tangent with reciprocal 
lattice spots B and C at points E and F, respectively.  Therefore it is true that AB = AF + FB = AC = AE + 
EC = gλ + g.  The angle θt = ∠AOZ is a maximum half angle between the electron beam and the zone axis.  
By assuming a rotational symmetry of OZ about OA, the corresponding solid angle is proportional to the 

probability of getting cross lattice fringes along a <001> zone. 
 

 

 

triangle ∆DOC, it can be obtained that 

 2 2 2 2 22 cos 2DC OD OC OD OC COD x g xg= + − ⋅ ⋅ ∠ = + + .   

In the right triangle ∆ADO, it can be obtained that 
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Figure C. 2. Schematic illustrating the geometry among the reciprocal lattice spots and the Ewald sphere in 

quantifying the probability of getting cross lattice-fringes along a <001> zone of a randomly-oriented 
spherical cubic crystal.  The figure shows a critical configuration in which the Ewald sphere is tangent with 

two reciprocal lattice spots along the <001> zone simultaneously from the inside.  In the figure, A is the 
center of the Ewald sphere.  O is the origin of the reciprocal lattice.  AO = gλ = 1/λ is the radius of the 

Ewald sphere.  D is the projection of A on the horizontal image plane.  OZ is parallel to the <001> zone.  
OB and OC are two basic reciprocal lattice vectors (linearly independent of each other) along the <001> 
zone.  OB = OC = g = 1/d where d > rSch is the corresponding lattice spacing.  gt = f / t is the radii of the 
reciprocal lattice spots centered at B and C, where t is the diameter of the crystal, and f is a parameter for 
adjusting the radii of the reciprocal lattice spots B and C whose intersection with the Ewald sphere results 
in detectable lattice fringes in HRTEM images.  The Ewald sphere is tangent with reciprocal lattice spots B 
and C at points E and F, respectively.  Therefore AF = AE = gλ, AB = AC = gλ - g.  The relaxation of Bragg 
condition in getting the <001> zone cross lattice fringes defines a maximum half angle θt = ∠AOZ between 

the electron beam and the zone axis.  By assuming a rotational symmetry of OZ about OA, the 
corresponding solid angle is proportional to the probability of getting cross lattice fringes along a <001> 

zone. 
 

 

 

 2 2 2 2 2AD AO OD g xλ= − = − .  

Since AC is the hypotenuse of the right triangle ∆ADC, it can be obtained that 

 2 2 2 2 2 2 2 2( ) 2tAC g g AD DC g x x g xgλ λ= + = + = − + + + ,  
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which is reduced to 

 2 2 2 22 2t tg g g g g g xgλ λ λ+ + = + + .  

Hence x can be obtained as 

 
2 2 2

2
t tg g g g

x
g

λ− +
= .  

∠AOZ can be obtained from ∆ADO as 

 
2 2

1 1 1 2
sin sin sin

2
t t

t

g g g gOD x
AOZ OAD

AO g g g
λ

λ λ

θ − − − − +
∠ = = ∠ = = =

⋅ ⋅
. (C-1) 

In Figure C. 2, it is true that ∠COD = 45°.  Denote OD as x, i.e., OD = x.  In 

triangle ∆DOC, it can be obtained that 

2 2 2 2 22 cos 2DC OD OC OD OC COD x g xg= + − ⋅ ⋅ ⋅ ∠ = + − . 

In the right triangle ∆ADO, it can be obtained that 

2 2 2 2 2AD AO OD g xλ= − = − . 

Since AC is the hypotenuse of the right triangle ∆ADC, it can be obtained that 

2 2 2 2 2 2 2 2( ) 2tAC g g AD DC g x x g xgλ λ= − = + = − + + − , 

which is reduced to 

2 2 2 22 2t tg g g g g g xgλ λ λ+ − = + − . 

Hence x can be obtained as 

2 2 2

2
t tg g g g

x
g

λ− +
= . 

∠AOZ can be obtained from ∆ADO as 

2 2
1 1 1 2

sin sin sin
2

t t
t

g g g gOD x
AOZ

AO g g g
λ

λ λ

θ − − − − +
∠ = = = =

⋅ ⋅
.             (C-2) 

For d < t, θt in (C-2) is greater than that in (C-1) (Given d = 2 Å, such a difference 

is about 0.8° for t > 5 Å, the difference is on the order of thousandth of a degree).  θt in 
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(C-2) is going to be used to evaluate px.  The solid angle with a half-angle equal to 

∠AOZ = θt is 

( )2 1 cos tσ π θ= − .                                               (C-3) 

Given a multiplicity of n of the <001> zone, the probability px is equal to 

( , , ) (1 cos )
4 2x t

n s n
p t d f θ

π
⋅

= = − .                                   (C-4) 

For cubic lattices, n = 6.  (C-4) is reduced to 

( , , ) 3(1 cos )x tp t d f θ= − . 

 

C1.2. DERIVATION OF (4-2): MAXIMUM PERCENT DIFFERENCE BETWEEN 

LATTICE FRINGE SPACING AND LATTICE SPACING 

 

In Figure C. 2, when the reciprocal lattice spots B and C are tangent with the 

Ewald sphere from the inside, generally (for t < 16 nm and d = 2 Å, which will be seen in 

the following discussion) the lattice fringe vector is shorter than the corresponding 

reciprocal lattice vector, i.e., the following relationship of g’ = OE < g = OC = OB is true, 

or equally stated, the lattice fringe spacing d’ is longer than the lattice spacing d, i.e., d’ > 

d.  This relationship can be seen more easily from Figure C. 3.  Due to such a difference, 

corresponding to a crystal diameter t, therefore there exists a maximum percent 

difference of δ for the lattice fringe spacing.  Equally stated, for an upper limit of percent 

difference δ of the lattice fringe spacing d’, there exists a lower limit of crystal size tmin.  

Below tmin, the maximum percent difference is greater than δ.  δ is defined through the 

following equation of 

' (1 )d dδ= + , 

which can be rewritten as 

1
'

1
g g

δ
=

+
. 
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Figure C. 3. Schematic illustrating the geometry between a reciprocal lattice spot and the Ewald sphere in 

quantifying the maximum percent error of the lattice fringe spacing.  What is shown here is the plane 
containing DAOE in Figure C. 1..  The reciprocal lattice spot centered at C is tangent with the Ewald sphere 

from the inside at E.  A is the center of the Ewald sphere.  O is the origin of the reciprocal lattice.  The 
lattice fringe vector is OE. 

 

 

 

In Figure C. 3, since ∆AOE is an isosceles triangle, the following equation of  

'
'2 2sin

2 2

OE g
OAE g

OA g gλ λ

∠
= = =                                       (C-5) 

can be obtained.  In ∆COE, the following equation of 

2 2 2 2 cosOC EO EC EO EC OEC= + − ⋅ ⋅ ⋅ ∠  

can be obtained.  After substitution, this equation is changed to 

2 2 2 2 2' 2 ' cos( ) ' 2 ' sin
2 2t t t t

OAE OAE
g g g g g g g g g

π − ∠ ∠
= + − ⋅ ⋅ = + − ⋅ ⋅ . 

Through using equation (C-5), the above equation is changed to 

2
2 2 2 2 2 2 2''

' 2 ' ' ' (1 )
2

t t
t t t t

g g gg
g g g g g g g g g

g g gλ λ λ

= + − ⋅ ⋅ = + − = − + . 
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Figure C. 4. The maximum percent error of a lattice fringe spacing for a spherical WC1-x crystal showing 
<001> cross fringes.  The curve corresponds to the critical crystal orientation in which the two basic 
reciprocal lattice spots along the <001> zone axis are tangent with the Ewald sphere from the inside. 

 
 

 

 

g’ can thus be obtained as 

2 2

'
1 1

t

t

g gg
g

g

gλ

δ
−

= =
+ −

.                                             (C-6) 

tmin(δ) can be determined from (C-6).  Figure C. 4 show a plot of δ(t) for WC1-x. 

As mentioned in the beginning of this section, when t < 16 nm, it is true that g’ < 

g for d = 2 Å.  This can be inferred by first assuming that the relation of g’ < g, then from 

(C-6), the following inequality of 
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2

1
'

1
1

t

t

g

gg
gg
gλ

 
−  

 = <
−

 

can be obtained.  This can be sequentially changed to the following forms of 

2

1 1t tg g

g gλ

 
− < − 

 
, and 

2

t tg g

g gλ

 
<  

 
, and 

2

1 tg

g gλ

< , and 

2fd

t
λ < . 

Finally the follwing inequality of 

2fd
t

λ
<                                                                 (C-7) 

can be obtained. 

For f = 0.79, d = 2 Å, λ = 0.0197 Å, the right side of (C-7) gives 160 Å.  

Therefore the relationship of g’ > g only becomes true in the crystal diamtere range of t > 

160 Å.  Yet as the crystal size increases, the reciprocal lattice spot size decreases, the 

percent error of lattice fringe spacing d’ is reduced.  As a result, δ becomes very small 

(<0.005%).  Compared with the typical uncertainty of about 1-2% of the lattice fringe 

spacings due to the reciprocal broadening effect of nanocrystals in HRTEM images, such 

a difference is negligible, and it becomes true that d’ ≅ d.  As a conclusion, d’ will 

become shorter than d only for large crystals, yet such a difference will be negligibly 

small. 
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C1.3. DERIVATION OF (4-3): CRYSTAL SIZE RANGE OF VALIDITY IN 

QUANTIFYING px 

 

As pointed out above, once a <001> zone falls into the solid angle s, the Ewald 

sphere intersects two adjacent reciprocal lattice spots out of the four along the <001> 

zone simultaneously.  When a <001> zone is parallel to the electron beam, such 

intersection must remain valid.  This imposes a lower limit of the size of the four 

reciprocal lattice spots, which in turn determines an upper limit of crystal size.  Since 

such an intersection will be from the outside of the Ewald sphere, Figure C. 1 will be 

used in the following discussion.  Under this condition, the following relationship of OA 

// OZ and AO⊥OC becomes true.  In the right triangle ∆AOC, the following equation of 

2 2 2AC AO OC= +  

can be obtained.  After substitution, it changes to the following equation of 

( )2 2 2
tg g g g

λλ + = + , 

which can be changed to the following equation of 

2 2 2 0t tg g g gλ− − = , 

and further to the following equation of 

2

0
f f

d t tλ
− − = . 

Multiplying both sides by λd2t2 gives the following equations of 

2

2

2
0 2

fd fd f d

λ λ λ

    
= − − = − − = − − − 

     
. 

The maximum crystal diameter can be obtained as 

2 2
max 2 2 1

λ λ λ λ
= + + = + + . 

For d = 2 Å, and f = 0.79 for Au/Pd particles sputtered on a thin carbo film 

determined in our experiment, tmax = 320 Å.  For d = 2.124 Å, and f = 0.79 for WC1-x 

particles, tmax = 361 Å.  The crystals studied in these two samples are all smaller than 

these two upper limits, respectively. 
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C2. DERIVATIONS OF (4-4), (4-5), and (4-6) 

 

C2.1. DERIVATION OF (4-4): PROBABILITY p3 OF {111} FRINGES AFTER 

35.26°° RANDOM TILT FROM CUBIC <001> CRYSTAL 

 

Such a crystal has a <001> zone parallel to the electron beam/optical axis.  

Denote the (1, 1, -1) reciprocal lattice point as C, and (000) as O, as shown in Figure C. 

5. 

In this figure, OC is θ = 35.26o below the image plane in the reciprocal space.  B 

is the projection of C on the image plane.  A is the projection of B on T, i.e., BA⊥T, 

where T is the tilt axis.  When the (2, -2, 0) reciprocal lattice vector deviates from being 

parallel to T by ϕ, the projection of the (1, 1, -1) reciprocal lattice point on the image 

plane, B, deviates from being perpendicular to T by ϕ as well, i.e., ∠OBA = ϕ.  This is 

illustrated in Figure C. 6.  With such an angular deviation of ϕ, the (1, 1, -1) reciprocal 

lattice spot will become tangent with the Ewald sphere after tilt, as shown in Figure C. 7, 

where the (1, 1, -1) reciprocal lattice spot is denoted as C0 in its new position after tilt, 

and the tangent point is denoted as E.  In addition, D denotes the center of the Ewald 

sphere.  DO and DE are both equal to the raius of the Ewald sphere, i.e., DO=DE = gλ.  

EC0 is equal to the radius of the (1, 1, -1) reciprocal lattice spot, i.e., EC0 = gt = f / t.  B’ is 

the projection of C0 on the image plane. 

In Figure C. 5, from the right triangles ∆OAB and ∆ABC, the following equations 

of 

AB = OB cos ∠OBA = OB cosϕ, 

and 

BC = OB tanθ, 

respectively, can be obtained.  Denote ∠CAB as α, i.e., ∠CAB = α.  From the above two 

equations, α can be obtained as 

α = tan-1(BC/BA) = tan-1 (tanθ/cosϕ).                             (C-8) 
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5. Schemat
-1) lattice fringes after tilting an azimuthally random spherical <001> cubic crystal by 35.3°

crystal has the <001> zone parallel to the electron beam/optical axis.  C denotes the (1, 1, 1) reciprocal 
lattice point, and O, (000).  OC is  = 35.26o

projection of C on the image plane.  A is the projection of B on T, i.e., BA⊥ , where  is the tilt axis.  
-2, 0) reciprocal lattice vector deviates from being parallel to  by , the projection of the (1, 

1, 1) reciprocal lattice point on the image plane, B, deviates from being perpendicular to T ϕ as well, 
∠OBA = .  This is illustrated in Figure C6. With such an angular deviation , the (1, 1, -

lattice spot will be tangent with the Ewald sphere after tilt, as shown in Figure C. , where the (1, 1, -
reciprocal lattice spot is denoted as C  in the new position. 

 

 

(C 8) α  θ -

zero deviation angle , i.e., ϕ ≠ 0, the amount 

(1, 1, - ∠BAC = , is greater than θ

see that after tilting about T θ = 35.26 , AC0 α  θ

T.  AC  can at most be on the image plane after tilt, which happens when  = 0.  As 

discussed previously,  is so defined that the (1, 1, -

tangent with the Ewald sphere at point E after tilt, as shown in Figure C. .  This implies 

the existence of a lower limit of the size of the (1, 1, 1) reciprocal lattice spot, which 

ultimately determines an upper limit of the crystal size.  All crystals in our discussion 

erwise the intersection of the (1, 1, -  

 



 

 

 
6. Schematic illustrating the geometry between the projections of the (1, 1, 1), (2, -

reciprocal lattice vectors and the tilt axis on the image plane.  O is the origin of the reciprocal lattice.  B is 
-1).  (2, 2, 0) is on the image plane and denoted as R.  OR deviates from the tilt axis 

by .  From the relation of ∠ ∠OBA, the projection of (1, 1, 1) on the image plane, OB, deviates 
fro ϕ.

 
 

 

Figure C. . Schematic illustrating the geometry after the crystal in Figure C. . is tilted.  D is the center of 
the λ, where g  is the radius of the Ewald sphere, EC0 t is the radius of the 

-1) reciprocal lattice spot.  The reciprocal lattice point (1, 1, 1) has been rotated from C to C0

subscript 0 denotes the critical condition.  The (1, 1, 1) reciprocal lattice spot is tangent with the Ewald 
sphere at E.  For a certain size of the (1, 1, 1) reciprocal lattice spot, there exists a maximum azimuthal 

deviation, i.e., , of the (2, - lt axis.  Within ϕ -1) 

proportional to the probability of getting the (1, 1, -
crystal with a random azimuth.
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reciprocal lattice spot with the Ewald sphere can never happen after the tilt of 35.3°.  This 

size limit is going to be inferred in C2.3.  The following discussion is based on the 

assumption that the crystal size is below such a limit. 

In Figure C. 5, from the right triangles ∆OBC and ∆OAB, the following equations 

of 

OB = OC cosθ = g cosθ, 

and 
OA = OB sinϕ = g cosθ sinϕ,                                      (C-9) 

 
respectively, can be obtained.  OA remains unchanged after tilt, and the reciprocal lattice 

point (1, 1, -1) remains in the plane perpendicular to T and containing A throughout the 

tilt, as shown in Figure C. 7. 

From Figure C. 7, an equality of ∠C0AB’ = α -  can be obtained.  Denote the 

angle C0AB’ as w, that of ∠C0OB’ as β ∠DOC  as γ ∆DOC , the 

following equation of

( )22 22 2 2
0

0
0

cos cos
2 2

to
g g g gOD OC DC

DOC
OD OC g g

λ λ

λ

γ
+ − ++ −

∠ = = =
⋅ ⋅ ⋅ ⋅

 

can be obtained, which is simplified as 

2 2 2
cos

2
t tg g g g

g g
λ

λ

γ
− −

=
⋅ ⋅

.                                                 (C-10) 

From the right triangle of ∆OB’C0, the following two equations of  

OB’ = OC0 cos∠C0OB’ = g cosβ,                                     (C-11) 

 
and 

C0 B’= OC0sin∠C0OB’ = g sinβ                                      (C-12) 

can be obtained.  Using (C-11) and (C-9) (since OA remains unchanged throughout the 

tilt as discussed), one side of the right triangle ∆OAB’ can be expressed as 

2 2 2 2 2 2' ' (g cos ) ( cos sin ) g (cos ) (cos sin )AB OB OA gβ θ ϕ β θ ϕ= − = ⋅ − ⋅ = − .  (C-13) 

Using (C-12) and (C-13), the angle ∠C0AB’ has the form of 
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1 10
0 2 2

' g sin
' tan tan

' g (cos ) (cos sin )

C B
w C AB

AB

β

β θ ϕ
− − ⋅

= ∠ = =
−

, 

which can be simplified as 

1 1

2 2 2 2

sin( 90 ) cos
tan tan

cos ( 90 ) (cos sin ) sin (cos sin )
w

γ γ

γ θ ϕ γ θ ϕ
− −− ° −

= =
− ° − − . 

Finally w has the form of 

1

2 2

cos
tan

sin (cos sin )
w

γ

γ θ ϕ
−= −

−
. 

The equality of α - θ = w can thus be written as 

1

2 2

cos
tan

sin (cos sin )

γ
α θ

γ θ ϕ
−− = −

−
, 

which can be reduced as 

1 1

2 2

tan cos
tan tan

cos sin (cos sin )

θ γ
θ

ϕ γ θ ϕ
− −+ =

−
                          (C-14) 

through the use of (C-8).  ϕ(θ, d, t, f, λ) can be obtained from(C-14) , where γ is given in 

(C-10). 

What has been shown in Figure C. 5 is a clockwise deviation of OB from being 

perpendicular to the tilt axis T.  A counterclockwise deviation of OB from being 

perpendicular to the tilt axis T within ϕ similarly results in an intersection of the (1, 1, -1) 

reciprocal lattice spot with the Ewald sphere after tilt.  Further more, there exists a 

multiplicity of four for the {1, 1, 1} reciprocal lattice spots below the image plane (they 

are the (1,1, -1), (1, -1, -1), (-1, 1, -1) and (-1, -1, -1) reciprocal lattice spots), the 

probability of having the intersection of the (1, 1, -1) reciprocal lattice spot with the 

Ewald sphere after tilting a <001> crystal by θ = 35.26o is thus 

P3 (θ, d, t, f, λ) = 2×4×ϕ / 360 = ϕ(t, d, f, θ, λ) / 45. 
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C2.2. DERIVATION OF (4-5): MAXIMUM PERCENT DIFFERENCE BETWEEN 

LATTICE FRINGE SPACING AND LATTICE SPACING 

 

As shown in Figure C. 7, the lattice fringe vector is shorter than the corresponding 

reciprocal lattice vector, i.e., the following inequality of g’ = OE < g = OC is true.  Hence 

the lattice fringe spacing is longer than the corresponding lattice spacing, i.e., the 

following inequality of d’ > d is true.  For a crystal diameter t, therefore there exists a 

maximum percent error δ for the lattice fringe spacing d’.  Stated differently, for an upper 

limit of percent error of lattice fringe spacing, δ, there exists a lower limit of crystal size 

tmin.  Below tmin, the maximum percent error of lattice fringe spacing d’ is greater than δ.  

δ is defined through the following equation of 

d' = (1+ä)d , 

which can be rewritten as 

1
'

1
g g

δ
=

+
.                                                   (C-15) 

From the triangle ∆DC0O, the following equation of 

22 2 2 2 2
0 0

0
0 0

( )
cos

2 2 ( )
t

t

DC OC DO g g g g
DC O

DC OC g g g
λ λ

λ

+ − + + −
∠ = =

⋅ ⋅ ⋅ + ⋅
 

can be obtained.  The lattice fringe vector OE has the form of 

2 2
0 0 0 0 0' 2 cosg OE OC C E OC C E DC O= = + − ⋅ ⋅ ⋅ ∠ , 

which is changed through substitution and reduction to 

22 2 2 2
2 2 2 2( ) 2

' 2
2 ( )

t t t
t t t t

t t

g g g g g g g g
g g g g g g g g

g g g g g
λ λ λ

λ λ

+ + − + +
= + − ⋅ ⋅ = + −

⋅ + ⋅ +
. 

Through using equation (C-15), the above equation is changed to 

2 2
2 2 22 1

1
t t

t t
t

g g g g
g g g g

g g
λ

λ δ
+ +

+ − =
+ +

.                             (C-16) 

tmin(δ) can be determined from (C-16). 
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C2.3. DERIVATION OF (4-6): CRYSTAL SIZE RANGE OF VALIDITY IN 

QUANTIFYING p3 

 

In order for the model to be valid in quantifying the probability p3, the (1, 1, -1) 

reciprocal lattice spot must be large enough to intersect the Ewald sphere after a tilt of 

35.3°.  When the (2, -2, 0) reciprocal lattice vector is perpendicular to the tilt axis, the (1, 

1, -1) reciprocal lattice spot comes closest to the Ewald sphere.  There exists a lower limit 

of the (1, 1, -1) reciprocal lattice spot radius, at which the spot becomes tangent with the 

Ewald sphere.  This corresponds to an upper limit of crystal diameter.  Equally stated, 

when the crystal diameter is above this limit, the (1, 1, -1) reciprocal lattice spot becomes 

so small that it will never intersect the Ewald sphere after a tilt of 35.3°.  In the following 

discussion, we are going to refer to Figure C. 7, and the (2, -2, 0) reciprocal lattice vector 

is perpendicular to the tilt axis T.  Therefore please notice that in this figure, (1, 1, -1) is 

on the image plane, i.e., ∠DOC0 = 90°.  In the right triangle ∆DOC0, the following 

euqation of 

2 2 2
0 0oOD OC DC+ − =  

can be obtained, which can be further reduced to 

( )
2

22 2 2 2
2 2

1 2
2 0t t t

f f
g g g g g g g g

d t tλ λ λ λ
+ − + = − − = − − = . 

Multiplying oth sides of the equation by λd2t2 and subsequent reduction give the 

following forms of 

22 2 2 4
2 2 2 2 2 2 2 2 2

2

2
2 0

fd fd f d
t f d fd t t t f d t f dλ λ λ λ

λ λ λ

    
− − = − − = − − − =    

     
. 

The upper limit of crystal diameter can be obtained as 
2 2 4 2 2

2 2
2 2

fd f d fd d
t = + + f d = + fd +1

l l l l
. 

For d = 2.124 Å for WC1-x crystals, t = 361 Å.  The projection size of crystal A whose 

lattice parameters were determined in our experiment, about 100 Å, is below this upper 

limit. 
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Since the Ewald sphere curves up, for greater t, the (1, 1, -1) reciprocal lattice 

spot is too small to contact the Ewald sphere after tilting about T by θ, regardless of how 

the crystal is azimuthally oriented (even with the (2, -2, 0) reciprocal lattice vector 

parallel to T). 
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C3. DERIVATIONS OF (4-7), (4-8), (4-9) and (4-10): UNCERTAINTIES 

 

C3.1. DERIVATION OF (4-7) 

 

By definition, the following equality of 

1
d

g
=  

is true, where d is the lattice spacing, and g is the magnitude of the reciprocal lattice 

vector.  Taking the derivatives of both sides of the equation gives the following equation 

of 

2

1
d g

g
δ δ= − , 

which, upon deviding both sides by d, is changed to the following form of 

2

1d g
g g

d g g

δ δ
δ

 
= − = − 

 
. 

Therefore the uncertainty of a reciprocal lattice vector is equal to that of the spacing of 

the corresponding lattice fringes in magnitude.   

The following discussion assumes a flat Ewald sphere. 

 

C3.2. DERIVATION OF (4-8): RECIPROCAL LATTICE VECTOR 

UNCERTAINTY IN IMAGE PLANE 

 

There are three factors contributing to the uncertainty of a reciprocal lattice vector 

in the image plane.  They are going to be discussed in the follwing three subsections 

individually. 

 

C3.2.1. Lateral Uncertainty of the Reciprocal Lattice Vector  As shown in 

Figure C. 8, O is the position of (000), A is center of the reciprocal lattice spot whose 

radius is t

f
g

t
= , where t is the diameter of the crystal.  When the reciprocal lattice 
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Figure C. 8. Schematic illustrating the uncertainty of a reciprocal lattice vector in the image plane when the 
vector lies in the image plane.  Point O is the origin of the reciprocal space, (000), Point A is center of the 
reciprocal lattice spot.  The reciprocal lattice vector OA lies on the image plane.  Such an uncertainty is 

evaluated as the ratio of the radius of the reciprocal lattice spot and the magnitude of the reciprocal lattice 
vector, OA. 

 

 

 

vector OA=g
uuuv

 is on the image plane, the lateral uncertainty is equal to the radius of the 

reciprocal lattice spot, i.e., the following equality of 

t

f
g g

t
δ = =  

is true.  Dividing both sides of the equation by g gives the following eualtion of 

g fd

g t

δ
= . 

 

C3.2.2. When the Reciprocal Lattice Vector is off the Image Plane  As shown 

in Figure C. 9, O is the origin of the reciprocal lattice, (000).  When the reciprocal lattice 

vector g = OA is off the image plane, the corresponding lattice fringe vector has a 

different magnitude of g’= OB.  Here we consider an extreme case in which the 

reciprocal lattice spot is tangent with the image plane at the point B.  The reciprocal 

lattice spot has a radius of gt = f/t.  The magnitude of the lattice fringe vector can be 

obtained as 

2 2
2 2' 1 1t

t

g fd
g OB g g g g

g t

   = = − = − = −   
  

. 
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Figure C. 9. Schematic illustrating the uncertainty of a reciprocal lattice vector which arises when the 
reciprocal lattice vector is off the image plane.  What is shown here is the extreme case in which the 

reciprocal lattice spot is tangent with the image plane.  Point O is the origin of the reciprocal space, (000).  
Point A is center of the reciprocal lattice spot which is tangent with the Ewald sphere at B.  Such an 

uncertainty is equal to the percent difference between OB and OA. 
 

 

 

This can be approximated as 

2
1

' 1
2

fd
g g

t

  −  
   

; , 

if 
2

1
fd

t
 
 
 

= , i. e. t >>fd. 

Therefore the corresponding uncertainty is quantified as 

2' 1

2

g gg fd

g g t

δ −  = =  
  . 

 

C3.2.3. Camera Constant Uncertainty  The camera constant here is that of the 

power spectrum of an HRTEM image from which the lattice fringe vector can be 

measured, and denoted  as λL.  The causes of such an uncertainty are the magnification 

variations both of the microscope operated at the working magnification, and in the 

image-digitizing process.  From the equation of
L

r
d

λ
= , the relation 

1 r
g

d Lλ
= =  

can be obtained.  After taking the derivative on both sides, the relationship 

( )
( )2

r
g L

L
δ δ λ

λ
= −  
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follows.  Finally the corresponding uncertainty can be written as 

( )
( ) ( )

2

Lg r L
L

g r LL

δ λδ λ
δ λ

λλ
= − = − . 

The sources from which the above uncertainties arise are uncorrelated.  Therefore, 

the average of the cross terms involving the products of the deviations in different 

variables vanishes.  In the below expression, we use subscript x to denote the component 

of a quantity in the horizontal image plane.  The overall reciprocal lattice vector 

uncertainty in the image plane is expressed as follows 

22 2 2
( ) 1

2
x

g fd L fd

g t L t

δ δ λ
λ

        = + +                 
. 

 

C3.3. DERIVATION OF (4-9): RECIPROCAL LATTICE VECTOR 

UNCERTAINTY IN ELECTRON BEAM DIRECTION 

 

There are three factors contributing to the uncertainty of a reciprocal lattice vector 

in the electron beam direction.  They are going to be discussed in the follwing three 

subsections individually.   

 

C3.3.1. Camera Constant Uncertainty  As shown in Figure C. 10, point O is the 

origin of the reciprocal lattice, (000).  The reciprocal lattice vector is represented as 

segment OA.  Segment AB is the uncertainty of the reciprocal lattice vector resulted from 

that of the camera constant.  The segments BD and OD are parallel to the electron beam 

direction and the image plane, respectively.  It then becomes apparent that the angle of 

∠AOD is the amount of tilt θ around the tilt axis to bring the reciprocal lattice vector to 

the image plane for stereo analysis.  The tilt axis direction points into the paper.  We use 

subscript z to denote the component of a quantity along the direction of the electron 

beam.  The uncertainty can be quantified through the following equations of 

( )sin

sin
z

Lg BC AB AB g

g CD OA OA g L

δ λδ θ δ
θ λ

  ⋅
= = = = =  ⋅ 

. 
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Figure C. 10. Schematic illustrating the contribution to the uncertainty of a reciprocal lattice vector, 
represented as OA shown in the figure, along the electron beam direction, from that of the camera constant 
of the power spectrum of the HRTEM image.  The point O is the origin of the reciprocal lattice, (000), the 

segment AB is the uncertainty of the reciprocal lattice vector resulted from that of the camera constant.  
The segments BD and OD are parallel to the electron beam direction and the image plane, respectively.  It 

then becomes apparent that the angle of ∠AOD is the amount of tilt around the tilt axis to bring the 
reciprocal lattice vector to the image plane for stereo analysis.  The tilt axis direction points into the paper. 

 

 

 

C3.3.2. Tilt Uncertainty  As shown in Figure C. 11, point O is the origin of the 

reciprocal lattice, (000).  The reciprocal lattice vector is represented as segment OA.  The 

angle ∠AOB is the uncertainty of tilt δθ.  The magnitude of the corresponding 

uncertainty of the reciprocal lattice vector δg is equal to segment AB.  Segment OE 

bisects the angle ∠AOB.  The relationship of OE ⊥AB is true.  Segment AD is parallel to 

the electron beam direction.  Segment OD is parallel to the image plane.  The relationship 

of AD ⊥ OD is true.  The tilt axis direction points into the paper.  The angle ∠AOD is the 

amount of tilt around the tilt axis to bring A to the image plane, denoted as θ, i.e., it is 

true that ∠AOD=θ.  The following relationship of ∠BAC = ∠AOD = θ is also true.  

From the figure, it follows that 

cos coszg AC AB BAC ABδ θ= = ∠ = , 

which simplifies to  

cos coszg AO gδ δθ θ δθ θ⋅ ⋅ = ⋅ ⋅; , 

if δθ <<1. Therefore the uncertainty becomes 

cos

sin tan
z

g AC g

g AD g

δ δθ θ δθ
θ θ

 
= = = 

 
. 
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Figure C. 11. Schematic illustrating the contribution to the uncertainty of a reciprocal lattice vector, 
represented as segment OA in the figure, along the electron beam direction from the tilt uncertainty.  O is 
the origin of the reciprocal lattice (000), segment AB is the uncertainty of g resulted from that of tilt.  The 
tilt axis direction points into the paper.  The angle ∠AOD is the amount of tilt around the tilt axis to bring 

the reciprocal lattice vector OA to the image plane, θ.  The angle ∠AOB is the uncertainty of tilt δθ.  
Segment OE bisects the angle ∠AOB.  It is true that OE ⊥AB.  Segment AD is parallel to the electron 

beam.  Such a contribution is quantified as the ratio between the segments AC and AD. 
 

 

 

C3.3.3. Reciprocal Lattice Spot Uncertainty along Electron Beam Direction  

As shown in Figure C. 12, O is the origin of the reciprocal lattice (000).The reciprocal 

lattice vector is represented as the segment OA.  The angle ∠AOC is equal to the amount 

of tilt to bring the reciprocal lattice vector to the image plane, θ.  The tilt axis direction 

points into the paper.  Segment AC is parallel to the electron beam.  Segment AB is equal 

to the radius of the reciprocal lattice spot, gt. 

The uncertainty can be obtained from the equality string 

sin sin
t

z

gg AB fd

g AC g t

δ
θ θ

 
= = = 

 
. 

Similar to the treatment adopted in C3.2, the sources from which the above 

uncertainties arise are assumed to be uncorrelated.  As a result, the overall uncertainty of 

a reciprocal lattice vector along the electron beam direction is of the form 

2 2 2
( )

tan sin
z

g L fd

g L t

δ δ λ δθ
λ θ θ

       = + +            
. 
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Figure C. 12. Schematic illustrating the contribution to the uncertainty of a reciprocal lattice vector, 
represented as segment OA in the figure, along the electron beam direction from that of the reciprocal 

lattice spot in the same direction.  Point O is the origin of the reciprocal lattice (000).  The angle ∠AOC is 
equal to the amount of tilt to bring the reciprocal lattice vector to the image plane.  The tilt axis direction 
points into the paper.  Segment AC is parallel to the electron beam.  Segment AB is equal to the radius of 

the reciprocal lattice spot along the electron beam direction.  Such a contribution is equal to the ratio 
between the lengths of AB and AC. 

 

 

 

C3.4. DERIVATION OF (4-10): INTERPLANAR ANGLE UNCERTAINTY 

 

The uncertainty of an inter-planar angle in the lattice image is due to the 

azimuthal uncertainty of the corresponding two reciprocal lattice spots.  As shown in 

Figure C. 13, O is the origin of the reciprocal lattice (000).  Segment OA represents one 

of the two reciprocal lattice vectors from which the interplanar angle can be measured.  

Segments OB and OC are tangent with the reciprocal lattice spot centered at A.  The 

angular uncertainty of the reciprocal lattice spot is equal to angle ∠AOB and can be 

obtained from 

1 1 1sin sin sintgAB fd
AOB

AO g t
− − −∠ = = = . 

Since measuring interplanar angles invoves two reciprocal lattice spots in the power 

spectrum, the interplanar angle uncertainty is thus twice as much, and can be quantified 

as 

1( ) 2 2sinx

fd
AOB

t
δϕ −= ∠ = . 
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Figure C. 13. Schematic illustrating the contribution to the uncertainty of an interplanar angle from the 
azimuthal uncertainty of the two corresponding reciprocal lattice spots.  Point O is the origin of the 

reciprocal lattice (000).  Segment OA represents one of the two reciprocal lattice vectors.  Segments OB 
and OC are tangent with the reciprocal lattice spot centered at A.  Angle ∠BOA is the azimuthal 

uncertainty of reciprocal lattice spot A.  Since there are two reciprocal lattice spots involved in measuring 
interplanar angles, the interplanar angle uncertainty is twice of angle ∠BOA. 
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