Chapter 8 Solutions


Solutions are homogeneous mixtures of two or more substances;
Solutions consist of a solvent and one or more solutes

Solutes are spread evenly throughout the solution cannot be separated by filtration can be separated by evaporation are not visible but can give a color to the solution


TABLE 8.1 Some Examples of Solutions

| Type | Example | Primary Solute | Solvent |
| :--- | :--- | :--- | :--- |
| Gas Solutions |  |  |  |
| Gas in a gas | Air | Oxygen (gas) | Nitrogen (gas) |
| Liquid Solutions |  |  |  |
| Gas in a liquid | Soda water | Carbon dioxide (gas) | Water (liquid) |
|  | Household ammonia | Ammonia (gas) <br> Liquid in a liquid <br> Solid in a liquid | Vinegar <br> Seawater |
|  | Tincture of iodine (liquid) | Water (liquid) | Water (liquid) |
| Solid Solutions |  | Sodium chloride (solid) Water (liquid) (solid) | Ethanol (liquid) |
| Liquid in a solid | Dental amalgam | Mercury (liquid) | Silver (solid) |
| Solid in a solid | Brass | Zinc (solid) | Copper (solid) |
|  | Steel | Carbon (solid) | Iron (solid) |

© 2010 Pearson Education, Inc.
In a solution, the solute is uniformly distributed throughout the solvent

Water is the most common solvent it is a polar molecule forms hydrogen bonds between the hydrogen atom in one molecule and the oxygen atom in a different water molecule

© 2010 Pearson Education, Inc

## Formation of solutions

$\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$ions on the surface of a NaCl crystal are attracted to polar water molecules
are hydrated in solution by many $\mathrm{H}_{2} \mathrm{O}$ molecules surrounding each ion

Two substances are likely to form a solution when there is an attraction between the particles of the solute and solvent;

A polar solvent (such as water) dissolves polar solutes (such as sugar) and/or ionic solutes (such as NaCl )

A non-polar solvent such as hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ will dissolves non-polar solutes such as oil or grease


Hydrogen bonding in water and related substances

$$
\begin{gathered}
\mathrm{R}-\mathrm{O}-\mathrm{H} \cdots \cdots-\mathrm{O} \\
/^{2} \\
\mathrm{H}
\end{gathered}
$$



Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ solute


Water solvent
© 2010 Pearson Education, Inc.


Methanol-water solution with hydrogen bonding

## Water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

a) Water (top) and methylene chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (bottom)
b) Addition of $\mathrm{I}_{2}$ to water and methylene chloride
c) Addition of green $\mathrm{NiCl}_{2}$ (nickel II chloride) to water and methylene chloride


In water, strong electrolytes produce ions and conduct an electric current weak electrolytes produce a few ions non-electrolytes do not produce ions even though the sugar dissolves

The movement of charge constitutes an electric current


## TABLE 8.4 Classification of Solutes in Aqueous Solutions

| Type of Solute | Dissociation | Particles in Solution | Conducts Electricity? | Examples |
| :---: | :---: | :---: | :---: | :---: |
| Strong electrolyte | Complete | Ions only | Yes | Ionic compounds such as $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{MgCl}_{2}$, $\mathrm{NaNO}_{3} ; \mathrm{NaOH}, \mathrm{KOH}$; $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}$, $\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$ |
| Weak electrolyte | Partial | Mostly molecules and a few ions | Yes, but poorly | $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (acetic acid) |
| Nonelectrolyte | None | Molecules only | No | Carbon compounds such as $\mathrm{CH}_{3} \mathrm{OH}$ (methanol), $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol), $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose), $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$ (urea) |

Solubility refers to the maximum amount of solute that dissolves in a specific amount of solvent, usually 100 g

Unsaturated solutions contain less than the maximum amount of solute

Effect of temperature on solubility
The solubility of most solids increases as temperature increases

The solubility of of gases decreases as temperature increases


The solubility of a gas in a liquid is directly related to the pressure of that gas above the liquid; at higher pressures, more gas molecules dissolve in the liquid


Not all salts are soluble in water

Solubility is a relative measure:

Soluble salts dissolve to the extent of $1 \mathrm{~g} / 100 \mathrm{~g}$ water or more

Sparingly soluble salts dissolve to the extent of less than $1 \mathrm{~g} / 100 \mathrm{~g}$ of water but more than $0.1 \mathrm{~g} / 100 \mathrm{~g}$ water

Insoluble salts dissolve to less the $0.1 \mathrm{~g} / 100$ mL of water

$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Ba}^{+2}+2 \mathrm{NO}_{3}^{-}$
$\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{Na}^{+}+\mathrm{SO}_{4}{ }^{-2}$
$\mathrm{Ba}^{+2}+2 \mathrm{NO}_{3}{ }^{-}+2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{-2}=\mathrm{BaSO}_{4} \downarrow+2 \mathrm{NO}_{3}{ }^{-}+2 \mathrm{Na}^{+}$

Results of a barium enema using X-rays

Barium is very toxic but $\mathrm{BaSO}_{4}$ is very insoluble

Why is $\mathrm{BaSO}_{4}$ used in this procedure?
solubility is $1 * 10^{-5} \mathrm{~mol} /$ liter or $0.00233 \mathrm{~g} / \mathrm{L}$

Ba $137 \mathrm{~g} / \mathrm{mol}$
$137+32+64=233 \mathrm{~g} / \mathrm{mol}$
S $32 \mathrm{~g} / \mathrm{mol}$
$233 \mathrm{~g} / \mathrm{mol}^{*} 10^{-5} \mathrm{~mol} / \mathrm{L}$
O $16 \mathrm{~g} / \mathrm{mol}$


Kidney stones are either calcium phosphate, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$,
calcium oxalate, $\mathrm{CaC}_{2} \mathrm{O}_{4}$
or uric acid, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}$


(c) 2010 Pearson Education, Inc.

## Concentrations

The concentration of a solution is the amount of solute dissolved in a specific amount of solution

$$
\text { concentration }=\frac{\text { amount of solute }}{\text { amount of solution }}
$$



Add 8.00 g of KCl .


Add water until the mass of the solution is 50.00 g .
concentration (mass $/ \mathrm{mass}(\mathrm{m} / \mathrm{m})$ ) $=8 / 50 ;=0.16 \mathrm{~g} \mathrm{KCl} / \mathrm{g}$ solution

Types of concentration
mass/mass (m/m)
mass/volume of solution ( $\mathrm{m} / \mathrm{v}$ )
volume/volume of solution ( $\mathrm{v} / \mathrm{v}$ )
$15 \%(\mathrm{~m} / \mathrm{m}) \mathrm{KCl}$
$5 \%(\mathrm{~m} / \mathrm{v})$ glucose
$12 \% ~(\mathrm{v} / \mathrm{v})$ ethanol

There are 15 g of KCl in 100 g of solution.

There are 5 g of glucose in 100 mL of solution.

There are 12 mL of ethanol in 100 mL of solution.
moles/liter $\underline{\mathbf{M}}$


Cl: 35.5 at mass
Na: 23.0 at mass
$\mathrm{NaCl} 58.5 \mathrm{~g} / \mathrm{mol}$

Add water until
the 1.0 liter mark

A 1.0 molar NaCl solution is reached


Solutions contain small particles (ions or molecules)
are transparent
do not separate, even by filtration or through a semipermeable membrane do not scatter light

Colloids have medium-sized particles
cannot be separated by filtration
can be separated by semipermeable membranes scatter light

TABLE 8.12 Examples of Colloids
Substance Dispersed Dispersing Medium
Fog, clouds, sprays
Dust, smoke
Shaving cream, whipped cream, soapsuds
Styrofoam, marshmallows
Mayonnaise, butter, homogenized milk, hand lotions

Cheese, butter
Blood plasma, paints (latex), gelatin

| Liquid | Gas |
| :--- | :--- |
| Solid | Gas |
| Gas | Liquid |
| Gas | Solid |
| Liquid | Liquid |
|  |  |
| Liquid | Solid |
| Solid | Liquid |

## Suspensions

have very large particles
settle out
can be separated by filtration must be stirred to stay suspended

Examples: blood platelets, muddy water, and calamine lotion


Solution
$\triangle$ Colloid

- Suspension



## The effect of solutes on the properties of solvents

TABLE 8.14 Effect of Solute Concentration on Freezing and Boiling Points of 1000 g of Water

|  | Type of Solute | Moles of <br> Solute Particles | Freezing Point | Boiling Point |
| :--- | :--- | :--- | :--- | :--- |
| Pure Water | None | 0 | $0{ }^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ |
| Temperature change |  | 1 mole | $\Delta T_{\mathrm{f}}=1.86^{\circ} \mathrm{C}$ | $\Delta T_{\mathrm{b}}=0.52{ }^{\circ} \mathrm{C}$ |
| 1 mole of ethylene glycol | Nonelectrolyte | 1 mole | $-1.80^{\circ} \mathrm{C}$ | $100.52{ }^{\circ} \mathrm{C}$ |
| 1 mole of NaCl | Strong electrolyte | 2 moles | $-3.72^{\circ} \mathrm{C}$ | $101.04{ }^{\circ} \mathrm{C}$ |
| 1 mole of $\mathrm{CaCl}_{2}$ | Strong electrolyte | 3 moles | $-5.58^{\circ} \mathrm{C}$ | $101.56{ }^{\circ} \mathrm{C}$ |

© 2010 Pearson Education, Inc.
Notice that the effect depends on the number of particles that form in solution ethylene glycol (antifreeze) unchanged in water: 1 mol lowers the freezing temperature $1.86^{\circ} \mathrm{C}$ An equivalent amount of NaCl that forms $\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$ions in water doubles the effect 1 mol of $\mathrm{CaCl}_{2}$ which forms $\mathrm{Ca}^{+2}$ and $2 \mathrm{Cl}^{-}$triples the effect

## Osmosis

In osmosis, water (solvent) flows from the lower solute concentration into the higher solute concentration;
the level of the solution with the higher solute concentration rises;
at equilibrium, when the levels of the two solutions don't change anymore with time, the amount of water flowing between the two sides is equal because of the greater pressure generated by the two unequal levels

Osmotic pressure is the pressure generated by the two unequal levels



A semipermeable membrane separates a $4 \%$ starch solution from a $10 \%$ starch solution. Starch cannot pass through the membrane, but water can. What happens?


Osmotic pressure

Red blood cells have cell membranes that are semipermeable
they maintain an osmotic pressure that cannot change without damage occuring they must maintain an equal flow of water between the cell and its surrounding environment

An isotonic solution exerts the same osmotic pressure as red blood cells
$5.0 \%(\mathrm{~m} / \mathrm{v})$ glucose or $0.9 \%(\mathrm{~m} / \mathrm{v}) \mathrm{NaCl}$ is used medically because each has a solute concentration equal to the osmotic pressure equal to red blood cells


Isotonic


## A hypotonic solution

 has a lower osmotic pressure than red blood cells (RBCs)containes fewer dissolved particles than blood serum
causes water to flow into RBCs
causes hemolysis (RBCs swell and may burst)

A hypertonic solution has a higher osmotic pressure than RBCs
containes more dissolved particles than blood serum
causes water to flow out of RBCs
causes crenation (RBCs shrink in size)

1.

2.

3.

## In dialysis,

solvent and small solute particles pass through an artificial membrane;
large particles are retained inside; waste particles such as urea from blood are removed using hemodialysis (artificial kidney)


© 2010 Pearson Education, Inc.


A semipermeable membrane separates two compartments, $A$ and $B$. If the levels of solutions in A and B are equal initially, select the diagram that illustrates the final levels for each of the following:

> A

B
a. $2 \%(\mathrm{~m} / \mathrm{v})$ starch $\quad 8 \%(\mathrm{~m} / \mathrm{v})$ starch
b. $1 \%(\mathrm{~m} / \mathrm{v})$ starch $\quad 1 \%(\mathrm{~m} / \mathrm{v})$ starch
c. $5 \%(\mathrm{~m} / \mathrm{v})$ sucrose $1 \%(\mathrm{~m} / \mathrm{v})$ sucrose
d. $0.1 \%(\mathrm{~m} / \mathrm{v})$ sucrose $1 \%(\mathrm{~m} / \mathrm{v})$ sucrose

Explain what happened to the coke bottle in the polycarbonate bottle

An isotonic $0.9 \%(\mathrm{~m} / \mathrm{v}) \mathbf{N a C l}$ solution of exerts the same osmotic pressure as red blood cells

What is the concentration of this solution in moles /liter (M)?
$0.9 \%(\mathrm{~m} / \mathrm{v})$ means there are $0.009 \mathrm{~g} / \mathrm{mL}$ solution; How much NaCl would be in 1 L of solution?
$0.009 \mathrm{~g} / \mathrm{mL}^{*} 1000 \mathrm{~mL}=9 \mathrm{~g}$ of NaCl ; How many moles is this?
$\mathrm{Na}=23 \mathrm{~g} / \mathrm{mol} ; \mathrm{Cl}=35.5 \mathrm{~g} / \mathrm{mol} \mathrm{Cl} ; \mathrm{MW}=23+35.5 ; \mathrm{MW}=58.5 \mathrm{~g} / \mathrm{mol}$
$9 \mathrm{~g} / 58.5 \mathrm{~g} / \mathrm{mol}=0.154 \mathrm{moles} /$ liter of solution; The solution is $0.154 \mathbf{~ M}$


Nalorphine $\left(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$, a relative of morphine, is used to combat withdrawal symptoms in narcotics users. How many mL of a $1.0^{*} 10^{-3} \mathrm{M}$ solution are needed to administer a dose of 3.11 mg ?

MW Nalorphine $=19 * 12=228$
$21 * 1=21$
$14 * 1=14$ $16 * 3=\underline{48}$

311
How many moles of Nalorphine are in a 3.11 mg sample?
$0.00311 \mathrm{~g} / 311 \mathrm{~g} / \mathrm{mol}=1 * 10^{-5}$ moles

$$
\begin{aligned}
& 1.0^{*} 10^{-3} \mathrm{moles} / \mathrm{L} * \mathrm{~V}(\mathrm{~L})=1.0^{*} 10^{-5} \mathrm{moles} \\
& \mathrm{~V}=1.0^{*} 10^{-5} \mathrm{moles} / 1.0^{*} 10^{-3} \mathrm{moles} / \mathrm{L} \\
& \mathrm{~V}=1^{*} 10^{-2} \mathrm{~L} * 1000 \mathrm{~mL} / \mathrm{L}=10 \mathrm{~mL}
\end{aligned}
$$

