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Abstract

Genetic algorithms (GAs) are stochastic adaptive algorithms whose search method
is based on simulation of natural genetic inheritance and Darwinian strive for survival.
They can be used to find approximate solutions to numerical optimization problems in
cases where finding the exact optimum is prohibitively expensive, or where no algorithm
is known. However, there are some problems that such applications encounter that
sometimes delay, if not prohibit, finding the optimal solutions with desired precision.
In this paper we describe GAs applications to numerical optimization, present three
novel ways to handle such problems, and give some experimental results.

Keywords: genetic algorithm, random algorithm, optimization technique, constraint han-
dling, local tuning, convergence.

1 Introduction

In the fifties, Von Neumann created a theory of self-reproducing automata [Von Neumann
(1966)], which put foundations to the field of genetic algorithms. In the late fifties Holland
continued this idea [Holland (1959)]. In his more recent research [Holland (1975)] he discussed
the ability of a simple bit string representation to encode complicated structures and the
transformations to improve them. The main result of his work was a demonstration that,
with the proper control structure, rapid improvements of bit strings could occur under certain
transformations. Even in large and complicated search spaces, given certain conditions on the
problem domain, genetic algorithms would tend to converge on solutions that were globally
optimal or nearly so.

Genetic algorithms [Davis (1987), [DeJong (1985), Goldberg (1989), Holland (1975)] im-
plement these ideas; they are a class of probabilistic algorithms that start with a population
of randomly generated feasible solutions. These solutions “evolve” towards better ones by
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applying genetic operators modeled on the genetic processes occurring in nature. (For a com-
parison of GA with other optimization methods the reader is referred to [Ackley (1987)]).

GAs have been quite successfully applied to optimization problems like wire routing,
scheduling, adaptive control, game playing, cognitive modeling, transportation problem,
traveling salesman problem, optimal control problems, etc. (see [Goldberg (1989), DeJong
(1985), Vignaux & Michalewicz (1989), Vignaux & Michalewicz (1990), Michalewicz et al.
(1990), Booker (1982), Michalewicz et al. (1990b), Grefenstette (1985), Grefenstette (1987a),
Schaffer (1989)]).

However, as stated in [DeJong (1985)]:

“...because of this historical focus and emphasis on function optimization applica-
tions, it is easy to fall into the trap of perceiving GAs themselves as optimization
algorithms and then being surprised and/or disappointed when they fail to find
an ‘obvious’ optimum in a particular search space. My suggestion for avoiding
this perceptual trap is to think of GAs as a (highly idealized) simulation of a
natural process and as such they embody the goals and purposes (if any) of that
natural process. T am not sure if anyone is up to the task of defining the goals
and purpose of evolutionary systems; however, I think it’s fair to say that such
systems are not generally perceived as functions optimizers”.

The purpose of this paper is twofold. Firstly we provide a survey of genetic algorithms,
discussing what they are, why they work, and how they work. Secondly, we present various
modifications of the classical GAs; these modifications result in a system which can be
perceived as a function optimizer.

The paper is organized as follows. In Section 2 we explain the main idea behind genetic
algorithms and in Section 3 we describe the major problems that genetic algorithm imple-
mentations encounter. Following, the next three Sections 4-6 discuss the major problems
and proposed solutions in detail. The discussion is supported by a series of experiments.
The last Section gives conclusions and directions for future work.

2 Genetic algorithms

In this Section we introduce the genetic algorithms (GAs), present their theoretical founda-
tions, and describe their applicability.

2.1 GA: what they are?

GA represent a class of adaptive algorithms whose search methods are based on simulation
of natural genetics. They belong to the class of probabilistic algorithms; yet, they are
very different from random algorithms as they combine elements of directed and stochastic
search. Also, for hard optimization problems, they are superior to hill-climbing methods,



since at any time GA provide for both exploitation of the best solutions and exploration of
the search space. Because of this, GA are also more robust than existing directed search
methods. Another important property of such genetic based search methods is their domain—
independence.

In general, a GA performs a multi—directional search by maintaining a population of
potential solutions and encourages information formation and exchange between these di-
rections. This population undergoes a simulated evolution: at each generation the relatively
“good” solutions reproduce, while the relatively “bad” solutions die. To distinguish between
different solutions we need some evaluation function which plays the role of an environment.

procedure genetic algorithm
begin
t=20
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin
t=t+1
select P(t) from P(t —1)
recombine P(t)
evaluate P(t)
end
end

Figure 1: A simple genetic algorithm.

The structure of a simple genetic algorithm is shown in Figure 1. During iteration ¢,
the genetic algorithm maintains a population of potential solutions (called chromosomes
following the natural terminology), P(t) = {«},...,z!}. Each solution z! is evaluated to
give some measure of its “fitness”. Then, a new population (iteration ¢ 4+ 1) is formed
by selecting the more fitted individuals. Some members of this new population undergo
reproduction by means of crossover and mutation, to form new solutions.

Crossover combines the features of two parent chromosomes to form two similar offspring
by swapping corresponding segments of the parents. For example, if the parents are repre-
sented by five-dimensional vectors {aq, by, ¢1,dy, e1) and (as, ba, ¢, do, €2) (with each element
called a gene), then crossing the chromosomes after the second gene would produce the off-
spring (ay, by, ¢2,ds, €3) and (ag, by, ¢1,dy, e1). The intuition behind the applicability of the
crossover operator is information exchange between different potential solutions.

Mutation arbitrarily alters one or more genes of a selected chromosome, by a random
change with a probability equal to the mutation rate. The intuition behind the mutation
operator is the introduction of some extra variability into the population.

A genetic algorithm for a particular problem must have the following five components:



e a genetic representation for potential solutions to the problem,
e a way to create an initial population of potential solutions,

an evaluation function that plays the role of the environment, rating solutions in terms
of their “fitness”,

genetic operators that alter the composition of children during reproduction,

values for various parameters that the genetic algorithm uses (population size, proba-
bilities of applying genetic operators, etc.).

2.2 GA: why they work?

The theoretical foundations of genetic algorithms rely on a binary string representation of
solutions, and on the notion of a schema (see e.g. [Holland (1975)]) — a template allowing
exploration of similarities among chromosomes. A schema is built by introducing a new
don’t care symbol (x) into the alphabet of genes — such a schema represents all strings (a
hyperplane, or subset of the search space) which match it on all positions other than x. In a
population of size n of chromosomes of length m, between 2™ and n - 2™ different schemata
may be represented; at least n? of them are processed usefully — Holland has called this
property an implicit parallelism, as it is obtained without of any extra memory/processing
requirements.

Two other important notions, associated with the schema, are necessary to derive the
theoretical basis:

e schema order, o(H), is the number of non don’t care positions. It defines the speciality
of a schema,

e schema defining length, /(H), is the distance between the first and the last non don’t
care symbols of a chromosome. It defines the compactness of information contained in
a schema.

Assuming that the selective probability is proportional to fitness, and independent prob-
abilities p. and p,, for crossover and mutation, respectively, we can derive the following
growth equation (e.g. see [Goldberg (1989)]:

m(H,t+1) > m(H, 1) - f%’)t) - pcg ~ po - o(H) (1)

where m(H,t) is the number of schema H at time ¢, f(H,t) is the average fitness of schema
H at time t, and f(t) is the average fitness of the population. This equation is also based on

the assumption that the fitness function f returns only positive values; when applying GAs
to optimization problems where the optimization function may return negative values, some
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additional mapping between optimization and fitness functions is required (see [Goldberg
(1989))).

The growth equation (1) shows that selection increases sampling rates of the above-
average schemata, and that this change is exponential. The sampling itself does not introduce
any new schemata (not represented in the initial ¢ = 0 sampling), This is exactly why the
crossover operator is introduced — to enable structured, yet random information exchange.
Additionally, the mutation operator introduces greater variability into the population. The
combined (disruptive) effect of these operators on a schema is not significant if the schema
is short and low-order. This result can be stated as:

Theorem 1 (Schemata Theorem) Short, low-order, above average schemata receive ex-
ponentially increasing trials in subsequent generations of a genetic algorithm.

An immediate result of this theorem is that GA explore the search space by short
schemata which, subsequently, are used for information exchange during crossover:

Hypothesis 1 (Building Block Hypothesis) A genetic algorithm seeks near optimal per-
formance through the juxtaposition of short, low—order, high—performance schemata, called
the building blocks.

As stated in [Goldberg (1989)]:

“Just as a child creates magnificent fortresses through the arrangement of sim-
ple blocks of wood, so does a genetic algorithm seek near optimal performance
through the juxtaposition of short, low-order, high preformance schemata, or
building blocks”.

Although some research has been done to prove this hypothesis (e.g. [Bethke (1980)]),
for most nontrivial applications we rely mostly on empirical results. During the last 15 years
many GA applications were developed which supported the building block hypothesis in
many different problem domains. Nevertheless, this hypothesis suggests that the problem of
coding for a genetic algorithm is critical for its performance, and that such a coding should
satisfy the idea of short building blocks.

Since the binary alphabet offers the maximum number of schemata per bit of information
of any coding (see [Goldberg, (1989)]), the bit string representation of solutions has domi-
nated genetic algorithm research. Additionally, such coding provides simplicity of analysis
and elegance of available operators. But the “implicit parallelism” result does not depend
on the use of bit strings (see [Antonisse & Keller (1987)]) — hence it may be worthwhile
to experiment with richer data structures and other “genetic” operators. This may be im-
portant in particular in the presence of nontrivial constraints on potential solutions to the
problem.



2.3 GA: how they work?

Suppose we wish to maximize a function of k variables, f(zy,...,2) : R¥ — R. Suppose
further, that each variable x; can take values from a domain D; = [a;,b;] € R. We wish to
optimize the function f with some precision: suppose six decimal places for the variables’
values is desirable.

It is clear that to achieve such precision each domain D; should be cut into (b; — a;) - 10°
equal size ranges. Let us denote by m; the smallest integer such that (b; —a;)-10° < 2™ —1.
Then, a representation having each variable coded as a binary string of length m; clearly
satisfies the precision requirement. Additionally, the following formula easily interprets each
such string:

x; = a; + decimal(1001...001,) - -4

2Mi —1

where decimal(strings) represents the decimal value of that binary string.

Now, each chromosome (as a potential solution) is represented by a binary string of length
m = Y% m;; the first m,; bits map into a value from the range [a;, b;], the next group of
mso bits map into a value from the range [as, by], the last group of my bits map into a value
from the range [ay, bg].

To initialize the population, if we do not have any intuition about the distribution of
potential optima, we can simply set some pop-size number of chromosomes randomly in a
bitwise fashion. Otherwise, we can provide some of initial (potential) solutions.

The rest of the algorithm is straightforward: in each generation we evaluate each chro-
mosome (using the function f on the decoded sequences of variables), select new population
according to the probability distribution based on fitness values, and recombine the chro-
mosomes in the new population by mutation and crossover operators. After some number
of generations, when no further improvement is observed, the best chromosome represents
an (possibly the global) optimal solution. In practice, we stop the algorithm after a fixed
amount of iterations depending on speed and resource criteria.

2.4 GA: an example

Let us assume we wish to find the maximum of the following function:

flxy, w9, 23) = 3.5 (x1 — 2.129)% — \/:clxg +loga(x3 + 1) - sin?(z3 + ),

where —3.0 < z; < 12.1, 4.1 < 29 < 5.8, and 0.0 < 23 < 50.0. The required precision is four
decimal places for each variable.

The domain of variable z; has length 15.1; the precision requirement implies that the
range (—3.0,12.1) should be divided into at least 15.1 - 10000 equal size ranges. It means
that 18 bits are required as this part of the chromosome:



217 < 151000 < 2'8

The domain of variable x, has length 1.7; the precision requirement implies that the
range (4.1, 5.8) should be divided into at least 1.7 - 10000 equal size ranges. It means that
15 bits are required as this part of the chromosome:

214 < 17000 < 2P

The domain of variable z3 has length 50.0; the precision requirement implies that the
range (0.0, 50.0) should be divided into at least 50.0 - 10000 equal size ranges. It means that
19 bits are required as this part of the chromosome:

218 < 500000 < 219

The total length of a chromosome (solution vector) is then 18 4+ 15 + 19 = 52 bits; the
first 18 bits code xy, bits 19-33 code x5, and bits 34-52 code x3.

Let us consider an example chromosome:
0100010010110100001111100101000101010100001000100101
The first 18 bits
010001001011010000

represent x; = —3.0 + decimal(010001001011010000,) - 2130 = 3.0 4 70352 - 5151 =
—3.0 + 4.052426 = 1.052426.

The next 15 bits
111110010100010

represent x5 = 4.1+ decimal(111110010100010,) - 254 = 4.14-31906 - .31 = 4.1+1.655330
= 5.755330.

The last 19 bits

1010100001000100101

represent r3 = 0.0 + decimal(10101000010001001015) - 53'1%__01'0 = 0.0 + 344613 - 5§2é%8 =
32.864857.

So the chromosome
0100010010110100001111100101000101010100001000100101

corresponds to (1, xe, x3) = (1.052426,5.755330, 32.864857).
The fitness value for this chromosome is



£(1.052426, 5.755330, 32.864857) = —4704.580933.

To optimize the function f using genetic algorithm, we create a population of such
chromosomes (typical population size for such numerical optimization varies from 50 to 100).
All 52 bits for each chromosome are initialized randomly. Each chromosome is evaluated and
a new population is formed by selecting the more fitted individuals according to their fitness
(we normally assume all evaluation are non—negative; there are ways to enforce that). Some
chromosomes from the new population would undergo reproduction by means of crossover
and mutation, to form new chromosomes (new solutions). For example, two chromosomes:

01000100101101000011111|00101000101010100001000100101
00001101111100000101010/10000010101000001000011111100

may be selected as parents for the crossover; the crossover point is (randomly) selected after
the 23rd bit (as marked above); the resulting offspring are

01000100101101000011111|10000010101000001000011111100
00001101111100000101010/00101000101010100001000100101

3 Problems with Genetic Algorithms

However, there are some problems that such applications encounter that sometimes delay, if
not prohibit, finding the optimal solutions with a desired precision. Such problems originate
from many sources as:

e the coding, which moves the operational search space away from the problem space,
e insufficient number of iterations,

e insufficient population size,
etc. and manifest themselves as:

e premature convergence of the entire population to a non—global optimum,
e inability to perform fine local tuning,

e inability to operate in the presence of nontrivial constraints.

In this Section we describe these three problems, and in Sections 4-6 we present quite
novel ways to handle them.



3.1 Premature convergence

The premature convergence is a common problem of genetic algorithms and other optimiza-
tion algorithms. If convergence occurs too rapidly, then the valuable information developed
in part of the population is often lost. Implementations of genetic algorithms are prone
to converge prematurely before the optimal solution has been found. As stated in [Booker
(1987)]:

“...While the performance of most implementations is comparable to or better
than the performance of many other search techniques, it [GA] still fails to live
up to the high expectations engendered by the theory. The problem is that,
while the theory points to sampling rates and search behavior in the limit, any
implementation uses a finite population or set of sample points. Estimates based
on finite samples inevitably have a sampling error and lead to search trajectories
much different from those theoretically predicted. This problem is manifested
in practice as a premature loss of diversity in the population with the search
converging to a sub-optimal solution.”

To improve performance of the genetic algorithms, De Jong investigated (see [DeJong
(1975)]) five modifications of the basic algorithm. These modifications were called elitist
model, expected value model, elitist expected value model, crowding factor model, and gener-
alized crossover model.

A few years later, Brindle [Brindle (1981)] examined five further modifications: deter-
manistic sampling, remainder stochastic sampling without replacement, stochastic sampling
without replacement, remainder stochastic sampling with replacement, and stochastic tour-
nament. The detailed discussion of all the above modifications is presented in [Goldberg
(1989)].

Quite another direction in relaxing this problem borrows ideas from the simulated an-
nealing (e.g. [Sirag & Weisser (1987)]).

In general, most approaches attempted to improve the convergence of GA presented some
modifications to the selection routine.

3.2 Fine local tuning

Genetic algorithms display inherent difficulties in performing local search for the numerical
applications. As observed in [Grefenstette (1987a)]:

“Like natural genetic systems, GAs progress by virtue of changing the distri-
bution of high performance substructures in the overall population; individual
structures are not the focus of attention. Once the high performance regions of
the search space are identified by a GA, it may be useful to invoke a local search
routine to optimize the members of the final population.”



Local search requires the utilization of schema of higher order and longer defining length
than those suggested by the Schema Theorem. Holland suggested (see [Holland (1975)])
that the genetic algorithm should be used as a preprocessor to perform the initial search,
before turning the search process over to a system that can employ domain knowledge to
guide the local search. Additionally, there are problems where the domains of parameters
are unlimited, the number of parameters is quite large, and high precision is required. These
requirements imply that the length of the (binary) solution vector is quite significant (for
100 variables with domains in the range [—500, 500], where the precision of six digits after
the decimal point is required, the length of the binary solution vector is 3000). For such
problems the performance of genetic algorithms is quite poor.

3.3 Constraints

The central problem in applications of genetic algorithms is that of constraints; until recently
there was not any promising methodology for handling them.

Traditionally, to solve a constrained optimization problem using the genetic algorithm
approach we use some penalty functions. However, such approaches suffer from the disad-
vantage of being tailored to the problem and are not sufficiently general to handle a variety
of problems.

In this approach we generate potential solutions without considering the constraints, but
incorporating in the evaluation function penalties for suppressing illegal candidates. How-
ever, though the evaluation function is usually well defined, there is no accepted methodology
for combining it with the penalty [Richardson et al. (1989)]; e.g. Davis ([Davis (1987)]) dis-
cusses a problem in deciding how large a penalty to impose:

“If one incorporates a high penalty into the evaluation routine and the domain is
one in which production of an individual violating the constraint is likely, one runs
the risk of creating a genetic algorithm that spends most of its time evaluating
illegal individuals. Further, it can happen that when a legal individual is found,
it drives the others out and the population converges on it without finding better
individuals, since the likely paths to other legal individuals require the production
of illegal individuals as intermediate structures, and the penalties for violating
the constraint make it unlikely that such intermediate structure will reproduce.
If one imposes moderate penalties, the system may evolve individuals that violate
the constraint but are rated better than those that do not because the rest of the
evaluation function can be satisfied better by accepting the moderate constraint
penalty than by avoiding it”.
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4 Premature convergence

As stated in Section 3, one of the problems encountered by GAs applications is premature
convergence of the entire population to a non-global optimum. The premature convergence
is closely related to

e the characteristics of the function itself,

e the magnitude and kind of errors introduced by the sampling mechanism.

The problem of premature convergence is primarily related to the existence of local
optima, and depends on both function characteristics and sampling of the solution space.
For example, assume that s! € P(t) is close to some local optimum, and f(s!) is much
greater than the average evaluation f(¢). Also, assume that there is no s!, close to the
global maximum sought; this might be the case for multi-modal functions. In such a case,
there is a fast convergence toward that local optimum, with little chance of more global
exploration needed to search for other optima. While such a behavior is permissible at the
later evolutionary stages, and even desired at the final ones, it is quite disturbing very early.
We propose an approach (see [Michalewicz et al. (1990b), Janikow & Michalewicz (1990)])
which diminishes this problem by decreasing the speed of convergence during the early stages

of population existence.

The other problem, also reflecting on the convergence, is related to shifts in the average
population fitness. Consider two functions: fi(s), and fa(s) = fi(s) + const, which have the
same relative optima. One would expect that both can be optimized with similar degree of
difficulty. However, if const > fi(s), then either the function f,(s) will suffer from much
slower convergence than the function fi(s), or the function fi(s) will converge possibly to
a local optimum. Some of the previous approaches to this problem used rank instead of
actual values f(s¥) to guide the selective process. Such an approach suffers from some
drawbacks. First, it puts the responsibility on the user to decide on the best selection
mechanism. Second, it totally ignores information it holds about the absolute evaluations of
different chromosomes. Third, it treats all cases uniformly, regardless of the magnitude of
the problem.

To deal with such cases we introduce a measure of problematic characteristics of function
being optimized, which we later incorporate into the sampling mechanism.
4.1 The scaling mechanism

We are mostly interested in some average behavior of the function being optimized. How-
ever, we know such behavior only through finite sampling represented in the population.
Therefore, we define a measure using statistical random sample variance and mean (we call
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such a measure a span):

LY () - F@)

St =
% i1 f(xh)

which can be rewritten as:

St ™~

n n- Z?:l fQ(xf)
n—1\ (TL, f(ah)?

This measure is normalized so that it is quite function independent.

Genetic algorithm applications normally require that all chromosomes evaluate to non-
negative numbers; such a requirement relates to the sampling mechanism and can be easily
enforced. Tn such a case max(s;) = y/n since Y7 f2 < (XF f;)?. However, such a max-
imal value is obtained only when all but one evaluations are zero — a very unlikely case.
Experiments show that most spans are less than one. Moreover, we have determined exper-
imentally, by running different functions with differently scaled s and observing the average
optimization behavior, that s* = 0.1 gives the best possible trade—off between space explo-
ration and speed of convergence; therefore, we subsequently treat all cases with respect to
the relationship between s; and s*. This particular choice of s* is rather rough and more
extensive experiments are planned to approximate it in a more systematic way. Moreover,
it would be interesting to see whether it could be approximated theoretically; however, the
mechanism we are about to introduce is rather little affected by some variations of s*.

To preserve efficiency we do not want to recalculate s; at each iteration. This is actually
not necessary as this measure finds the function’s characteristics determinable from a random
sample. We have determined experimentally that very often the initial population provides
a very good approximation. However, if desired, such sampling may be performed for some
time before the algorithm actually starts iterating (we call such span sg).

For the construction of our scaling mechanism, which we call a non-uniform power scal-
ing, we use two dynamic parameters: the span s and population age t (this parameter is
taken to be iteration number of the algorithm). What we seek is a mechanism which pro-
duces more random search for small ages and increasingly selects only the best chromosomes
at late stages of the population life. Moreover, the net effect of such a mechanism should
depend on the span; higher span should cause the whole mechanism to put less emphasis on
chromosomes’ fitness, somehow randomizing the sampling. The scaling itself uses the power
law scaling:

fi= ()"

where k ~ 0 forces a random search, while £ > 1 forces sampling to be allocated to only
the most fitted chromosomes. We construct k£ so that it changes from small to large values

over the population age (with largest changes very early and very late), and k’s magnitude
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should be larger and speed of change smaller for problems with lower span. The following

equation satisfies these goals:

where:

e p; is a system parameter determining influence of span s on magnitude of &,

e p, and « are system parameters determining speed of changes of k; a determines how
much span affects such changes.

4.2 The test case

For experimenting with our scaling mechanism we decided to use a single family of functions:

#elems

f(@) =a+ Y sin(z;) - sin®(

=1

i-a?
Yy | zp € (0,m), k=1,...,#elems

which is (sin)-modulating (#elems)-dimensional function of components with nonlinearly
increasing frequency. This function, given appropriate parameters a and m, could simulate
functions of totally different characteristics (as mentioned in Section 3.1):

A: a =5.0, ¢ =1. This function, even though nontrivial, exhibits rather nice characteristics:
its average span sy ~ 0.1 matches the most desired s*.

B a = 0.1, ¢ = 250. This function is very difficult to analyze numerically due to its high
non-smoothness. Such highly negative undesired characteristics are captured in its
so ~ 1.0. Because of such characteristics, any numerical methods, and GA as well, will
tend to fall to false optima.

C: a = 1000, ¢ = 1. This function is a constant transformation of the A function. Such a
shift causes the average span to be decreased dramatically to sy ~ 0.001.

Note that f(Z) > 0 for a > 0. To better visualize such characteristics cross-sections of these
three functions are given in Figure 3. For these particular experiments we used (#elems) =
10. Initial sy for these three functions are given in Figure 2 along with the appropriate
behavior of the k exponent.
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Figure 2: k values for functions A, B, and C: o« = 0.1, p; = 0.05, p2 =0.1

fe
a = 1000
x
s
Figure 3: Cross—sections of functions A, B, and C along the x1 = ... = 71, plane.

4.3 Experiments and results

To judge the quality of our non-uniform power scaling we tried to maximize the three
functions with both the mechanism on and off. We decided on the following two comparative
measures of GA’s performance:
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e Accuracy is defined as the value of the best found chromosome, relative to the value of
the global optimum:

fbest —a
fglobal —a
We subtract the a parameter so that we could easily compare the results of different

functions.

e Imprecision is defined as the standard deviation of the optimal vector found. This
measure evaluates the closeness of individual components selected in the found optimal
chromosome as follow:

Helems (indea;)?
#elems — 1

where index; is the index of the " component of the found optimal chromosome

(each dimension has its peaks ordered from 0 to the number of dimensions minus
one according to the modulated values of its peaks). For example, imprecision=0
means the generated chromosome correctly selected the best modulated values along
all dimensions; however, it does not have to generate the best function value due to
local imperfectness associated with finite iteration time.

We used a traditional binary representation with thirty bits per variable; therefore, a
chromosome was a vector of 260 binary bits for #elems = 10. Moreover, the thirty bits gave
us precision of Az = 7/23% ~ 3.107%, This error propagated to function error

#elems o f

Af@) =Dz S

i=1

ox;

which, very pessimistically, can be approximated to

#elems
Af(@)=Az- > (1+4-q-i)=Az-(10+220-q)
i=1
This, in turn, translates to about 7 - 10~7 for functions A and C, and about 1.6 - 10~* for
function B.

During the runs we used one-bit mutations (0.001 rate on bits), single point crossover
(0.2 rate on chromosomes), and inversion (0.02 rate on chromosomes). The results are
summarized in Table 1; they represent an average of twenty five independent runs, each with
population size of forty and iterated 5000 times.

As expected, function B turned out to be the most difficult for the GA; its high span
so =~ 1.0 caused many faulty local optima to be included in the solutions. This is also
the case where our scaling mechanism gave best improvements, both in terms is faulty
convergence and the absolute magnitude of soltion vectors. The most average function A
also benefited from the mechanism in terms of both measures; this function has a usual span,
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The Accuracy Imprecision
absolute || f9lobal — ¢ GA GA GA GA
Function optimum w/o scaling | w/ scaling | w/o scaling | w/ scaling
A 14.70413 9.70413 98.94 99.62 0.365 0.298
B 9.75332 9.65332 92.16 94.35 1.528 1.194
C || 1009.70413 9.70413 99.42 99.51 0.258 0.257

Table 1: Output summary for the three test functions.

but is still highly multi-modal, difficult for any method. The smallest influence was observed
on function C, the one with a very small span; such characteristics prohibited faulty peak
selections in a natural way. The increased selective preasure in older populations, generated
by higher £ values, slightly improved accuracy, yet preserving high precison.

We are yet to conduct more systematic testing in order to optimize the various param-
eters used in our scaling mechanism. Nevertheless, these results indicate its usefulness as
automatic problem analyzer in cases where the user is not expected to permorf such an
analysis.

As to the increased computational complexity of calculating the k£ parameter, it was
rather an insignificant change due to following reasons:

e The span sq capturing the characteristics of the optimized function was calculated only
one at iteration ¢ = 0. Moreover, to increase the quality of this measure approximated
by the final sampling it was performed without the population size restriction; the
number of such samples was set to 200.

e The formula can be partially rewritten to account for constant and incremental part
of it.

5 Fine local tuning

To improve the fine local tuning capabilities of a genetic algorithm, which is a must for high
precision problems, we designed a special mutation operator whose performance is quite
different from the traditional one. Recall that a traditional mutation changes one bit of a
chromosome at a time; therefore, such a change uses only local knowledge — only the bit
undergoing mutation is known. Such a bit, if located in the left portion of a sequence coding
a variable, is very significant to the absolute magnitude of the mutation effect on the variable.
On the other hand, bits far to the right of such a sequence have quite a smaller influence
while mutated. We decided to use such positional global knowledge in the following way: as
the population ages, bits located further to the right of each sequence coding one variable
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get higher probability of being mutated, while those on the left have such a probability
decreasing. In other words, such a mutation causes global search of the search space at the
beginning of the iterative process, but only an increasingly local exploitation later on. We
call it a non—uniform mutation.

For here we actually selected to use a floating point rather than binary representation
for the following two reasons:

e Floating point representation is much more natural to implement the non—uniform
mutation because of equivalency of problem and representation distances.

e Due to fast propagation of errors in the iterative definitions of states (see the test case
in Section 5.2), it would be necessary to use quite more than thirty bits per one control
state. This, in the presence of forty five coded variables, would create chromosomes of
length over 2000 bits — an excessive number for a hope of a reasonable performance.

Such a representation requires appropriately different operators; an interested reader should
refer to [Janikow & Michalewicz (1990)].
5.1 The non—uniform operator

The non—uniform mutation operator was introduced in some our earlier papers (see [Michalewicz
& Janikow (1990), Janikow & Michalewicz (1990)]). As mentioned, this is the operator re-
sponsible for the fine tuning capabilities in a numerical search space. It is defined as follows:

if st = (v1,...,v,) is a chromosome and the element v, was selected for this mutation (do-
main of vy is [ly, ug]), the result is a vector st = (vy, ..., v}, ..., v), with &k € {1,...,n},
and

, ook + At up —vg) if a random digit is 0
YT g — A(t,op— 1) if a random digit is 1

The function A(t,y) returns a value in the range [0, y] such that the probability of A(t,y)
being close to 0 increases as t increases. This property causes this operator to search the
space uniformly initially (when ¢ is small), and very locally at later stages. We have used
the following function:

Aty) =y (1-r17"),

where r is a random number from [0..1], 7" is the maximal generation number, and b is a
system parameter determining the degree of non—uniformity.! Figure 4 displays the value of
A for two selected times; this picture clearly indicates the behavior of the operator.

1For the binary representation we were using v}, = mutate(vy, V(t,my)) where mutate(vg, pos) means
mutate value of variable k on bit pos (0 is the least significant), my, is the binary length of variable k, and

Vit my) = |A(t,my)| if a random digit is 0
)= [A(t,my)]  if a random digit is 1

with the b parameter of A adjusted appropriately if similar behavior desired.
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A(t,y) Al(t,y)
y t/T = 0.50 b =2 y t/T =0.90 b =2

>

1 1

Figure 4: A(t,y) for two selected times.

5.2 The test case

To indicate usefulness of the non—uniform mutation operator we selected a dynamic control
problem without constraints (for further results, especially for a successful comparison with
a standard numerical optimization package, see [Janikow & Michalewicz (1990)]).

The problem is a one-dimensional linear-quadratic model:
N-1
min (q-x?\,+ Z(sxi%—rui))
k=0

subject to
Tpy1=a T +b-ug, k=0,1,...,N—1

where x is a given initial state, a, b, ¢, s, r are given constants, ¥, € R is a state, and @ € RN
is the sought control vector. The optimal value can be analytically expressed as

J* = Koﬂfg
where K, is the solution of the Riccati equation

K =5+71a*Kyy1/(r + b Kp11) and Ky = ¢

5.3 Experiments and results

The exact representation is as follow: for a problem of m variables, each chromosome,

representing a permissible solution, is represented as a vector of m floating point numbers

t

st = (v1,...,v,) (when the generation number ¢ and the chromosome number i are not
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Case | N | =z s r q a b
1|45 | 100 1 1 1 1 1

IT | 45 | 100 10 1 1 1 1
I1T | 45 | 100 | 1000 1 1 1 1
IV | 45 | 100 1 10 1 1 1
V | 45 | 100 1 | 1000 1 1 1
VI | 45 | 100 1 1 0 1 1
VII | 45 | 100 1 1 | 1000 1 1
VIII | 45 | 100 1 1 11 0.01 1
IX | 45 | 100 1 1 1 1] 0.01
X | 45 | 100 1 1 1 1| 100

Table 2: The ten test cases for the dynamic control problem.

Generations
Case 1 100 1,000 | 10,000 | 20,000 | 30,000 | 40,000 || Factor
I || 17807.4 | 3.27985 | 1.74689 | 1.61866 | 1.61825 | 1.61804 | 1.61803 107
II || 13670.4 | 5.33177 | 1.45968 | 1.11349 | 1.09205 | 1.09165 | 1.09163 10°
IIT || 17023.8 | 2.87485 | 1.07974 | 1.00968 | 1.00126 | 1.00104 | 1.00103 107
IV || 15077.3 | 8.64310 | 3.75530 | 3.71846 | 3.70812 | 3.70165 | 3.70160 10*

V|| 5956.43 | 12.2559 | 2.89769 | 2.87727 | 2.87646 | 2.87570 | 2.87569 10°
VI | 16657.7 | 5.07047 | 2.05314 | 1.61869 | 1.61830 | 1.61806 | 1.61806 10*
VII | 2680666 | 19.2684 | 7.02566 | 1.63464 | 1.62412 | 1.61888 | 1.61882 10*
VIIT || 116.982 | 67.1758 | 1.92764 | 1.00009 | 1.00005 | 1.00005 | 1.00005 10*
IX || 7.18263 | 4.42849 | 4.37093 | 4.31504 | 4.31024 | 4.31004 | 4.31004 10°
X || 9870352 | 138132 | 16096.0 | 1.38244 | 1.00041 | 1.00010 | 1.00010 10*

Table 3: Results of the modified genetic algorithm on the dynamic control problem.

important, we write simply s). The precision of such a representation is fixed for a given
machine, and based on the precision of the floating point (or double, if needed) type.

We experimented with ten different cases as defined in Table 2. For each, we repeated
three separate runs of 40,000 generations and reported the best (with respect to final value)
in Table 3. The same Table also gives some intermediate results after selected number of
generations; for example, the values in column “10,000” indicate the partial results after
10,000 generations, while running 40,000. It is important to note that such values are
somehow worse than those obtained while running only 10,000 generation, due to the nature
of the non—uniform operator. For all cases the population size was fixed at 100. The domain
all variables was set as [—200, 200].

It is interesting to compare these results with the exact solutions as well as those obtained
from another GA; exactly the same one but without the non—uniform mutation on. Table 4
summarizes the results; columns labeled D indicate the relative errors in percents.
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GA GA
Exact solution | w/ non—uniform mutation | w/o non—uniform mutation
Case value value D value D
I 16180.3399 16180.3939 0.000% 16234.3233 0.334%
11 109160.7978 109163.0278 0.000% 113807.2444 4.257%
IIT | 10009990.0200 | 10010391.3989 0.004% | 10128951.4515 1.188%
v 37015.6212 37016.0806 0.001% 37035.5652 0.054%
A% 287569.3725 287569.7389 0.000% 298214.4587 3.702%
VI 16180.3399 16180.6166 0.002% 16238.2135 0.358%
VII 16180.3399 16188.2394 0.048% 17278.8502 6.786%
VIII 10000.5000 10000.5000 0.000% 10000.5000 0.000%
X 431004.0987 431004.4092 0.000% 431610.9771 0.141%
X 10000.9999 10001.0045 0.000% 10439.2695 4.380%

Table 4: Comparison of solutions for the linear-quadratic dynamic control problem.

The genetic algorithm using the non—uniform mutation clearly outperforms the other one
with respect to the accuracy of the found optimal solution; while the enhanced GA rarely
errored by more than few thousands of one percent, the other one hardly ever beat one
percent. Moreover, it also converged much faster to that solution (see Table 5 for the case
I). In other words it has an additional advantage in time constrained situations.

As an illustration of the non—uniform mutation’s effect on the evolutionary process check
Figure 5; the new mutation causes quite an increase in the number of improvements observed
in the population at the end of the population’s life. Moreover, fewer number of such im-
provements prior to that time, together with an actually faster convergence, clearly indicates
a better overall search.

Generations CPU
GA 1 10 100 | 1,000 | 10,000 | 40,000 time
w/ non—uniform mutation 178074000 | 293564 | 32798 | 17468 | 16186 | 16180 || 719.4sec?
w/o non—uniform mutation || 17243100 | 415623 | 59872 | 17931 | 17445 | 16234 || 719.1sec?

Table 5: Actual improvements on case 1.

In other publications (see [Michalewicz et al. (1990b), Janikow & Michalewicz (1990)])
we present more experiments with other dynamic control problems: these prove superiority
of the genetic approaches over commercial optimization packages as well.

3Times are similar since the GA w/o the special mutation performed other operations at a higher rate
as to achieve same rate of breeding. For a comparison, a GA with a binary representation of thirty bits per
variable used 12622sec CPU for the same run (all runs reported from a DEC3100 station).
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# improvements # improvements

T = 40,000, t’s increments 400 T = 40,000, t’s increments 400
100
NSO t NSOttt SN 0 i 3y t

10,000 40,000 10,000 40,000

Figure 5: # improvements on case I

6 Constraints handling

The proposed methodology for handling linear constraints by genetic algorithms (see [Michalewicz
& Janikow (1990)]) combines some previous ideas, but in totally new way and context. The
main idea lies in a careful elimination of the equation constraints, and designing dynamic
operators preserving the inequality constraints. Both types of constraints can be processed
very efficiently if they contain only linear equations; so constraints problems include many

of the interesting optimization cases.

Linear constraints are of two types: equalities and inequalities (the latter include all
variables’ domains). We first eliminate all the equalities reducing the number of variables
and modifying the inequalities; reducing the set of variables both decreases the length of the
representation and reduces the search space. Left with only linear inequalities, we deal with
convex search space which, in the presence of dynamic and closed operators, can be searched
without explicitly considering the constraints. The problem then becomes one of designing
such closed operators. We achieve this by defining them as being context-dependent, that is
dynamically adjusting to the current context.

The set of equalities can be eliminated (on one by one basis) as follows:

e transform an equality so that one of its variables is expressed in terms of the others,

e substitute all occurrences of this variable by such an expression, in all remaining equal-
ities and all inequalities.

A detailed description of this approach, along with theoretical foundations, can be found in
[Michalewicz & Janikow (1990)]. Here, we provide only an example.

Let us assume we wish to minimize a function of six variables:

f(xlu T2,T3,T4,Ts, :1:6)

subject to the following constraints:
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ZL‘1+.I2+.’173:5

QZ‘4+.’175+.’176:10

T +x4=3

To + x5 =4

21 2>0,29>0,232>0,24 >0, 25 >0, x4 > 0.

We can take an advantage of the presence of four independent equations and express four
variables as functions of the remaining two:

5173:5—561—562
Ty =3— 21
1‘5:4—1'2
$6:3+$1+l‘2

Thus, we have reduced the original problem to the optimization problem of two variables
z; and zo:

9(w1,m2) = f(w1,22, (5 — 21 — 22), (3 — 1), (4 — 72), (3+ 1 + 12)).
subject to the following constraints (inequalities only):

120,29 2>0
5—x1—29 >0
3—11,'120
4—1x92>0
3+$1+1‘220

These inequalities can be further reduced to:

0§x1§3
0§$2§4
ZL‘1+.I2§5

Now, given a chromosome (a point within the constrained solution space), any operator
must produce a new feasible solution (this is what we mean by closedness of operators). This
can be achieved by working within the current context; e.g. if ¥ = (1.8, 2.3) is to be mutated
on z1, then the new value for this variable must be taken from the range [0, 5 — z5] = [0, 2.7].
This signifies another fact: it is again much easier to define such operators on a floating
point representation, as it is not enough to deal locally with a bit at a time.
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6.1 The dynamic operators

The genetic operators are dynamic, 7.e. a value of a vector component depends on the
remaining values of the vector.

The value of the i-th component of a feasible solution §= (vy,...,v,,) is always in some
(dynamic) range [l, u]; the bounds [ and u depend on the other vector’s values vy, ..., v;_1, Vi1,
..., Um, and the set of inequalities. We say that the i-th component (i-th gene) of the vector
§is movable if | < u.

Before we describe the operators, we present two important characteristics of convex
spaces (due to the linearity of the constraints, the solution space is always a convex space
S), which play an essential role in the definition of these operators:

1. For any two points s; and s, in the solution space S, the linear combination a - s; +
(1 —a) - sy, where a € [0, 1], is a point in S.

2. For every point s; € S and any line p such that sy € p, p intersects the boundaries of
S at precisely two points, say [;° and wu,°.

Since we are only interested in lines parallel to each axis, to simplify the notation we denote
by lfi) and ufy the i-th components of the vectors [J and uy, respectively, where the line p is
parallel to the axis .. We assume further that lfi) < ufz.).

Because of intuitional similarities, we cluster the operators into the standard two classes:
mutation and crossover. The proposed crossover and mutation operators use the two prop-
erties to ensure that the offspring of a point in the convex solution space S belongs to S.
For a detailed discussion on these topics, the reader is referred to [Michalewicz & Janikow

(1990)].

Mutation group: Mutations are quite different from the traditional one with respect
to both the actual mutation (a gene, being a floating point number, is mutated in a dynamic
range) and to the selection of an applicable gene. A traditional mutation is performed on
static domains for all genes. In such a case the order of possible mutations on a chromosome
does not influence the outcome. This is not true any more with the dynamic domains.
To solve the problem we proceed as follows: we randomly select py,,-pop_size chromosomes
for uniform mutation, py,,-pop_size chromosomes for boundary mutation , and p,,-pop_size
chromosomes for non-uniform mutation (all with possible repetitions), where pym,, Ppm, and
Pnm are probabilities of the three mutations defined below. Then, we perform these mutations
in a random fashion on the selected chromosome.

e uniform mutation for this mutation we select a random gene k (from the set of
movable genes of the given chromosome s determined by its current context). If sf =
(v1,...,0my) is a chromosome and the k-th component is the selected gene, the result

is a vector s = (vy,..., v, ..., v,), where v}, is a random value (uniform probability

distribution) from the range [lf;g),uf,%)]. The dynamic values lf,’t;) and uf}%) are easily
calculated from the set of constraints (inequalities).
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e boundary mutation is a variation of the uniform mutation with v;, being either lf,%)
or uf}tg), each with equal probability.
¢ (dynamic) non-uniform mutation is a version of the operator defined in Section
5.1; the only change relates to the dynamic domains:
, { vk + A(2, uf,%) —vg) if a random digit is 0
Uk —

v — ANt v — lfi)) if a random digit is 1

Crossover group: Chromosomes are randomly selected in pairs for application of the
crossover operators according to appropriate probabilities. The operators defined here are
verions of the ones outlined in [Janikow & Michalewicz (1990)] for floating point crossover,
but adjusted to our dynamic domains.

e simple crossover is defined as follows: if s\ = (vy,...,v,) and st, = (wy,...,wy)
are crossed after the k-th position, the resulting offspring are:
st = (vy, . U, Wet, - W) and sETY = (wy, .. wg, gy, - .-, V). Note that

the only permissible split points are between individual floating points (using float
representation it is impossible to split anywhere else).

However, such operator may produce offspring outside of the convex solution space S.
To avoid this problem, we use the property of the convex spaces saying, that there
exist a € [0, 1] such that

324-1:<U1,___,vk,wk+l.a+vk+1.(1—a),...,wm.a—|—vm'(1_a)>ES
and
Su 't = (W W Vg @ W (L= @), v atwy - (1—a)) €S

The only question to be answered yet is how to find the largest a to obtain the greatest
possible information exchange: due to the real interval, we cannot perform an extensive
search. We implemented a binary search (to some depth only for efficiency). Then,
a takes the largest appropriate value found, or 0 if no value satisfied the constraints.
The necessity for such actions is small in general and decreases rapidly over the life
of the population. Note, that the value of a is determined separately for each single
arithmetical crossover and each gene.

e single arithmetical crossover is defined as follows: if s/ = (vq,...,v,) and s!, =
(wy, ..., wy) are to be crossed, the resulting offspring are st = (vy, ... v}, ..., vp)
and sttt = (wy, ..., w}, ..., wy), where k € [1,m], v}, = a-wy + (1 — a) - v, and

wy, = a-vg + (1 —a) - wg. Here, a is a dynamic parameter calculated in the given
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context (vectors s,, s,) so that the operator is closed (points z}™! and z! are in the
convex constrained space S). Actually, a is a random choice from the following range:

e e e v

[maz (5 =, 5 =), min(y = )] i o > wy
a € [0, 0] if v, = wy,

l?l’:)—vk uf,’c") —wy, l?;f)—wk u?,’;)—vk

[max( ), min( )] if v < wy

W vy, ) Vp—W) Vp—Wg 7 Wp—U
To increase the applicability of this operator (to ensure that a will be non—zero, which
actually always nullifies the results of the operator) it is wise to select the applicable
gene as a random choice from the intersection of movable genes of both chromosomes.
Note again, that the value of a is determined separately for each single arithmetical
crossover and each gene.

e whole arithmetical crossover is defined as a linear combination of two vectors: if
st and s! are to be crossed, the resulting offspring are s = a - st + (1 — a) - s, and
st = q-st +(1—a)-st, This operator uses a simpler static system parameter a € [0..1],
as it always guarantees closedness (according to characteristic (1) of this Section).

6.2 The test case
For experiments we selected the following problem of forty nine variables: minimize

(0, of 0<2; <2

C;, Zf 2<xz§4

49 ;

L ) 2, if 4<2; <6
f(@) _;g(arl) , where g(x;) = ¢ 3¢, if 6<1; <8
4eiy if 8<x; <10
562'7 Zf 10<.’L’1

\

with parameters ¢; as given in Table 6 and subject to the following equality constraints:

ZII1+.I2+.’173+$4+.’175+.’176+.’177:27

T3 + r9g + T10 + T11 +$12+$13+$14:28
T15 + T1g + T17 + T18 + T19 + Tog + T2y =25
Tag + Tz + Tag + Tas + Tag + Tz + Xog = 20
Tag + T30 + T31 + Tz + T3z + Tz + X35 = 20
T3g + T37 + T3g + T39 + Ty + T41 + Ta2 =20
Ty3 + Tgqg + Ty5 + Tag + Ta7 + Tyg + Tgg = 20

331+$8+x15+3322+IL'29+IL'36+SL'43220
ZI,'2+.’179+.’1716+.’1723+.T30+.T37+$44:20

X3+ X9+ T17 + Tog + T3 + X3z + Tys = 20
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Ty + X1, + T8 + Tos + T32 + T39 + Tyg = 23
X5+ T12 + T1g + Log + X33 + Ty + Ty7 = 26
Te + 13 + To0 + Tor + T34 + Tan + Tag = 25
T7 + T + To1 + Tag + T35 + Tag + Tg9 = 26

c, =0 c =21 c3 =50 | ¢y =62 s =93 |cg=T7 c; = 1000
cs = 21 Cqg = clo=17| ¢y =54 Cc1o = 67| c13 = 1000 | ¢4 = 48
Cly = 50 Cig = 17 Ci7 = 0 Cig = 60 Clg = 98 Cog = 67 Co1 = 25
Co9 = 62 Co3 = 54 Coq = 60 Coy = 0 Cog = 27 Co7 = 1000 Cog = 38
Cog = 93 C30 — 67 C31 — 98 C39 — 27 C33 — 0 C34 — 47 C35 — 42
C36 — 77 C37 = 1000 C38 — 67 C39 — 1000 Cq0 — 47 Cq1 — 0 Cqo — 35
cq3 = 1000 | c4q = 48 Ca5 = 25 | ey = 38 Ca7 = 42 | 43 = 35 Ccy9 =0

Table 6: Parameters ¢;.

Given that V,,z; > 0, we also have additional implicit domain inequalities, given in Table 7.

T <20 20 <20| 23<20| 24 <23| 25<206| 26 <25 727 <26
xTs S 20 Tg S 20 10 S 20 T11 S 23 T12 S 26 T13 S 25 T14 S 26
15 <20 | w16 < 20| 217 <20 | 218 < 23 | w19 < 25 | w9 < 25 | 191 < 25
Tog < 20 | wo3 < 20 | wos < 20 | o5 < 20 | 296 < 20 | w97 < 20 | 298 < 20
Tog < 20| w30 <20 | 231 <20 | 230 <20 | 233 <20 | w34 < 20 | 235 < 20
236 < 20 | w37 < 20 | w33 < 20 | w39 < 20 | w49 < 20 | 24y < 20 | 240 < 20
243 <20 | wgq <20 | 245 < 20 | 246 < 20 | g7 < 20 | 248 < 20 | 249 < 20

Table 7: Upper bounds for variables x;.

The above is actually an example of a transportation problem with a reasonable stepwise
cost function; for more on that the reader is referred to [Michalewicz et al. (1990)] and
[Vignaux & Michalewicz (1990)].

There are thirteen independent and one dependent equations here; therefore, we elimi-
nate thirteen variables: w1, ..., Ts, T15, T29, Tog, T3¢, T44. All remaining variables are renamed

Y1, - - -, Y36 preserving order, i.e. y1 = Tg, Y2 = T10, -+, Y6 = T14, Y7 = Ti6, - -+ Y36 = Tag.
Each of these variables has to satisfy four two—sided inequalities, which result from the initial
domains and our transformations. Now, each chromosome is a float vector (yi,...,yss)-

6.3 Experiments and results

For comparative experiments we planned on using a standard GA approach to constraints by
penalties (see e.g. [Richardson et al. (1989)]) and a version (the student version) of GAMS, a
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package for the construction and solution of large and complex mathematical programming
models ([Brooke et al. (1988)]); we used MINOS version of the optimizer. However, we did
not succeed in the former: the major issue in using penalty functions approach is assigning
weights to the constraints — these weights play the role of penalties if a potential solution
does not satisfy them. In experiments with the above problem the evaluation function Eval
was composed of the optimization function f and the penalty P:

Eval(%) = f(Z) + P,

For our experiments we used a suggestion (see chardson et al. (1989)]) to start with relaxed
penalties and to tight them as the run progresses. We used

Pk (b T St d

where f is the average fitness of the population at the given generation ¢, & and p are pa-
rameters, 7" is the maximum number of generations, and d; returns the “degree of constraint
violation”. For example, for a constraint:

EiEW T = val, W C {]‘7 SRR 49}7
and a chromosome (v, ..., v49), the penalty (degree of constraint violation) d; was

di = | Xicw vi — vall.

We experimented with various values of p (close to 1), k (close to -, where 14 is total
number of equality constraints; the static domain constraints were naturally satisfied by
a proper representation), and 7 = 8000. However, this method did not lead to feasible
solutions: in over 1200 runs (with different seeds for random number generator and various
values for parameters k and p) the best chromosomes (after 8000 generations) violated at
least 3 constraints in a significant way. For example, very often the algorithm converged to

a solution where the numbers on one diagonal were equal to 20 and all others were zeros:

T1 = Tg = T17 = Tos = T33 = Tq1 = T49 = 20
and z; = 0 for others 1.

As to GAMS, which only works with continuous functions, we reimplemented the problem
using arc-tangent functions to approximate each of the five steps. A parameter P, was used
to control the ‘tightness’ of the fit:

arctan(Pa(z; — 2))/m+ & +
arctan(Pa(z; —4))/m+ 5 +
g(z;) = ¢; - | arctan(Pa(z; — 6))/m+ 5 +
arctan(Pa(z; — 8))/m + 35 +
arctan(Pa(z; — 10)) /7 + 3



1 =20.00| z9g= 000| z3= 0.00| z4= 193 | 5= 1.63| z¢= 147 | =zr= 1.97
zg = 0.00 | £g =20.00 | 10 = 2.88 | 11 = 1.76 | z19 = 147 | 13 = 1.89 | z14 = 0.00
15 — 0.00 e — 0.00 17 = 17.12 r18 — 1.90 r19 = 1.99 oo — 1.10 Trol — 2.89
oo — 0.00 xro3 — 0.00 o4 — 0.00 o — 16.26 rog — 0.85 Tro7 = 1.38 Trog — 1.51
Trog — 0.00 xr3g — 0.00 xr31 — 0.00 xr3o — 0.00 xr33 — 19.65 T34 = 0.00 r3s — 0.35
Tr3e — 0.00 xr37 = 0.00 xr38 — 0.00 xr3g — 0.43 40 — 0.41 41 = 19.16 T49 = 0.00
T43 = 0.00 T4 = 0.00 T45 = 0.00 Ta6 = 0.72 Tya7 = 0.00 48 = 0.00 49 = 19.28
Table 8: Solution found by our GA: f(¥) = 24.15.

21 =2000| z9= 129 | 23= 095| x4= 158| x5= 152 | zg= 1.58| z7= 0.08
zg = 0.00 | g =18.71 | ;0= 039 | 211 = 1.59 | z19= 1.58 | 213 = 0.12 | £14 = 5.61
15 — 0.00 e — 0.00 r17 = 18.66 r18 — 1.56 r19 = 1.47 oo — 1.59 Trol — 1.72
oo — 0.00 xro3 — 0.00 o4 — 0.00 o — 18.27 rog — 1.25 Tro7 = 0.00 Trog — 0.48
Trog — 0.00 xr3og — 0.00 xr31 — 0.00 xr3o — 0.00 xr33 — 19.47 T34 — 0.53 r3s — 0.00
Tr3e — 0.00 xr37 = 0.00 xr38 — 0.00 xr3g — 0.00 T4 — 0.00 41 = 20.00 T49 = 0.00
T43 = 0.00 T4 = 0.00 T45 = 0.00 Ta6 = 0.00 Tya7 = 0.71 48 = 1.18 49 = 18.11

Table 9: Solution found by GAMS: f(#) = 96.00.

7 Conclusions
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This method let the system to find a feasible solution, but quite worse than those of our GA
(Tables 8 and 9); the genetic algorithm found an optimal value 24.15 while the other system
found one with 96.00.

The results indicate both usefulness of our method in the presence of many constraints
and its superiority over some standard systems on nontrivial problems. Our modified genetic
algorithm was run for 8000 iterations, with the population size equal forty. The parameters
used in all runs are displayed in Figure 6. A single run of 8000 iterations took 2:28 CPU sec
on Cray Y-MP.

GAMS was run on an Olivetti 386 with a math co-processor and a single run took 1:20

In this paper we discussed the use of genetic algorithms for numerical optimization prob-
lems. In particular, we concentrated on various modifications of classical genetic algorithms
to overcome three major problems: handling of constraints, premature convergence, and
local fine tuning. The preliminary results of several experiments are more than encouraging
and suggest that the methods are very useful. They may lead towards solving some difficult




H Parameter | Value H

pop_size 40
prob_mut,,, .08
prob_muty,, .03
prob_mut,,,, .07
prob_cross,, .10
prob_cross,, .10
prob_cross,,, .10
a .25
b 2.0

Figure 6: Parameters used for the 7 x 7 transportation problem: population size
(pop_size), probability of uniform mutation (prob_mut,,,), probability of boundary muta-
tion (prob_muty,, ), probability of non-uniform mutation (prob_mut,,,), probability of simple
crossover (prob_cross,.), probability of single arithmetical crossover (prob_cross,,), probabil-
ity of whole arithmetical crossover (prob_cross,,), coefficient a for the whole arithmetical
crossover, coefficient b for A of the non-uniform mutation.

Operations Research problems. Currently, we are in the process of implementing a single sys-
tem to incorporate all above ideas together. When completed, the system will be compared
with many software optimization packages on different functions with nontrivial constraints.
The system should be able to deal with very complex problems (thousands of variables,
hundreds of constraints) since we need to represent only a relatively small population of
potential solution vectors and apply new genetic operators to them.

Also, further extensions are planned to also handle discrete variables (integer, boolean,
nominal) and to handle some classes of nonlinear constraints.
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