Handling Constraints in Genetic Algorithms

Zbigniew Michalewicz
Department of Computer Science
University of North Carolina
Charlotte, NC 28223, USA

Abstract

The major difficulty in applicability of ge-
netic algorithms to various optimization
problems is the lack of general methodol-
ogy for handling constraints. This paper dis-
cusses a new such methodology and presents
results from the experimental system GENO-
COP (for GEnetic algorithm for Numerical
Optimization for COunstrainted Problems).
The system not only handles any objective
function with any set of linear constraints,
but also effectively reduces the search space.
The results indicate that this approach is su-
perior to traditional methods when applied
to the nonlinear transportation problem.

1 INTRODUCTION

In this paper we present a new approach to solving nu-
merical optimization problems with linear constraints,
based on genetic algorithms. Our new methodology
seems to fit between the OR and AI approaches. First,
it uses the OR technique for problem representation,
i.e. the formulation of constraints is quantitative. On
the other hand, our method uses a genetic algorithm,
which is considered as an Al based search method.

Since the genetic approach is basically an accelerated
search of the feasible solution space, introducing con-
straints can be potentially advantageous and can im-
prove the behavior of the technique by limiting the
space to be searched. However, all traditional GA ap-
proaches do not use this fact and rather emply tech-
niques aimed at minimizing the negative effect of such
constraints. This, in turn, often increases the search

Present address: Department of Mathematics and
Computer Science, University of Missouri, St. Louis, Mis-
souri 63121-4499

Cezary Z. Janikow™
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599, USA

space by allowing some infeasible solutions outside the
constrained solution space.

In the proposed approach, linear constraints are di-
vided into equalities and inequalities. The equalities
are eliminated at the start, together with an equal
number of problem variables; this action removes also
part of the space to be searched. The remaining con-
straints, in the form of linear inequalities, form a con-
vex set which must be searched for a solution. Its
convexity ensures that linear combinations of solu-
tions always yield feasible solutions — a property used
throughout this approach. The inequalities are used to
generate bounds for any given variable: such bounds
are dynamic as they depend on the values of the other
variables and can be efficiently computed.

The full discussion on the proposed approach will ap-
pear elsewhere (see [15]); in this paper we explain the
main idea of the proposed approach and present the
first results.

2 THE CONSTRAINTS PROBLEM
IN GENETIC ALGORITHMS

Three different approaches to the constraints problem
in genetic algorithms have previously been proposed.
The first two involve transforming potential solutions
of the problem into a form suitable for a genetic al-
gorithm and using penalty functions or applications
of “decoders” or “repair” algorithms. The third ap-
proach involves modifying the genetic algorithm to suit
the problem by using new data structures and new ge-
netic operators.

In this section, after defining the class of linearly
constrained optimization problems, we briefly discuss
these three approaches in turn.

2.1 THE PROBLEM

We consider a class of optimization problems that can
be formulated as follows:

Optimize a function f(z1,x2,...,%,), subject to the
following sets of linear constraints:

1. Domain constraints: l_l; < x; < wy; for i =
1,2,...,q. We write | < Z < #, where [=
(I, 0 lg), W= (ur,...,uq), T=(T1,...,%q).

2. Equalities: AZ = b, where & = (zy,.. S xg), A=
(aij)? b= (bh'-'abp): 1<i<pand1<j<gq
(p is the number of equations).

3. Inequalities: CZ < J; where & = (x1,...,24),
C = (cij), d = (diy...,dpn), 1 < i < m, and
1 < j < ¢ (m is the number of inequalities).

This formulation is general enough to handle a large
class of standard Operations Research optimization
problems with linear constraints and any objective
function. The example considered later, the nonlin-
ear transportation problem, is one of many problems
in this class.

2.2 PENALTY FUNCTIONS

One way of dealing with candidate solutions that vi-
olate the constraints is to generate potential solutions
without considering the constraints and then penaliz-
ing them by decreasing the “goodness” of the evalua-
tion function. In other words, a constrained problem
is transformed to an unconstrained problem by associ-
ating a penalty with all constraint violations and the
penalties are included in the function evaluation. How-
ever, though the evaluation function is usually well de-
fined, there is no accepted methodology for combining
it with the penalty. Davis discusses this problem in [2]
listing disadvantages of using high, moderate, or light
penalties:

“If one incorporates a high penalty into the
evaluation routine and the domain is one in
which production of an individual violating
the constraint is likely, one runs the risk
of creating a genetic algorithm that spends
most of its time evaluating illegal individu-
als. Further, it can happen that when a le-
gal individual is found, it drives the others
out and the population converges on it with-
out finding better individuals, since the likely
paths to other legal individuals require the

production of illegal individuals as interme-
diate structures, and the penalties for violat-
ing the constraint make it unlikely that such
intermediate structure will reproduce. If one
imposes moderate penalties, the system may
evolve individuals that violate the constraint
but are rated better than those that do not
because the rest of the evaluation function
can be satisfied better by accepting the mod-
erate constraint penalty than by avoiding it”.

In [18] and [16] the authors present the most recent ap-
proaches for using penalty functions in GAs for con-
strained optimization problems. However, the paper
by Siedlecki and Sklansky [18] discusses a particular
constrained optimization problem and the proposed
method is problem specific. The paper by Richard-
son, Palmer, Liepins, and Hillard [16] examines the
penalty approach discussing the strengths and weak-
nesses of various penalty function formulations and il-
lustrate a technique for solving three dimensional con-
strained problem. However, in the last section of their
article the authors say:

“The technique used to solve the three di-
mensional problem described above can’t be
generalized since quantities like the trend and
maximum derivative are seldom available”.

We do not believe this to be a promising direction. For
a heavily constrained problem, such as the transporta-
tion problem, the probability of generating an infea-
sible candidate is too great to be ignored. The tech-
nique based on penalty functions, at the best, seems
to work reasonably well for narrow classes of problems
and for few constraints, or for cases of non-essential
constraints.

2.3 DECODERS AND REPAIR
ALGORITHMS

Another approach concentrates on the use of special
representation mappings (decoders) which guarantee
(or at least increase the probability of) the generation
of a feasible solution and on the application of special
repair algorithms to “correct” any infeasible solutions
so generated. However, decoders are frequently com-
putationally intensive to run [2], not all constraints can
be easily implemented this way, and the resulting al-
gorithm must be tailored to the particular application.
The same is true for repair algorithms. Again, we do
not believe this is a promising direction for incorporat-
ing constraints into genetic algorithms. Repair algo-
rithms and decoders may work reasonably well but are

highly problem specific, and the chances of building a
general genetic algorithm to handle different types of
constraints based on this principle seem to be slim.

2.4 SPECIALIZED DATA STRUCTURES
AND GENETIC OPERATORS

The last and relatively new approach for incorporating
constraints in genetic algorithms is to introduce richer
data structures together with an appropriate family of
applicable “genetic” operators which can “hide” the
constraints presented in the problem (see [10], [12]).

Several experiments ([7], [13], [19], [20]) indicate the
usefulness of this approach, but it is not always possi-
ble, for an arbitrary set of constraints, to develop an
efficient data structure hiding such constraints. In ad-
dition, such structures require specialized genetic oper-
ators to maintain feasibility. Such extensions lack also
the theoretical basis enjoyed by the classical genetic
operators. Despite these objections, experimental re-
sults suggest that this approach may be promising.
However, the particular choice of representation and
operators must still be tailored to the specific problem
to be solved.

3 A NEW METHODOLOGY: THE
GENOCOP SYSTEM

The proposed methodology provides a way of handling
constraints that is both general and problem indepen-
dent. It combines some of the ideas seen in the pre-
vious approaches, but in a totally new context. The
main idea behind this approach lies in (1) an elimina-
tion of the equalities present in the set of constraints,
and (2) careful design of special “genetic” operators,
which guarantee to keep all “chromosomes” within the
constrained solution space. This can be done very effi-
ciently for linear constraints and while we do not claim
these results extend easily to nonlinear constraints,
the former class contains many interesting optimiza-
tion problems.

A full description of the GENOCOP system is pre-
sented in [15]; below we give a small example which
should provide some insight into the proposed method-

ology.

Let us assume we wish to minimize a function of six
variables:

f($1,$2,x3,x4,x5,x6)

subject to the following constraints:

1+ X9+ 23 =25
x4+ x5 + 26 = 10

T +x4 =3

To+ x5 =4

71 > 0,32 >0, 23 >0, 34 >0, 35 >0,
1‘620

We can take an advantage from the presence of four
independent equations and express four variables as
functions of the remaining two:

1’3:5—1'1—172
Ty =3—x1
ZL’5:4—£172
Te =3+ 1 + X0

We have reduced the original problem to the optimiza-
tion problem of a function of two variables 1 and x»:

g(x1,22) = f(21,22,(5 — 21 — T2),
(3—371), (4—372), (3+1’1 +l’2)).

subject to the following constraints (inequalities only):

$120a$220
5—371—56220
3—£U1 ZO
4—.’13220

3+z1+22>0
These inequalities can be further reduced to:

0§$1§3
0S1’2S4
T+ T2 <5

This would complete the first step of our algorithm:
elimination of equalities.

Now let us consider a single point from the search
space, e.g. T = (x1,x2) = (1.8,2.3). If we try to change
the value of variable z; without changing the value of
xo (uniform mutation), the variable z; can take any
value from the range: [0, 5 — x2] = [0, 2.7]. Ad-
ditionally, if we have two points within search space,
T = (z1,22) = (1.8,2.3) and o = (z,z}) = (0.9,3.5),
then any linear combination aZ + (1 — a)2’, 0 <
a < 1, would yield a point within search space, ¢.e.
all constraints must be satisfied (whole arithmetical
crossover). Therefore, both examples of operators
would not move a vector outside the constrained solu-
tion space.

The above example explains the main idea behind the
GENOCOP system. Linear constraints were of two

types: equalities and inequalities. We first eliminated
all the equalities, reducing the number of variables and
appropriately modifying the inequalities. Reducing
the set of variables both decreased the length of the
representation vector and reduced the search space.
Since we were left with only linear inequalities, the
search space was convex — which, in the presence of
closed operators, could be searched efficiently. The
problem then became one of designing such closed op-
erators. We achieved this by defining them as being
context-dependent, that is dynamically adjusting to
the current context. Such operators, used in GENO-
COP system, are quite different from the classical
ones. This is because:

1. We deal with a real valued space R?, where a so-
lution is coded as a vector with floating point type
components,

2. The genetic operators are dynamic, i.e. a value
of a vector component depends on the remaining
values of the vector,

3. Some genetic operators are non-uniform, i.e. their
action depends on the age of the population.

In the convex space, the value of the i-th component of

a feasible solution § = (v1,...,v,) is always in some
(dynamic) range [l,u]; the bounds ! and u depend on
the other vector’s values vy, ..., v;—1,Vit1,.-.,Um, and

the set of inequalities.

Before we describe the operators, we present two im-
portant characteristics of convex spaces (due to the
linearity of the constraints, the solution space is al-
ways a convex space S), which play an essential role
in the definition of these operators:

1. For any two points s; and s» in the solution space
S, the linear combination a-s; + (1—a)- s2, where
a € [0,1], is a point in S.

2. For every point sg € S and any line p such that
so € p, p intersects the boundaries of S at pre-
cisely two points, say [;° and u°.

Since we are only interested in lines parallel to each
axis, to simplify the notation we denote by lsi) and
ufi) the i-th components of the vectors [; and u,, re-
spectively, where the line p is parallel to the axis . We
assume further that lfi) < ufi).

Because of intuitional similarities, we cluster the op-
erators into the standard two classes: mutation and
crossover. The proposed crossover and mutation op-
erators use the two properties to ensure that the off-
spring of a point in the convex solution space S belongs

to S. However, some operators (e.g. non-uniform mu-
tation) have little to do with GENOCOP methodol-
ogy: they have other “responsibilities” like fine tuning
and prevention of premature convergence. For a de-
tailed discussion on these topics, the reader is referred
to [9] and [11].

Mutation group: Mutations are quite different from
the traditional one with respect to both the actual mu-
tation (a gene, being a floating point number, is mu-
tated in a dynamic range) and to the selection of an
applicable gene. A traditional mutation is performed
on static domains for all genes. In such a case the or-
der of possible mutations on a chromosome does not
influence the outcome. This is not true anymore with
the dynamic domains. To solve the problem we pro-
ceed as follows: we randomly select py,,-pop_size chro-
mosomes for uniform mutation, py,,-pop_size chromo-
somes for boundary mutation , and py,-pop_size chro-
mosomes for non-uniform mutation (all with possible
repetitions), where pum, Pom, and pn., are probabili-
ties of the three mutations defined below. Then, we
perform these mutations in a random fashion on the
selected chromosome.

¢ uniform mutation selects a random gene k
of the chromosome s = (vi,...,v,): the
result of this mutation is a vector sit! =
(v1,...,V}, .., Um), where v}, is a random value
(uniform probability distribution) from the range

st st . st st

[l(k?,u(k)]. The dynamic values I, and Uy are
easily calculated from the set of constraints (in-
equalities).

e boundary mutation is a variation of the uni-
t t
form mutation with v}, being either lf;;) or u(s;;),
each with equal probability.

¢ non-uniform mutation is one of the opera-
tors responsible for the fine tuning capabilities
of the system. It is defined as follows: if s =
(v1,...,v,) is a chromosome and the element
vr was selected for this mutation from the set
of movable genes, the result is a vector s{™! =
(V1. Vs, Um), with k€ {1,...,n}, and

vr + Alt, ufé) — vg)

if a random digit is 0
vg — A(t, v — lf;c’))

if a random digit is 1

The function A(t,y) returns a value in the range
[0,y] such that the probability of A(t,y) being

close to 0 increases as t increases. This property
causes this operator to search the space uniformly
initially (when t is small), and very locally at later
stages. We have used the following function:

Alty) =y (1-r079"),

where r is a random number from [0..1], T is
the maximal generation number, and b is a sys-

(wi,...,wy,...,wp), where k € [1,m], v, =
a-wp+(1—a) vk, and wj, = a-vp + (1 —a) - wy.
Here, a is a dynamic parameter calculated in the
given context (vectors s,, S,) so that the opera-
tor is closed (points x1F! and xi}! are in the con-
vex constrained space S). Actually, a is a random
choice from the following range:

Sw Sv Sv Sw

—w u —v —v u —w
(k) — Wk By TR (k) "k By TR)]
Wr —Vk ’ Vi —Wh

Vp—Wg 7 Wp—Vp)7

[maz(min(

tem parameter determining the degree of non-— if vy > wy,
uniformity. [0, 0] if vy, = wy,
Y —vp ult —wy I°Y —w, ul? —vp
(k) *) fo (k))
. [max(Wg—Vk 7 Vp—Wk),mm(Vk—Wk 7 Wk —Vk)]
Crossover group: Chromosomes are randomly se- if v, < Wi

lected in pairs for application of the crossover opera-
tors according to appropriate probabilities.

e simple crossover is defined as follows: if s{ =

To increase the applicability of this operator (to
ensure that a will be non—zero, which actually al-
ways nullifies the results of the operator) it is wise

t _
(vi,...,vm) and Sw = (wy, ... v?”m> are Frossed to select the applicable gene as a random choice
atfielr the k-th position, the resulting offsprl?flare: from the intersection of movable genes of both
Sy = (UL Uk Whis o W) and s, = chromosomes. Note again, that the value of a is
(wi, ..., Wk, Vg4, ..., vm). Note that the only determined separately for each single arithmetical

permissible split points are between individual
floating points (using float representation it is im-
possible to split anywhere else).

However, such operator may produce offspring
outside of the convex solution space S§. To avoid
this problem, we use the property of the convex
spaces saying, that there exist a € [0, 1] such that

st = (vi, .. vk, whgt @+ vpgr - (1 —a),
W @+ Uy - (L—a)) €S

and

st = (wy, ..., Wk, Vp41 - @+ wier - (1 —a),
iU ratwy - (1—a)) €S

The only question to be answered yet is how to
find the largest a to obtain the greatest possi-
ble information exchange: due to the real inter-
val, we cannot perform an extensive search. In
GENOCOP we implemented a binary search (to
some depth only for efficiency). Then, a takes the
largest appropriate value found, or 0 if no value
satisfied the constraints. The necessity for such
actions is small in general and decreases rapidly
over the life of the population. Note, that the
value of a is determined separately for each single
arithmetical crossover and each gene.

single arithmetical crossover is defined as
follows: if st = (v1,...,0n) and si, =
(w1, ..., wy) are to be crossed, the resulting off-

spring are sttt = (vy,... v}, ..., vp) and sif! =

4

crossover and each gene.

whole arithmetical crossover is defined as a
linear combination of two vectors: if s!, and st are
to be crossed, the resulting offspring are sit! =
a-st,+(1—a) s\ and st =a-st +(1—a)-s,
This operator uses a simpler static system param-
eter a € [0..1], as it always guarantees closedness
(according to characteristic (1) of convex spaces
given earlier in this section).

EXPERIMENTS AND RESULTS

For experiments we selected the following problem
(transportation problem) of forty nine variables:

minimize f (&) = Z?il g(zi) ,

subject to the following equality constraints:

Ty + o+ 23+ 24 + 5+ T6 + 17 = 27

g + xg + T10 + T11 + T12 + T13 + 14 = 28
215 + T16 + T17 + 18 + T19 + Too + 21 = 25
Zo2 + Tag + Tog + Tos + Tag + Tay + 2g = 20
Zog + T30 + T31 + 32 + T3z + T34 + 235 = 20
%36 + T37 + T38 + T39 + Tao + T41 + T4z = 20
T43 + Ta4 + Tas5 + Tae + Ta7 + Tag + Tg9 = 20

Ty + 28 + T15 + T2o + Tog + T3 + T4z = 20
Ty + X9 + T16 + T23 + T30 + Tar + Taq = 20
3 + T10 + P17 + Tag + T31 + T3 + T45 = 20
Tg + T11 + T18 + Tos + T32 + T39 + Tag = 23

5 + T12 + T19 + T2g + T33 + Tao + Ta7 = 26
T + X13 + T20 + Tay + T34 + Ta1 + Tz = 25
7 + 14 + To1 + Tag + T35 + Tao + Tg9 = 26

Experiments were made for six nonlinear cost func-
tions g (for a full discussion on the selection and clas-
sification of these functions, see [13]); their graphs are
presented in Figure 1.

Figure 1: Six cost functions A - F.

There are thirteen independent and one dependent
equations here; therefore, we eliminate thirteen vari-
ables: x1,...,Ts,%15,T22,T29, T3¢, L44. All remain-
ing variables are renamed y1,...,¥ys36. Each of these
variables has to satisfy four two—sided inequalities,
which result from the initial domains and our trans-
formations. Now, each chromosome is a float vector

(yla s 7y36>'

For comparative experiments we implemented all pre-
viously discussed GA approaches to the constraint
problem (penalties, decoders, and specialized data
structures), the GENOCOP system, and we used a
version (the student version) of GAMS, a package for
the construction and solution of large and complex
mathematical programming models [1].

The experiments with penalty functions and decoders
were not successful. For example, in experiments
with penalty functions the evaluation function FEwval
was composed of the optimization function f and the
penalty P:

Eval(2) = f(Z) + P,

For our experiments we followed a suggestion (see [16])
to start with relaxed penalties and to tight them as the
run progresses. We used

P=k-(

S|
~—
=
|
iR
=
&

where f is the average fitness of the population at the
given generation ¢, k and p are parameters, T is the
maximum number of generations, and d; returns the
“degree of constraint violation”.

We experimented with various values of p (close to 1),
k (close to 11—4, where 14 is total number of equality con-
straints; the static domain constraints were naturally
satisfied by a proper representation), and 7' = 8000.
However, this method did not lead to feasible solu-
tions: in over 1200 runs (with different seeds for ran-
dom number generator and various values for parame-
ters k and p) the best chromosomes (after 8000 gener-
ations) violated at least 3 constraints in a significant
way. The best solution was “far away” from the feasi-
ble solution for transportation problem.

Only GENOCOP system and a specialized data struc-
tures system (GENETIC-2, based on matrix data
structure as a chromosome) gave feasible results: these
are reported in [15]. In general, they are quite similar
(GENETIC-2 was slightly better); however, note that
the matrix approach was tailored to the specific (trans-
portation) problem, whereas GENOCOP is problem
independent and works without any hard-coded do-
main knowledge. In other words, while one might
expect the GENOCOP to perform similarly well for
other constrained problems, the GENETIC-2 cannot
be used at all.

The results and comparison of GENOCOP and GAMS
(summarized in Figure 2) indicate both usefulness of
our method in the presence of many constraints and its
superiority over some standard systems on nontrivial
problems.

GENOCOP was run for 8000 iterations, with the pop-
ulation size equal 40. A single run of 8000 iterations
took 2:28 CPU sec on Cray Y-MP. GAMS was run on
an Olivetti 386 with a math co-processor and a single
run took 1:20 sec.

Function GAMS GENOCOP % difference
A 96.00 24.15 +297.52%
B 1141.60 205.60 +455.25%
C 2535.29 2571.04 -1.41%
D 565.15 480.16 +17.70%
E 208.25 204.82 +1.67%
F 43527.54 119.61 +36291.22%

Figure 2: GENOCOP versus GAMS: the results for
the 7 x 7 problem.

5 CONCLUSIONS

After considering alternative ways for handling con-
straints in genetic algorithms for optimization prob-
lems, we proposed a new method for handling linear
constraints. This new methodology should enable such
constrained problems with difficult objective functions
to be solved without incurring the heavy computa-
tional overhead associated with frequent constraint
checking and without a need for designing a specific
system’s architecture.

The equality constraints are handled immediately by
eliminating some variables, at one stroke removing
constraints and reducing the search space. The in-
equalities are then processed to provide a set of bounds
for each of the remaining variables considered in isola-
tion. These bounds are dynamic in that they depend
on the values of other variables of the current solu-
tion. Since the GA modifies each variable indepen-
dently, this is not computationally complex.

Our results suggest that the method is useful as com-
pared to the standard methods, and may lead to-
wards the solution of some difficult Operations Re-
search problems.

It is relatively easy to extend the GENOCOP sys-
tem to handle discrete variables (nominal, linear, and
boolean). Such variables would undergo different mu-
tations and crossovers, to keep the solution vector
within the constrained space. Also, it is possible to ex-
tend the GENOCOP system to handle nonlinear con-
straints provided that the search space is convex.

Acknowledgments: This research was supported by
a grant from the North Carolina Supercomputing Cen-
ter.

References

[1] Brooke, A., Kendrick, D., and Meeraus, A.,
GAMS: A User’s Guide, The Scientific Press,

[5]

[10]

[11]

[12]

[13]

1988.

Davis, L., (Editor), Genetic Algorithms and Sim-
ulated Annealing, Pitman, London, 1987.

De Jong, K.A., Genetic Algorithms: A 10 Year
Perspective, in [5], pp.169-177.

Goldberg, D.E., Genetic Algorithms in Search,
Optimization and Machine Learning, Addison
Wesley, 1989.

Grefenstette, J.J., (Editor), Proceedings of the
First International Conference on Genetic Algo-

rithms, Pittsburg, Lawrence Erlbaum Associates,
Publishers, July 24-26, 1985.

Grefenstette, J.J., (Editor), Proceedings of the
Second International Conference on Genetic Al-
gorithms, MIT, Cambridge, Lawrence Erlbaum
Associates, Publishers, July 28-31, 1987.

Groves, L., Michalewicz, Z., Elia, P., Janikow, C.,
Genetic Algorithms for Drawing Directed Graphs,
Proceedings of the Fifth International Sympo-
sium on Methodologies of Intelligent Systems,
Knoxville, pp.268—-276, October 2527, 1990.

Holland, J., Adaptation in Natural and Artifi-
cial Systems, Ann Arbor: University of Michigan
Press, 1975.

Janikow, C., and Michalewicz, Z., Specialized
Genetic Algorithms for Numerical Optimization
Problems, Proceedings of the International Con-
ference on Tools for AI, Washington, pp.798-804,
November 6-9, 1990.

Michalewicz, Z., Vignaux, G.A., Groves, L., Ge-
netic Algorithms for Optimization Problems, Pro-
ceedings of the 11-th NZ Computer Conference,
Wellington, New Zealand, pp.211-223, August
16-18, 1989.

Michalewicz, Z. and Janikow, C., Genetic Algo-
rithms for Numerical Optimization, Statistics and
Computing, Vol.1, No.1, 1991.

Michalewicz, Z., Schell, J., and Seniw, D., Data
Structures + Genetic Operators = Fvolution Pro-
grams, UNCC Technical Report, 1991.

Michalewicz, Z., Vignaux, G.A., Hobbs, M., A
Non-standerd Genetic Algorithm for the Nonlin-
ear Transportation Problem, ORSA Journal on
Computing, Vol.3, 1991.

[14]

[15]

[17]

[20]

Michalewicz, Z., Krawczyk, J., Kazemi, M.,
Janikow, C., Genetic Algorithms and Optimal
Control Problems, Proceedings of the 29th IEEE
Conference on Decision and Control, Honolulu,
pp-1664-1666, December 5-7, 1990.

Michalewicz, Z. and Janikow, C., GENOCOP:
A Genetic Algorithm for Numerical Optimization
Problems with Linear Constraints, to appear in
Communications of ACM, 1991.

Richardson, J.T., Palmer, M.R., Liepins, G., and
Hilliard, M., Some Guidelines for Genetic Algo-
rithms with Penalty Functions, in [17], pp.191-
197.

Schaffer, J., (Editor), Proceedings of the Third
International Conference on Genetic Algorithms,
George Mason University, Morgan Kaufmann
Publishers, June 4-7, 1989.

Siedlecki, W. and Sklanski, J., Constrained Ge-
netic Optimization via Dynamic Reward—Penalty
Balancing and Its Use in Pattern Recognition, in
[17], pp.141-150.

Vignaux, G.A. and Michalewicz, Z., Genetic Al-
gorithms for the Transportation Problem, Pro-
ceedings of the 4th International Symposium on
Methodologies for Intelligent Systems, Charlotte,
NC, pp.252-259, October 12-14, 1989.

Vignaux, G.A. and Michalewicz, Z., A Genetic
Algorithm for the Linear Transportation Problem,
IEEE Transactions on Systems, Man, and Cyber-
netics, Vol.21, No.2, 1991.

