Xuemin (Sam) Wang

E. Desmond Lee and Family Fund Endowed Professor

Phone: (314) 516-6219
Fax: (314) 516-6233
Email: wangxue@umsl.edu

Member and Principal Investigator
Donald Danforth Plant Science Center

Education

Ph.D. 1987 University of Kentucky
M.S. 1984 Ohio State University
B.S. 1982 Huazhong Agricultural University
Postdoctoral training: 1988-1991 Louisiana State University

Previous Positions
1991-2004 Professor of Biochemistry, Kansas State University
2002-2004 Director of Kansas Lipidomics Research Center
Research Interests

Signal transduction in plant growth, development, and stress responses: Lipid-mediated signaling; Functional genomics of phospholipases; Metabolic profiling and lipidomics; Metabolic engineering

Research in my laboratory concerns signal transduction processes that regulate plant growth, development, and stress responses. My current research is grouped into four interrelated clusters:

I. Lipid-mediated signaling
II. Functional genomics of phospholipases
III. Metabolic profiling and lipidomics
IV. Metabolic engineering
.
One major focus in my laboratory is to understand the role of membrane lipids and phospholipases in signaling cascades. Specifically, we are interested in: i) identifying and characterizing enzymes that generate lipid messengers, ii) defining downstream targets of lipid signaling pathways, iii) elucidating the relationship and networks of different signaling processes in hormonal and stress responses, and iv) determining the physiological functions of lipid-mediated signaling. In addition, we are applying knowledge gained from the above studies to manipulating crop plants for improving stress tolerance and productivity. Integrated approaches of molecular biology, biochemistry, cell biology, stress physiology, functional genomics, and metabolomics are employed in our research.

WANG LAB Publication List

11/11/2011

  1. Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X. Inter-relationship between sphingosine kinase and phospholipase D in signaling Arabidopsis response to abscisic acid. J. Biol. Chem. accepted
  2. Vu H, Tamura P, Galeva NA, Chaturvedi R, Williams TD, Wang X, Shah J, Welti R. Direct infusion tandem mass spectral profiling of oxylipin-containing Arabidopsis thaliana phospholipids and galactolipids reveals varied patterns in response to different stressors. Plant Physiology, in press.
  3. Zhao J, Wang C, Bedair M, Welti R, Sumner LW, Baxter B, Wang X. Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana. PLoS ONE, in press
  4. Li M, Bahn SC, Guo L, Musgrave W, Berg H, Welti R, Wang X. 2011. Patatin-related phospholipase pPLAIIIβ-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. Plant Cell. 23:1107-1123
  5. Guo L, Mishra G, Taylor K, Wang X 2011. Phosphatidic Acid binds and stimulates Arabidopsis sphingosine kinases. J. Biol. Chem. 286:13336-13345.
  6. Cheng Y, Zhou W, El sheery NI, Peters C, Li M, Wang X, Huang J. 2011. Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals that a plastid-localized AtGDPD1 is involved in membrane lipid remodeling under phosphate deficiency. Plant J. 66:781-795.
  7. Pappan KL, Wang X. 2011 Assaying different types of plant phospholipase D activities in vitro. Heilmann I and Munnik T (eds.), Methods in Molecular Biology, Lipid signaling in plants Humana Press, a part of Springer Science & Business Media, LLC. in press
  8. Wang G, Ryu S, Wang X. 2011 Plant Phospholipases, Lipases and phospholipases: Methods and applications, Sandoval G (ed.). Humana Press, Springer Science & Business Media, LLC in press
  9. Peters C, Li M, Narasimhan R, Roth M, Welti R Wang X. 2010. Non-specific phospholipase C NPC4 promotes response to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642-2659.
  10. Scherer GFE, Ryu SB, Wang X, Matos AR, Heitz T. 2010. Patatin-related phospholipase A, subfamilies and functions in plants and animals Trends Plant Science 15:693-700.
  11. Pan X, Welti R Wang X. 2010 A liquid chromatography-mass spectrometry method for quantitative analysis of major plant hormones in crude plant extracts. Nature Protocols 5, 986 - 992.
  12. Hong Y, Zhang W, Wang X. 2010. Lipid signaling in plant response to hyperosmotic stress. Plant Cell Environ. 33, 627-635
  13. Zhang W, Wen B, Li W, Hong Y, Wang X 2010. Plant Phospholipase D. in ' Lipid Signaling in Plants' Munnik T ed, Springer-Verlag Berlin Heidelberg pp 39-62.
  14. Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X. 2009. Phospholipase D and phosphatidic acid mediate reactive oxygen species production in abscisic acid-promoted stomatal movements. Plant Cell 21:2357-2377.
  15. Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X. 2009. Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant Journal 58:376-387.
  16. Li M, Hong Y, Wang X 2009. Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochem Biophys Acta 179:927-935.
  17. Pan X, Wang X. 2009. Quantitative profiling of plant hormones by mass spectrometry. J. Chromatography B 877:2806-2813.
  18. Wang, X, Welti, R. 2009. Understanding plant lipids. ASBMB Today. July. p. 22.
  19. Hong Y, Pan X, Welti R, Wang X. 2008. Phospholipase Dα3 is involved in hyperosmotic responses in Arabidopsis. Plant Cell 20: 803-816.
  20. Li W, Li M, Welti R, Wang X. 2008. Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem. 283: 461-468.
  21. Pan X, Welti R, Wang X 2008. Simultaneous quantification of phytohormones and related metabolites in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69:1773-1781.
  22. Hong Y, Zheng S, Wang X 2008. Dual functions of phospholipase Dα1 in plant response to drought. Molecular Plant 1: 262-269
  23. Hong Y, Pan X, Welti R, Wang X. 2008. The effect of Phospholipase Dα3 on Arabidopsis response to hyperosmotic stress and glucose. Plant Signaling & Behavior 3: 1-2.
  24. Boss W, Lynch D, Wang X. 2008. Lipid-mediated signaling. Annual Plant Reviews 33, 202-243.
  25. Yang W, Devaiah S, Pan X, Isaac G, Welti R, Wang X. 2007. AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to botrytis cinerea. J. Biol. Chem. 282, 18116-18128.
  26. Devaiah SP, Pan X, Roth M, Welti R, Wang X. 2007. Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant Journal. 50, 950-957
  27. Wang X, Zhang W, Li W, Mishra G. 2007. Phospholipid signaling in plant response to drought and salt stress. In Advances in Molecular Breeding towards Salinity. Eds, M Jenks, P Hasegawa, Springer pp. 183-192.
  28. Welti R, Isaac G, Tamura P, Esch SW, Sparks A, Jeannotte R, Roth M, Maatta S, Williams TD, Shah J, Wang X. 2007. Lipid profiling: Analysis of gene function and physiological responses in Arabidopsis. In Current Advances in the Biochemistry and Cell Biology of Plant Lipids. Eds, C. Benning, J. Ohlrogge pp. 287-291
  29. Welti R, Shah J, Li W, Li M, Chen J, Burke JJ, Fauconnier ML, Chapman K, Chye ML, Wang X. 2007. Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front. Biosci. 12:2494-2506.
  30. Esch SW, Tamura P, Sparks AA, Roth MR, Devaiah SP, Heinz E, Wang X, Williams TD, Welti R. 2007. Rapid characterization of fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry. J Lipid Res. 48:235-241
  31. Welti R, Roth M, Deng Y, Shah J, Wang X. 2007. Lipidomics: ESI-MS/MS-based profiling to determine the function of genes involved in metabolism of complex lipids. In Concepts in Plant Metabolomics, Springer, Dordrecht, The Netherlands. Eds, N. Basil and E.S. Wurtele. pp 87-92.
  32. Li M, Welti R, Wang X. 2006. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D zeta1 and D zeta2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol. 142:750-761.
  33. Qin C, Li M, Qin W, Bahn SC, Wang C, Wang X. 2006. Expression and characterization of Arabidopsis phospholipase Dgamma2. Biochim. Biophys. Acta. 1761: 1450-1458
  34. Devaiah SP, Roth MR, Baughman E, Li M, Welti R, Wang X. 2006. Lipid Profiling to quantitatively display polar glycerolipid species and the role of phospholipase Dα1 in the species in Arabidopsis tissues. Phytochemistry 67: 1907-1924.
  35. Rajashekar CB, Zhou HE, Zhang Y, Li W, Wang X. 2006. Suppression of phospholipase Dalpha1 induces freezing tolerance in Arabidopsis: response of cold-responsive genes and osmolyte accumulation. J. Plant Physiol. 163:916-926.
  36. Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O. 2006. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells. J. Am. Chem Soc. 128:13030-13030.
  37. Mishra, G, Zhang W, Deng F, Zhao J, Wang X. 2006. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312: 264-266.
  38. Li M, Qin C, Welti R, Wang X. 2006. Double knockouts of phospholipase Dζ1 and ζ2 in Arabidopsis affect root elongation during phosphate-limited growth, but do not affect root hair patterning. Plant Physiol. 140: 761-770
  39. Wang X, Devaiah SD, Zhang W, Welti R. 2006. Signaling functions of phosphatidic acid. Prog. Lipid Research 45: 250-278.
  40. Wang X, Li W, Li M, Welti R. 2006. Profiling lipid changes in plant response to low temperatures. Physiol. Plant. 126:90-96
  41. Wang X. 2006. Phospholipid-derived signaling in plant response to temperature and water stresses. Genetic Engineering, 27: 57-66.
  42. Zhang W, Yu L, Zhang Y, Wang X. 2005. Phospholipase D in the signaling network of plant responses to abscisic acid and reactive oxygen species Biochim. Biophys. Acta 1736:1-9.
  43. Wang X. 2005. Regulatory functions of phospholipase D and phosphatidic acid in plant growth development, and stress responses. Plant Physiol. 139:566-573
  44. Welt, R, Shah J, LeVine S, Esch W, Williams T, Wang X. 2005. High throughput lipid profiling to identify and characterize genes involved in lipid metabolism, signaling, and stress response. In Functional Lipidomics. Edited by L. Feng and G. Prestwich, CRC Press , Boca Raton, FL. pp. 308-320.
  45. Zhang W, Qin C, Zhao J, Wang X. 2004. Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA 101: 9508-9513.
  46. Li W, Li M, Zhang W, Welti R, Wang X. 2004. The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis. Nature Biotech. 22: 427-433.
  47. Zhao J, Wang X. 2004. Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279:1794-1800.
  48. Pappan K, Zheng L, Krishnamoorthi R, Wang X. 2004. Evidence for and characterization of Ca2+ binding to the catalytic region of Arabidopsis thaliana phospholipase Dβ. J. Biol. Chem. 279: 47833-47839.
  49. Wang X. 2004. Lipid signaling. Curr. Opin. Plant Biol. 7: 329-336
  50. Welti R, Wang X. 2004. Lipid species profiling: A high throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr. Opin. Plant Biol. 7: 337-344
  51. Zhang W., C. Wang, C. Qin, T. Wood, G. Olafsdottir, and X. Wang. 2003. Phospholipase D and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15: 2285-2295.
  52. McGee J.D., J. Roe, T.A. Sweat, X. Wang, J.A. Guikema, and J.E. Leach. 2003. Rice phospholipase D isoforms show differential cellular location and gene induction. Plant Cell Physiol. 44: 1013-1026.
  53. Welti, R., X. Wang, and T. D. Williams. 2003. Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal. Biochem. 314: 149-152.
  54. Kusner, D.J., J.A. Barton, C. Qin, X. Wang, S.S. Iyer. 2003. Evolutionary conservation of physical and functional interactions between phospholipase D and actin. Arch. Biochem. Biophys. 412: 231-241.
  55. Qin, C, W. Li, Y. Hong, W. Zhang, T. Wood, M. Li, R. Welti, and X. Wang 2003. Two novel types of Arabidopsis phospholipase D: oleate-stimulated PLDδ and Ca2+-independent PLDζ1. in Advanced Research on Plant Lipids, ed. N. Murata, M Yamada, I. Nishida, H. Okuyama. J. Sekiya, and W. Hajime. Kluwer Academic Publishers, Dordrecht/Boston/London. pp. 259-262.
  56. Welti R and X. Wang 2003. Lipidomics. Inform 14: 607-608
  57. Wang, X. 2002. Phospholipase D in hormonal and stress signaling. Current Opinion in Plant Biol. 5: 408-414.
  58. Qin, B, C. Wang, and X. Wang. 2002. Kinetic analysis of Arabidopsis phospholipase Dδ: substrate preference and mechanism of activation by calcium and phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 277: 49685-49690.
  59. Kusner D.J., J.A. Barton, K-K. Wen, X. Wang, P.A. Rubenstein, and S.S. Iyer. 2002. Regulation of phospholipase D activity by actin: I actin exerts bidirectional modulation of mammalian PLD activity in a polymerization-dependent, isoform-specific manner. J. Biol. Chem. 277: 50683-50692.
  60. Welti, R., W. Li, M. Li, Y. Sang, H. Biesiada, H-E. Zhou, C.B. Rajashekar, T.D. Williams, and X. Wang. 2002. Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277: 31994-32002.
  61. Zheng, L., J. Shan, R. Krishnamoorthi, and X. Wang. 2002. Activation of plant phospholipase Dβ by phosphatidylinositol 4,5-bisphosphate: characterization of binding site and mode of action. Biochemistry 41: 4546-4553.
  62. Wang, X. C. Wang, Y. Sang, C. Qin, and R. Welti. 2002. Networking of phospholipases in plant signal transduction. Physiol. Plant. 128: 1057-1068.
  63. Qin, C. and X. Wang. 2002. The Arabidopsis phospholipase D family: characterization of a Ca2+-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiol. 128: 1057-1068.
  64. Wang, X. Plant Phospholipases. 2001. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:211-231.
  65. Sang, Y., S. Zheng, W. Li, B. Huang, and X. Wang. 2001. Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant Journal. 28: 135-144.
  66. Wang, C. and X. Wang. 2001. A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol. 127: 1102-1112.
  67. Sang, Y., D. Cui, and X. Wang. 2001. Phospholipase D- and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 126: 1449-1458.
  68. Zien, C.A., C. Wang, X. Wang, and R. Welti. 2001. In-vivo substrates and the contribution of the common phospholipase D, PLDα, to wound-induced metabolism of lipids in Arabidopsis. Biochim. Biophys. Acta. 1530: 236-248.
  69. Wang, C., C. Zien, M. Afitlhile, R. Welti, D.F. Hildebrand, and X. Wang. 2000. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12: 2237-2246.
  70. Ransom-Hodgkins, W.D., I. Brglez, X. Wang, W.F. Boss. 2000. Calcium-induced proteolysis of eEF1A. Plant Physiol. 122: 957-965.
  71. Zhang, W. and X. Wang. 2000. Phospholipid metabolism and signal transduction in plants. Chinese Bulletin of Life Sciences 12:100-104.
  72. Wang, X. 2000. Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Progress in Lipid Research 39:109-149.
  73. Wang, X., C. Wang, Y. Sang, L. Zheng, and C. Qin. 2000. Determining functions of multiple phospholipase Ds in stress response in Arabidopsis. Bioch. Soc. Trans. 28: 813-816.
  74. Leach, J.E., L. Lloyd, D. McGee, X. Wang, and J.A. Guikema. 2000. Trafficking of plant defense response compounds. In N.T. Keen, S. Mayama, J.E. Leach, and S. Tsuyumu eds: Delivery and Perception of Pathogen Signals in Plants. APS Press, Minneapolis, MN. pp. 241-250.
  75. Zheng, L., R. Krishnamoorthi, M. Zolkiewski, and X. Wang. 2000. Distinct calcium binding properties of novel C2 domains of plant phospholipase Dα and β. J. Biol. Chem. 275:19700-19706.
  76. Lu, F., S. Zheng, and X. Wang. 1999. Subcellular distribution and tissue expression of phospholipase Dα, β, and γ in Arabidopsis. Plant Physiol. 119:1371-1378.
  77. Wang, X. 1999. The role of phospholipase D in signaling cascades. Plant Physiol. 120: 645-651.
  78. Pappan, K and X. Wang. 1999. Plant phospholipase Dα is an acidic phospholipase active at near-physiological Ca2+ concentrations. Arch. Biochem. Biophys. 368: 347-353.
  79. Pappan, K. and X. Wang. 1999. Molecular and biochemical properties and physiological roles of plant phospholipase D. Biochim. Biophys. Acta 1439: 151-166.
  80. Qin, W., J.H. Dyer, L. Zheng, and X. Wang. 1999. Isolation and nucleotide sequence of the fourth phospholipase D (accession No. AF138281), PLDγ2, from Arabidopsis thaliana. Plant Physiol. 120:635.
  81. Pappan, K., S. Austin-Brown, K. Chapman and X. Wang. 1998. Substrate selectivities and lipid modulation of phospholipase Dα, β, and γ from plants. Arch. Biochem. Biophys.353:131-140.
  82. Ryu, S.B. and X. Wang. 1998. Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. Biochim. Biophys. Acta 1393:193-202.
  83. Wang, X., K. Pappan, L. Fan, and W. Qin. 1998. Multiple forms of phospholipase D in plant hormonal and stress signaling. In J. Sanchez et al. Eds: Advances in Plant Lipid Research. Servicio de Publicaciones, Spain. pp 398-401.
  84. Pappan, K. and X. Wang. 1998. Regulation of plant phospholipase D by polyphosphoinositides and non-lamellar lipids. In J. Sanchez et al. Eds: Advances in Plant Lipid Research. Servicio de Publicaciones, Spain. pp 402-405.
  85. Lu, F., S. Zheng, and X. Wang. 1997. Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene- promoted senescence in postharvest Arabidopsis leaves. Plant Cell. 9:2183-2196.
  86. Pappan, K. S. Zheng, and X. Wang. 1997. Identification and characterization of a novel phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis. J. Biol. Chem. 272:7048-7054.
  87. Pappan, K. W. Qin, J.H. Dyer, L. Zheng, and X. Wang. 1997. Molecular cloning and functional analysis of polyphosphoinositide-dependent phospholipase D, PLDβ, from Arabidopsis. J. Biol. Chem. 272:7055-7061.
  88. Qin, W., K. Pappan, and X. Wang.1997. Molecular heterogeneity of PLD: cloning of plant PLDγ and regulation of PLDγ, β, and α by polyphosphoinositides and Ca2+. J. Biol. Chem. 272:28267-28273.
  89. Wang, X., S. Zheng, K. Pappan, and L. Zheng. 1997. Characterization of phospholipase D-overexpressed and suppressed transgenic tobacco and Arabidopsis. in J.P. Williams, M.U. Khan, N.W. Lem eds: Physiology, Biochemistry and Molecular Biology of Plant Lipids. Kluwer Academic Publishers, Boston, pp. 345-347.
  90. Xu, L., S. Zheng, L. Zheng, and X. Wang. 1997. Promoter analysis and expression of a phospholipase D gene from Ricinus communis L. Plant Physiol. 115:387-395.
  91. Wang, X. 1997. Molecular analysis of phospholipase D. Trend. Plant Sci. 2:261-266.
  92. Young, S.A., X. Wang, and J.E. Leach. 1996. Changes in the plasma membrane distribution of rice phospholipase D during resistant interaction with Xanthomonas oryzae pv oryzae. Plant Cell 8:1079-1090.
  93. Xu, L., A.Q. Paulsen, S.B. Ryu, and X. Wang. 1996. Intracellular localization of phospholipase D in leaves and seedling tissues of castor bean. Plant Physiol. 111:1001-107.
  94. Xu, L., L. Zheng, S.J. Coughlan, and X. Wang. 1996. Structure and analysis of phospholipase D gene from Ricinus communis L. Plant Mol. Biol. 32:767-771.
  95. Ryu, S.B. and X. Wang. 1996. Activation of phospholipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in castor bean leaves. Biochim. Biophys. Acta 1303:243-250.
  96. Ryu, S.B., L. Zheng, and X. Wang. 1996. Changes in phospholipase D expression in soybeans during seed development and following germination. J. Am. Oil Chem. Soc. 73:1171-1176.
  97. Dyer, J.H., S. Zheng, and X. Wang. 1996. Structural heterogeneity of phospholipase D in ten dicots. Biochem. Biophys. Res. Commu. 221:31-36.
  98. Ryu, S.B. and X. Wang. 1995. Expression of phospholipase D during castor bean leaf senescence. Plant Physiol. 108:713-719.
  99. Dyer, J.H., L. Zheng, and X. Wang. 1995. Cloning and nucleotide sequence of a cDNA encoding phospholipase D from Arabidopsis (Accession No. U36381) (PGR 95-096). Plant Physiol. 109:1497.
  100. Wang, X., L. Xu, and L. Zheng. 1994. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J. Biol. Chem. 269:20312-20317.
  101. Dyer, J.H., S.B. Ryu, and X. Wang. 1994. Multiple forms of phospholipase D following seed germination and during leave development of castor bean. Plant Physiol. 105:715-724.
  102. Wang, X. 1993. Phospholipases. in T.S. Moore ed: Lipid Metabolism In Plants. CRC Press, Boca Raton, FL, pp. 499-520.
  103. Wang, X., J.H. Dyer, and L. Zheng. 1993. Purification and immunological analysis of phospholipase D from germinating castor bean endosperm. Arch. Biochem. Biophys. 306: 486-494.
  104. Zheng, L., X. Wang, and H. D. Braymer. 1992. Purification and N-terminal sequences of two polypeptides encoded by mcrB from Escherichia coli K-12. Gene. 112:97-100.
  105. Wang, X. and T.S. Moore, Jr. 1991. Phosphatidylethanolamine biosynthesis in castor bean endosperm: Intracellular distribution and characteristics of CTP:ethanolamine-phosphate cytidylyltransferase. J. Biol. Chem. 266:19981-19987.
  106. Wang, X. and T.S. Moore, Jr. 1990. Phosphatidylcholine biosynthesis in castor bean endosperm: purification and properties of CTP:choline-phosphate cytidylyltransferase. Plant Physiol. 93:250-255.
  107. Moore, Jr., T.S. and X. Wang. 1990. A comparison of CTP:cholinephosphate cytidylyltransferase and CTP:ethanolaminephosphate cytidylyltransferase of castor bean endosperm. In P.J. Quinn and J.L. Harwood Eds: Plant Lipid Biochemistry, Structure, and Utilization. Portland Press, pp.251-253.
  108. Wang, X. and T.S. Moore, Jr. 1989. Partial purification and characterization of CTP:choline-phosphate cytidylyltransferase from castor bean. Arch. Biochem. Biophys. 274:388-347.
  109. Wang, X., H.A. Norman, J.B. St. John, T. Yin, and D.F. Hildebrand. 1989. Comparison of fatty acid composition in soybean tissues with low linolenate mutants. Phytochem. 28:411-414.
  110. Wang, X., G.Bookjans, M. Altschuler, G.B. Collins, and D.F. Hildebrand. 1988. Alteration of the synthesis of lipoxygenase in the early stages of soybean cotyledon culture. Physiol. Plant. 72:127-132.
  111. Wang, X. and D.F. Hildebrand. 1987. Effect of a substituted pyridazinone on the decrease of lipoxygenase activity in soybean cotyledons. Plant Science. 51:29-36.
  112. Wang, X. D.F. Hildebrand, H.A. Norman, M.L. Dahmer, J.B. St. John, and G.B. Collins. 1987. Reduction of linolenate content in soybean cotyledons by a substituted pyridazinone. Phytochem. 26:955-960.
  113. Wang, X., D.F. Hildebrand, and G.B. Collins. 1987. Identification of proteins associated with the change in linolenate content of soybean cotyledons. In P. K. Stumpf, J. B. Mudd, and W. D. Nes Eds: The metabolism, Structure, and Function of Plant Lipids. Plenum Press, pp.533-535.
  114. Hildebrand, D.F., M. Altschuler, G. Bookjans, G. Benzion, T.R. Hamilton-Kemp, R. A. Anderson, J.G. Rodriguez, J.C. Polacco, M.L. Dahmer, A.G. Hunt, X. Wang, and G.B. Collins. 1987. Physiological and transformational analysis of lipoxygenase. In P.K. Stumpf, J.B. Mudd, and W.D. Nes Eds: The metabolism, Structure, and Function of Plant Lipids. Plenum Press, pp. 715-717.
  115. Wang, X., K.A. Feldmann, and R.L. Scholl. 1988. A chlorate-hypersensitive, high nitrate/chlorate uptake mutant of Arabidopsis thaliana. Physiol. Plant. 73:305-310.
  116. Wang, X., R.L. Scholl, and K.A. Feldmann. 1986. Characterization of a chlorate-hypersensitive, high nitrate reductase Arabidopsis thaliana mutant. Theor. Appl. Genet. 72:328-336.